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Pauli graphs when the Hilbert space dimension

contains a square: why the Dedekind psi function ?

Michel Planat

Institut FEMTO-ST, CNRS, 32 Avenue de l’Observatoire,

F-25044 Besançon, France.

Abstract. We study the commutation relations within the Pauli groups built on

all decompositions of a given Hilbert space dimension q, containing a square, into its

factors. Illustrative low dimensional examples are the quartit (q = 4) and two-qubit

(q = 22) systems, the octit (q = 8), qubit/quartit (q = 2× 4) and three-qubit (q = 23)

systems, and so on. In the single qudit case, e.g. q = 4, 8, 12, . . ., one defines a bijection

between the σ(q) maximal commuting sets [with σ[q) the sum of divisors of q] of Pauli

observables and the maximal submodules of the modular ring Z
2
q , that arrange into the

projective line P1(Zq) and a independent set of size σ(q)−ψ(q) [with ψ(q) the Dedekind

psi function]. In the multiple qudit case, e.g. q = 22, 23, 32, . . ., the Pauli graphs rely

on symplectic polar spaces such as the generalized quadrangles GQ(2, 2) (if q = 22)

and GQ(3, 3) (if q = 32). More precisely, in dimension pn (p a prime) of the Hilbert

space, the observables of the Pauli group (modulo the center) are seen as the elements

of the 2n-dimensional vector space over the field Fp. In this space, one makes use of

the commutator to define a symplectic polar space W2n−1(p) of cardinality σ(p
2n−1),

that encodes the maximal commuting sets of the Pauli group by its totally isotropic

subspaces. Building blocks of W2n−1(p) are punctured polar spaces (i.e. a observable

and all maximum cliques passing to it are removed) of size given by the Dedekind psi

function ψ(p2n−1). For multiple qudit mixtures (e.g. qubit/quartit, qubit/octit and

so on), one finds multiple copies of polar spaces, ponctured polar spaces, hypercube

geometries and other intricate structures. Such structures play a role in the science of

quantum information.

PACS numbers: 03.67.Lx, 02.10.Ox, 02.20.-a, 02.10.De, 02.40.Dr

1. Introduction

The q-level quantum systems (also denoted q-dits, or qudits), and tensor products of

them, possibly with a different number of levels in each factor, are basic constituents of

quantum information processing. Multiple qubits, that are tensor products of two-qubit

systems are routinely employed in quantum algorithms, but multiple copies of q-dits

(with q > 2) may turn to be more interesting in terms of self error-correction, and in

relation to multipartite communication, as on the quantum Internet. The most general

system would be a mixture of multiple qudits corresponding to the factors of a integer

factorization of the Hilbert space dimension as q =
∏

i q
pi
i . Let us point out that, for a
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given dimension q, there exists several such factorizations, leading to distinct quantum

systems. In the lowest dimensional case involving a square, one has either q = 4 or

q = 22, corresponding to the single quartit and two-qubit systems, respectively. It may

be convenient to use a 4-level system (like the states of a nuclear spin 3
2
) to physically

implement the two-qubit CNOT gate [1], and in some respect both systems display

similar symmetries (like in the Bloch sphere representation) [2], but in general they

have distinctive features (like in the Pauli group of observables and in the structure of

the maximal commuting sets).

In this paper, we focus on the commutation relations of observables attached to a

selected decomposition of the Hilbert space dimension q. The observables in a factor are

defined from the action on a vector |s〉 of the qi-dimensional Hilbert space of the qi-dit

Pauli group generated by two unitary X (shift) and clock Z operators via X |s〉 = |s + 1〉

and Z |s〉 = ωs |s〉, with ω a primitive qi-th root of unity. Then the observables in

dimension q are obtained by taking tensor products over the qi-dimensional observable

of each factor. A Pauli graph is constructed by taking the observables as vertices

and a edge joining two commuting observables. Maximal sets of mutually commuting

observables, i.e. maximum cliques of the Pauli graph, are used to define a point/line

incidence geometry with observables as points and maximum cliques as lines.

In recent papers, multiple qubits [3, 4], single qudits [5, 6, 7] and a few examples

of qudit mixtures [9] were already explored. Further work was published to clarify

this earlier work dealing with symplectic polar spaces of multiple qudits [10, 11, 12]

and, in what concerns multiple qubits, its link to units in Clifford algebras [13], to Lie

algebras [14] and to a class of singular curves in phase space [15]. Prior to the advent

of quantum information science, the incidence properties of the q-dimensional geometry

and the relations to Clifford algebras were published in [16, 17]. The link of mutual

unbiasedness to the general theory of angular momentum is explored in [18], and its

link to Feymann’s path integral may be found in [19].

In this paper, we focus on quantum systems of Pauli observables defined over the

Hilbert space of dimension q containing a square. In the single qudit case, studied

in Sec. 2, the maximal mutually commuting sets of observables in the Hilbert space

of dimension q are mapped bijectively to the maximal submodules over the ring Zq

[5, 6]. If q contains a square, there are ψ(q) = q
∏

p|q(1 + 1
p
) points on the projective

line P1(Zq) (in the Dedekind finction ψ(q), the product is taken over all primes p

dividing q) and the remaining σ(q)−ψ(q) 6= 0 independent points (with σ(q) the sum of

divisors function) is playing the role of a reference frame and possess their own modular

substructure. The number theoretical properties of the modular ring Zq are used to

count the cardinality of the symplectic group Sp(2,Zq) [7, 20, 21]. In Sec. 3, we remind

the established results concerning the point/line geometries attached to multiple qudit

systems in dimension pn, that symplectic polar spaces W2n−1(p) of order p and rank

n govern the commutation structure of the observables. Here, the number theoretical

functions σ(p2n−1) and ψ(p2n−1) are found to count the number of observables in the

symplectic polar space and in the punctured polar space, respectively. In Sec. 4, we study
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composite systems when at least one of the factors qi of the Hilbert space dimension is

a square. It is shown, that the non-modularity leads to a natural splitting of the Pauli

graph/geometry into several copies of basic structures such as polar spaces, punctured

polar spaces and related hyperdimensional structures.

A few properties of the structures we have checked are in table 1. Details are given

in the subsequent sections.

Most calculations are performed on Magma [22]. High dimensional computations

have been made possible thanks to the supercomputer facilities of the Mésocentre de

calcul at University of Franche-Comté.

2. Pauli graph/geometry of a single qudit

A single qudit is defined by a Weyl pair (X,Z) of shift and clock cyclic operators

satisfying

ZX − ωXZ = 0, (1)

where ω = exp 2iπ
q

is a primitive q-th root of unity and 0 is the null q-dimensional matrix.

In the standard computational basis {|s〉 , s ∈ Zq}, the explicit form of the pair is as

follows

X =















0 0 . . . 0 1

1 0 . . . 0 0

. . . . . . .

. . . . . . .

0 0 . . . 1 0















, Z = diag(1, ω, ω2, . . . , ωq−1). (2)

The Weyl pair generates the single qudit Pauli group Pq = 〈X,Z〉, of order q3,

where each element may be written in a unique way as ωaXbZc, with a, b, c ∈ Zq.

It will be shown in this section that the study of commutation relations in a

arbitrary single qudit system may be based on the study of symplectic modules over the

modular ring Z2
q , and conversely that the elegant number theoretical relations underlying

the isotropic lines of Z2
q have their counterpart in the maximal commuting sets of a qudit

system. Our results may be found in various disguises in several publications where the

proofs are given [6, 7, 20, 21].

Let us start with the Weyl pair property (1) and write the group theoretical

commutator as [X,Z] = XZX−1Z−1 = ω−1Iq (where Iq is the q-dimensional identity

matrix), so that one gets the expression
[

ωaXbZc, ωa′Xb′Zc′
]

= ωcb′−c′bIq, (3)

meaning that two elements of Pq commute if only if the determinant ∆ = det

(

b′ b

c′ c

)

vanishes. Two vectors such that their symplectic inner product [(b′, c′).(b, c)] = ∆ =

b′c− bc′ vanishes are called perpendicular. Thus, from (3), one can transfer the study of
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q name [Ref.] # cliques geometry spectrum aut. group

4 quartit [6, 2] 6 + 1 P1(Z4)
† {41, 03+1,−22} G48 = Z2 × S4

22 2-qubit [3, 4] 15 GQ(2, 2) {61, 19,−35} S6

8 octit [6, 2] 12 + 3 P1(Z8)
† {81, 09+3,−42} Z

6
2 ⋊ (Z3

3 ⋊G48)

2× 22 qubit/quartit [9] 36 + 3 3×GQ(2, 2)′ {51, 16,−12,−33}3 G3
48 ⋊ S3

23 3-qubit [3, 4] 135 W5(2) {301, 335,−527} Sp(6, 2)

9 9-dit [6] 12 + 1 P1(Z9)
† {91, 08+1,−33} G648 ⋊G48

32 2-qutrit [3] 40 GQ(3, 3) {251, 524,−140,−715} Z
40
2 .W (E6)

12 12-dit [6] 24 + 4 P1(Z12)
† {121, 26, 012+4,−43,−62} Z

12
2 ⋊G144

3× 4 qutrit/quartit 24 + 4 as above as above as above

22 × 3 2-qubit/qutrit 60 4×GQ(2, 2) {61, 19,−35}4 S4
6 ⋊ S4

16 16-dit [6] 24 + 7 P1(Z16)
† {161, 021+7,−82} A3

8 ⋊G48

2× 8 qubit/octit 72 + 15 6×GQ(2, 2)′ {51, 16,−12,−33}6 G6
48 ⋊ S6

4× 4 2-quartit 120 + 30 + 1 15-cube {−31, 31,−13, 13}15 G15
48 ⋊ S15

22 × 4 2-qubit/quartit 360 + 15 3×W5(2)
′ {131, 525, 39,−170,−55,−710}3 (Z5

2 ⋊ S6)
3
⋊ S3

24 4-qubit [3, 4] 2295 W7(2) {1261, 7135,−9119} Sp(8, 2)

18 18-dit [6] 36 + 3 P1(Z18)
† {181, 36, 024+3,−63,−92} Z

12
3 ⋊ (Z12

2 ⋊G144)

2× 9 qubit/9-dit 36 + 3 as above as above as above

2× 32 2-qutrit/qubit [9] 120 3×GQ(3, 3) {121, 224,−415}3 W ′(E6)
3.G48

24 24-dit [6] 48 + 12 P1(Z24)
† {241, 46, 036+12,−83,−122} G224312 ⋊ (Z12

2 ⋊G144)

2.3.4 qubit/qutrit/quartit 144 + 12 see Sec. 4 see Sec. 4

23 × 3 3-qubit/qutrit 540 4×W5(2) {561, 1415, 235,−484}4 Sp(6, 2)4.S4

Table 1. The main properties of the studied Pauli graphs. The first and second

column gives the selected decomposition of q and the name of the corresponding

Pauli system, respectively. Third column represents the number of maximal sets of

mutually commuting observables of size q − 1 (i.e. the number of maximum cliques

in the corresponding Pauli graph) and how it splits into two numbers of geometrical

significance explained in the paper. The fourth column provides a geometry that may

be identified. The fifth column provides the spectrum of the Pauli graph, that of

its dual geometry or that of an important subgraph, depending on context (see the

corresponding section for details). The automorphism group of the selected geometry is

given in the last column. The notation Sn, An and Dn is for the symmetric, alternating

and dihedral group, respectively. Symbols ×, ⋊ and . are for the direct, semidirect

and not semidirect products of groups, respectively.

The notationW2n−1(p) is for the symplectic polar space of order p and rank n [3, 4].

The polar space W3(2) is the generalized (self-dual) quadrangle of order two GQ(2,2),

also called the doily. The notationW2n−1(p)
′ means the polar spaceW2n−1(p) minus a

perp-set (i.e. a point and the maximum cliques passing through it). Whenever multiple

polar spaces are featured in the table, it means that we are dealing with the mutual

incidence of cliques at multiple points (see Sec. 4 for details).
† The incidence geometry is associated to the maximum cliques of the Pauli graph and

the spectrum is that of all cliques (see Sec. 2 for details).

commutation relations within the group Pq to the study of perpendicularity of vectors

in the ring Z
2
q [6].

From (3), one gets the important result that the set P ′
q of commutators (also called

the derived subgroup) and the center Z(Pq) of the Pauli group Pq are identical, and one
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is led to the isomorphism

(Pq/Z(Pq),×) ∼= (Z2
q ,+), (4)

i.e. multiplication of observables taken in the central quotient Pq/Z(Pq) transfers to the

algebra of vectors in the Zq-module Z
2
q endowed with the symplectic inner product “.”.

Isotropic lines of the lattice Z
2
q

Let us now define a isotropic line as a set of q points on the lattice Z
2
q such that the

symplectic product of any two of them is 0(mod q). From (4), to such an isotropic line

corresponds a maximal commuting set in Pq/Z(Pq).

Taking the prime power decomposition of the Hilbert space dimension as q =
∏

i p
si
i ,

it is shown in (18) of [7] that the number of isotropic lines of the lattice Z
2
q reads

η(q) =
∏

i

psi+1
i − 1

pi − 1
≡ σ(q), (5)

where σ(q) denotes the sum of divisor function ‡

It may be checked from table 1 (colum 3), that the number of maximum cliques in

the Pauli graph of Pq [i.e. the number of maximal commuting set in Pq/Z(Pq)] in the

considered single qudit decompositions q = 4, 8, 9, 12, 16 and 18 are σ(4) = 1+2+4 = 7,

σ(8) = 1+2+4+8 = 15, σ(9) = 13, σ(12) = 27, σ(16) = 31 and σ(18) = 39, respectively.

Another important quantity is the number η(q; x) of isotropic lines through a given

point x = (b, c) of the lattice. Denoting by ti = vpi(x) the pi-valuation § of x, it is shown

in (36) of [7] that one obtains

η(q; x) =
∏

i

pti+1
i − 1

pi − 1
≡ σ(q̃(x)), (6)

where q̃(x) =
∏

i p
ti
i ≤ q is a local dimension defined at the selected point x.

The projective line P1(Zq) and the symplectic group Sp(2,Zq)

As shown in [7], a isotropic line of Z2
q corresponds to a Lagrangian submodule, i.e. a

maximal module such that the perpendicular module M⊥ = M . Let us now specialize

to Lagrangian submodules that are free cyclic submodules

Zq(b, c) = {(ub, uc)|u ∈ Zq} , (7)

for which the application u → (ub, uc) is injective. Not all Lagrangian submodules are

free cyclic submodules. A point x = (b, c) such that Zq(b, c) is free is called an admissible

point, and the set of admissible points is called the projective line

P1(Zq) = {Zq(b, c)|(b, c) is admissible} . (8)

‡ The identification of η(q) to σ(q) is not provided in [7]. However, it is easy to see that the factors

in (5) are
p
s+1

i
−1

pi−1 = 1 + pi + p2i + · · · + psi = σ(psi ) and, since σ(q) is multiplicative, (5) immediately

follows. Similarly, the identification of η(q;x) to σ(q̃(x)) given in (6) is easy to establish.
§ The p-adic valuation vp(x) of a integer number x is the highest exponent t suct that the power of

prime pt divides x.
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Following theorem 5 in [6], the number of points of the projective line is

|P1(Zq)| =
∏

i

(psii + psi−1
i ) ≡ ψ(q), (9)

where ψ(q) = q
∏

p|q(1+
1
p
) and the product is taken over all primes p dividing q ‖. Note

that one has ψ(q) ≤ σ(q), where the equality holds if q is square-free integer.

In the considered single qudit decompositions q = 4, 8, 9, 12, 16 and 18, that contain

a square, one gets ψ(4) = 4(1 + 1
2
) = 6, ψ(8) = 8(1 + 1

2
) = 12, ψ(9) = 12, ψ(12) =

24, ψ(16) = 24, ψ(18) = 36, as it it is also shown in table 1 (column 3).

Then, still using theorem 5 in [6], the number of points of the projective line

containing a selected vector x = (b, c) of the lattice reads as

|P1(Zq; x)| = ψ(q̃(x)), (10)

where q̃(x) is the local dimension introduced in (6).

As for the projective line P1(Zq), the symplectic group Sp(2,Zq) contains interesting

number theoretical features.

We defined an admissible vector (b, c) as one leading to a point of the projective line

P1(Zq). If q = ps, there are p2s−p2(s−1) admissible vectors and, for arbitrary dimensions

q =
∏

i p
si
i , the number of admissible vectors is

q2
∏

i

(1−
1

p2
) = φ(q)ψ(q) = J2(q), (11)

where φ(q) = q
∏

i(1−
1
pi
) is the Euler totient function and J2(q) is known as the Jordan

totient function.

Following the same line of reasoning than (6) and (10), one may also define a finer

structure of admissibility from the number J2(q̃(x)), with q̃(x) =
∏

i p
ti
i ≤ q is the local

dimension. If q = ps, one has q̃(x) = q and the structure is simpler than in the composite

case such as q = 12 and q = 18.

The symplectic group Sp(2,Zq) is built from all matrices

(

b′ b

c′ c

)

such that

(b, c) is an admissible vector and the symplectic inner product, i.e. the determinant

∆ = b′c− bc′ = 1. The cardinality of such a group is is |Sp(2,Zq)| = qJ2(q) [20, 21].

The Pauli graph of a qudit

In the previous subsections, we investigated the bijection between sets of operators of the

Pauli group Pq and vectors defined over the modular ring Zq. More precisely, from (4),

elements of the central quotient of the Pauli group Pq/Z(Pq) were mapped to vectors of

the lattice Z
2
q and, from (5) the σ(q) isotropic lines of Z2

q were mapped to its maximal

commuting sets.

‖ As for the relation (5), the identification of |P1(Zq)| to the Dedekind psi function ψ(q) is not provided

in [6]. The proof is easy to establish since ψ(q) is a multiplicative function



7

One can see these bijections in a clearer way by defining the Pauli graph Gq of the

qudit system. The Pauli graph Gq is constructed by taking the observables as vertices

and a edge joining two commuting observables. A maximal set of mutually commuting

observables corresponds to a maximum clique of Gq, and one further defines a point/line

incidence geometry with observables as points and maximum cliques as lines. One

characterizes this geometry by creating a dual graph G⋆
q such that the vertices are the

cliques and a edge joins two non-intersecting cliques. The connected component of G⋆
q

corresponds to the graph of the projective line P1(Zq) (as defined in previous papers

[3]-[12]).

In the subsequent sections, we shall also introduce the graph G
(k)
q , in which the

vertices are the maximum cliques of the Pauli graph Gq and a edge joins two maximum

cliques intersecting at k points.

The quartit system For the four-level system, there are 42 − 1 observables/vertices in

the Pauli graph G4. The σ(4) = 7 maximum cliques

cl := {(X2, Z2, Z2X2), (X,X2, X3), (X2, Z2X,Z2X3), (Z,Z2, Z3),

(ZX,Z2X2, Z3X3), (ZX2, Z2, Z3X2), (ZX3, Z2X2, Z3X)} (12)

are mapped to the following isotropic lines of Z2
4

il := {{(0, 2), (2, 0), (2, 2)}, {(0, 1), (0, 2), (0, 3)}, {(0, 2), (2, 1), (2, 3)},

{(1, 0), (2, 0), (3, 0)}, {(1, 1), (2, 2), (3, 3)}, {(1, 2), (2, 0), (3, 2)},

{(1, 3), (2, 2), (3, 1)}}. (13)

From the latter list, one easily observes that non-admissible vectors belong to the

first line {(0, 2), (2, 0), (2, 2)}, that corresponds to the maximum clique (X2, Z2, Z2X2).

The remaing vectors in Z
2
4 generate free cyclic submodules of the form (7).

The sequence of degrees in G⋆
q is obtained as (1, 0, 0, 0, 6), meaning that the first

clique given in (12) (of degree 0) intersects all the remaing ones, and that cliques

number 2 to 7 in (12) (of degrees 4) form the projective line P1(Z4). Indeed, one

has |P1(Z4)| = ψ(4) = 6. There are J2(4) = φ(4)ψ(4) = 12 admissible points.

The graph G⋆
4 is strongly regular, with spectrum {41, 03+1,−22} (in the notations

of [3]); the notation 03+1 in the spectrum means that 03 belongs to the projective

line subgraph and there exists an extra 0 eigenvalue in the spectrum of G⋆
4 . The

automorphism group of P1(Z4) is found to be the direct product G48 = Z2 × S4 (where

S4 is the four-letter symmetric group).

The 12-dit system The main results for all qudit systems with 4 ≤ q ≤ 18, such that

q contains a square, are given in table 1. We take the composite dimension q = 22 × 3

as our second illustration. There are 122 − 1 = 143 observables in the Pauli graph G12.

There are σ(12) = 28 maximum cliques in G12, as expected. The sequence of degrees in

the dual graph G⋆
12 is found as (4, 0, . . . , 24), i.e. there are four cliques of degree 0 and
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the remaining ψ(12) = 24 ones have degree 12 (as also seen from the spectrum given in

Table 1).

Owing to the composite character of the dimension, the structure of G⋆
12 is more

complex than in the quartit case, see Fig. 1 of [6] for a picture. All four independent

cliques intersect at the three vectors (0, 6), (6, 0), (6, 6), corresponding to the three

observables X6, Z6, X6Z6. The remaining 24 cliques intersect at 0, 1, 2, 3 or 5 points.

The automorphism group of P1(Z12) is found to be Z
12
2 ⋊G144, with G144 = A4 ⋊D6.

Remarkably, the automorphism groups of P1(Z18) and P1(Z24) encompass that of

P1(Z12), as shown in Table 1.

3. Pauli graph/geometry for multiple qudits

In this section, we specialize on multiple qudits q = pn, when the qudit is a p-dit (with

p a prime number). The multiple qudit Pauli group Pq is generated from the n-fold

tensor product of Pauli operators X and Z [defined in (2) with ω = exp(2iπ
p
)]. One has

|Pq| = p2n+1 and the derived group P ′
q equals the center Z(Pq) so that |P ′

q| = p.

Following [4, 10], the observables of Pq/Z(Pq) are seen as the elements of the 2n-

dimensional vector space V (2n, p) defined over the field Fp, and one makes use of the

commutator

[., .] : V (2n, p)× V (2n, p) → P ′
q (14)

to induce a non-singular alternating bilinear form on V (2n, p), and simultaneously a

symplectic form on the projective space PG(2n− 1, p) over Fp.

Doing this, the |V (2n, q)| = p2n observables of Pq/Z(Pq) are mapped to the points

of the symplectic polar space W2n−1(p) of cardinality ¶

|W2n−1(p)| =
p2n − 1

p− 1
≡ σ(p2n−1), (15)

and two elements of [Pq/Z(Pq),×] commute iff the corresponding points of the polar

space W2n−1(p) are collinear.

A subspace of V (2n, p) is called totally isotropic if the symplectic form vanishes

identically on it. The polar space W2n−1(p) can be regarded as the space of totally

isotropic subspaces of the (2n − 1)-dimensional projective space PG(2n − 1, p). Such

totally isotropic subspaces, also called generators G, have dimension pn − 1 and their

number is

|Σ(W2n−1(p))| =
n
∏

i=1

(1 + pi). (16)

¶ The proof of this statement is given in [10]. The identification of |W2n−1(p)| to σ(p
2n−1) is new in

this context. It is reminiscent of (5) and has still unoticed consequences about the structure of the

polar space, as explained in the sequel of the paper. For q-level systems (single qudits), σ(q) and ψ(q)

refer to the number of isotropic lines and the number of points of the projective line, respectively (as in

(5) and (9)). For multiple qudits, one has q = p2n−1 and σ(q) and ψ(q) refer to the number of points of

the symplectic polar space W2n−1(p) and of punctured polar space W2n−1(p)
′, respectively (as in (15)

and (17)).
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Let us call a spread S of a vector space a set of generators partitioning its points. The

size of a spread of V (2n, p) is |S| = pn + 1 and one has |V (2n, p)| − 1 = |S| × |G| =

(pn + 1)× (pn − 1) = p2n − 1, as expected.

Going back to the Pauli observables, a generator G corresponds to a maximal

commuting set and a spread S corresponds to a maximum (and complete) set of disjoint

maximal commuting sets. Two generators in a spread are mutually disjoint and the

corresponding maximal commuting sets are mutually unbiased [3, 23].

Let us define the punctured polar space W2n−1(p)
′ as the polar space W2n−1(p)

minus a perp-set (i.e. a point u and all the totally isotropic spaces passing though it)
+. Then, one gets

|W2n−1(p)
′| = σ(p2n−1)− σ(p2n−3) = ψ(p2n−1), (17)

where σ(p2n−3) is the size of a perp-set and ψ(q) is the Dedekind psi function.

The Pauli graph of a multiple qudit

The symmetries carried by multiple qudit systems may also be studied with Pauli graphs.

We define the Pauli graph Gpn of a multiple pn-dit, as we did for the single qudit case,

by taking the observables as vertices and a edge joining two commuting observables.

A dual graph G⋆
pn is such that the vertices are the maximum cliques and a edge joins

two non-interesting cliques. One denotes G ′⋆
pn the corresponding graph attached to the

punctured polar space. Finally, one denotes G
(k)
pn the graph whose vertices are the

maximum cliques of the Pauli graph Gpn and whose edges join two maximum cliques

intersecting at k points.

Actual calculations have been performed for two- and three-qubits, and for two- and

three-qutrits. Main results are in table 2 (see details in the corresponding subsections).

Denoting c the ratio between the cardinalities of aut(G∗
pn) and aut(G ′∗

pn), one observes

that c identifies to the size σ(p2n−1) of the polar space W2n−1(p), except for the case of

the 3 -qubit system where c is twice the number of cliques of the Pauli graph G23 . Thus,

the space W ′
2n−1(p) may be seen as a building block of Pauli systems. One may remind

that W2n−1(p) contracts to W
′
2n−1(p), as the size σ(p2n−1) to the size ψ(p2n−1), that the

ratio of cardinalities of their automorphism groups is the number c, and anticipate on

the structural role of W ′
2n−1(p) in qudit mixtures, shown in Table 1 and Sec. 4.

The two-qubit system

As already emphasized in [3, 4], the two-qubit system “is” the symplectic polar space

W3(2) [i.e. p = n = 2 in (15)], alias the generalized quadrangle GQ(2, 2), also called

doily, with 15 points and, dually, 15 lines (see Fig. 6 in [3]). One denotes the

corresponding Pauli graph as G22 . The maximum cliques are as follows

cl := {{IX,XI,XX}, {IX, Y I, Y X}, {IX, ZI, ZX},

+ In the graph context the symbol ’ means a puncture in the graph. It is not the same symbol as in

the derived subgroup G′ of the group G.
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q = pn name aut(Gpn) aut(G∗
pn) aut(G ′∗

pn) c =
|aut(G∗

pn
)|

|aut(G′∗

pn
)|

2 qubit S3 S3 S2 3 ≡ σ(2)

22 2-qubit S6 S6 G48 = Z2 × S4 15 ≡ σ(23)

23 3-qubit Sp(6, 2) O+(8, 2) Z
6
2 ⋊ A8 2× 135 6= 63 = σ(25)

3 qutrit Z
3
2 ⋊G48 S4 S3 4 ≡ σ(3)

32 2-qutrit Z
40
2 .W (E6) W (E6) G648 ⋊ Z2 40 ≡ σ(33)

33 3-qutrit Z
364
2 .G G (E243 ⋊ Z2).W (E6) 364 ≡ σ(35)

Table 2. Comparison of the automorphism group of the dual Pauli graph G∗
pn and

that of its building block G′∗
pn , defined by removing a perp-set in the symplectic polar

space. The ratio of sizes of both groups turns out to be the number of observables

σ(p2n−1) of the space, except for the case of the 3-qubit system where it is twice the

number 135 of cliques in the Pauli graph G23 .

{IY,XI,XY }, {IY, Y I, Y Y }, {IY, ZI, ZY },

{IZ,XI,XZ}, {IZ, Y I, Y Z}, {IZ, ZI, ZZ},

{XY, Y X,ZZ}, {XY, Y Z, ZX}, {XZ, YX,ZY },

{XZ, Y Y, ZX}, {XX, Y Y, ZZ}, {XX, Y Z, ZY }}, (18)

where a notation such as IX means the tensor product of I and X .

The spectrum of the (strongly regular) Pauli graph G22 is {62, 19,−35} and the

automorphism group is the symmetric group Sp(4, 2) = S6.

Following definition (17), ones defines the punctured polar spaceW3(2)
′ ≡ GQ(2, 2)′

by removing a perp-set in GQ(2, 2), i.e. a point as well as the totally isotropic

subspaces/maximum cliques passing through it [for the selected point u ≡ IX , the

removed cliques are numbered 1 to 3 in (18)]. The punctured Pauli graph G ′∗
22 is as

follows

GQ(2, 2)′ ⇒ G ′∗
22 :

spec := {61, 23, 02,−26}, aut(G ′∗
22) := G48 = Z2 × S4. (19)

The automorphism group of the graph G ′∗
22 is similar to the automorphism group obtained

from the graph of the projective line P1(Z4), associated to the quartit system, although

the spectrum and the commutation structure are indeed not the same. In a next paper,

it will be shown that both graphs are topologically equivalent to the hollow sphere.

It is already mentioned in Sec. 3 of [3] that the Pauli graph G22 can be regarded as

L̂(K6) (it is isomorphic to the line graph of the complete graph K6 with six vertices).

Similarly, definingK222 as the complete tripartite graph (alias the 3-cocktail party graph,

or octahedral graph), one gets G ′
22 = L̂(K222).
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The two-qutrit system

First results concerning the commutation structure of the two-qutrit system are in

Sec. 5 of [3] and in example 5 of [11]. The 80 observables of the central quotient

Pq/Z(Pq) (with q = 32) are mapped to the elements of the vector space V (4, 3)

and the commutation structure is that of the polar space W5(3) ≡ GQ(3, 3) with

σ(33) = 1 + 3 + 32 + 33 = 40 elements [see (15)]. According to (16), this number

coincides with the number of generators (1 + 3)(1 + 32). The spectrum of the (regular)

Pauli graph G32 is {251, 524,−140,−715} and the automorphism group is isomorphic to

Z
40
2 .W (E6), where W (E6) is the Weyl group of the Lie algebra E6. Two maximum

cliques intersect at 0 or 2 points. The dual graph G⋆
32 has spectrum {271, 315,−3424}

and its automorphism group is W (E6). Note that Sp(4, 3) ∼= Z2.W
′(E6).

Using (17), one defines the punctured polar space W5(3)
′, with |W5(3)

′| = ψ(33) =

36 and the corresponding graph G ′∗
32

GQ(3, 3)′ ⇒ G ′∗
32 :

spec := {241, 312, 03,−320}, aut(G ′∗
32) := G648 ⋊ Z2, (20)

where G648
∼= U25 is isomorphic to a complex reflection group (number 25 in the

Shephard-Todd sequence). Since |W (E6)| = 51840 = 40 × 1296, then GQ(3, 3) may

also be seen as 40 copies of the building block GQ(3, 3)′. See Sec. VI of [25] and Sec.

4.1 of [26] for other occurences of the group G648 in relation to the geometry of the 27

lines on a smooth cubic surface.

The three-qubit system

For three qubits, the structure of commutation relations is that of the polar space W5(2)

with σ(25) = 63 elements and (1 + 2)(1 + 22)(1 + 23) = 135 generators. The (regular)

Pauli graph G23 has spectrum {301, 335,−527} and aut(G23) = Sp(6, 2) ∼= W ′(E7), of

order 1451520. Two maximum cliques intersect at 0, 1 or 3 points. The dual Pauli

graph G⋆
23 has spectrum {641, 484,−850} and aut(G⋆

23) = O+(8, 2). Note that O+(8, 2) is

related to the Weyl group of E8 by the isomorphism W (E8) ∼= Z2.O
+(8, 2).

As shown in table 2, the three-qubit system is very peculiar among multiple qubit

systems, having O+(8, 2) as the automorphism group attached to the maximum cliques,

instead of the symplectic group Sp(6, 2).

One defines the punctured polar space W5(2)
′ with |W5(2)

′| = ψ(25) = 48 points

and the corresponding graph G ′∗
23 as follows

W5(2)
′ ⇒ G ′∗

23 :

spec := {561, 470,−414,−835}, aut(G ′∗
23) := Z

6
2 ⋊ A8, (21)

with A8 the eight letter alternating group.

The corresponding 1-point intersection graph of the maximum cliques has spectrum

{561, 1415, 235,−484}. As shown in Sec. 4, it occurs in the study of the 3-qubit/qutrit

system.
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Thus, the number of pieces within the automorphism group of the dual Pauli graph

G⋆
23 is twice the number 135 of maximum cliques, instead of the cardinality σ(p2n−1) of

the symplectic polar space W2n−1(p), that is given in (15) ∗ .

Later, in the study of the 2-qubit/quartit system, we need the graph G
′(3)

23 attached

to the 3-point intersection of the maximum cliques. The spectrum of this graph is

{131, 525, 39,−170,−55,−710}.

To conclude this subsection, let us mention that the Weyl groupW (E6) arises as the

symmetry group of a subgeometry of the polar space W5(2), namely in the generalized

quadrangle GQ(2, 4) [29]. Taking the 27 three-qubit observables shown in Fig. 3 of

[29], one attaches to such a geometry a Pauli graph, that we denote G27. One gets

45 maximum cliques of size 3, the spectrum is {101, 120,−56} and aut(G27) ∼= W (E6).

By removing a perp-set from GQ(2, 4), one gets the punctured generalized quadrangle

GQ(2, 4)′. The corresponding dual Pauli graph G ′∗
27 has spectrum {321, 224,−420} and

automorphism group Z2 ≀ A5 (where ≀ means the wreath product of groups).

The one-point intersection graph G45 of the 45 maximum cliques is that of the

generalized quadrangle GQ(4, 2), the dual geometry of GQ(2, 4). The spectrum of G45

is {121, 320,−324} and aut(G45) ∼= W (E6). The automorphism group of the punctured

Pauli graph G ′∗
45 is isomorphic to the Weyl group W (F4) of the 24-cell.

This view fits the one proposed in our paper [26].

The three-qutrit system

For three qutrits [p = n = 3 in (15)], the structure of the commutation relations is that

of the polar space W5(3) with σ(35) = 364 points, and [according to (17)] there are

(1 + 3)(1 + 32)(1 + 33) = 1120 generators/maximum cliques, as checked from the Pauli

graph G3
3 . Its spectrum is found to be {2411, 17195,−1364,−19168} and aut(G33) = Z

364
2 .G,

where |G| = |Sp(6, 3)|. Two maximum cliques of G33 intersect at 0, 2 or 8 points.

∗ How to explain this anomaly? Symplectic polar spaces W2n−1(p) are not the only type among finite

polar spaces of order p and rank n, but there are others [28]. Finite classical polar spaces may be of the

symplectic, unitary or orthogonal type, according to the type of the reflexive sesquilinear form carried

by the vector space V (2n, p), alternating bilinear, Hermitian and quadratic, respectively. There are

in fact six families according to their germ, viz., one symplectic, two unitary, and three orthogonal.

The hyperbolic orthogonal polar space is a hyperbolic quadric Q+
2n−1(p) with automorphism group

O+(2n, p). For such a family, the number of points is

|Q+
2n−1(p)| =

(pn − 1)(pn−1 + 1)

p− 1
(22)

and the number of totally isotropic subspaces is

|Σ(Q+
2n−1(p))| =

n
∏

i=1

(1 + pi−1). (23)

If n = 4, one has |Q+
7 (p)| =

(p4−1)(p3+1)
p−1 = (p + 1)(p2 + 1)(p3 + 1) = |Σ(W7(p))|, i.e. the number of

points of the hyperbolic quadric Q+
7 (p) coincides with the number of totally isotropic subspaces in the

symplectic polar space W5(p), associated to 3-qudit systems. But, to our great surprise, this anomaly

only affects the three-qubit system.
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The punctured polar space W5(3)
′, of cardinality |W5(3)

′| = ψ(35) = 324 is such

that

W5(3)
′ ⇒ G ′∗

33 :

spec := {7021, 9780,−1839,−27260}, aut(G ′∗
33) := (E243 ⋊ Z2).W (E6), (24)

so that W5(3) consists of |aut(G
∗
33)|/|aut(G

′∗
33)| = σ(35) = 364 copies of its building block

W5(3)
′. In (24), E243 is the extraspecial 3-group of order 243 and exponent 3.

4. Pauli graph/geometry of multiple qudit mixtures

As before, Gq is the Pauli graph whose vertices are the observables and whose edges join

two commuting observables. A dual graph of the Pauli graph is G∗
q whose vertices are

the maximum cliques and whose edges join two non-intersecting cliques. In this section,

we also introduces G
(k)
q , the graph whose vertices are the maximum cliques and whose

edges join two maximum cliques intersecting at k points.

First of all, as shown in Sec. 6 of [5], a qudit mixture in composite dimension

q = p1 × p2 × · · · × pr (pi a prime number), identifies to a single q-dit. Since the ring

Zq is isomorphic to the direct product Zp1 × Zp2 × · · ·Zpr the commutation relations

arrange as the σ(q) ≡ ψ(q) isotropic lines of the lattice Z2
q , that reproduce the projective

line P1(Zq) = P1(Zp1)× P1(Zp2)× · · · × P1(Zpr).

The sextit system

The simplest non-trivial case is in dimension q = 6 = 2 × 3. The projective line may

be pictured by the dual Pauli graph G⋆
6 of spectrum {61, 16,−23,−32}. It represents the

complement of a 3 × 4 grid, or in graph theoretical language the complement L̂(K3,4)

of the line graph over the complete bipartite graph K3,4 (see Fig. 1 of [8]). One finds

24 maximum cliques of size 3 in G⋆
6 corresponding to the same number of non-complete

sets of mutually unbiased bases. The symmetry of this new configuration is the semi-

direct product G144 = A4 ⋊ D6 of two groups of order twelve, namely the four-letter

alternating group A4 and the dihedral group D6. Until now, it is not known whether

sets of mutually unbiased bases of size larger than three can be built [23, 24].

In the sequel of this section, we are interested in mixtures where at least one factor

in the prime number decomposition of q contains a square. A summary of the main

results is in Table 3 below.

The two-qubit/qutrit system

The Pauli graph of the two-qubit/qutrit system contains 143 vertices and 60 maximum

cliques. The incidence graph of the maximum cliques is found to reproduce the projective

line over the ring F4 × Z2 × Z3 [9] and the spectrum of the dual Pauli graph G⋆
22×3 is

{241, 65, 227,−215,−69,−83}. Maximum cliques of the Pauli graph intersect each other

at 0, 1, 2 or 5 points. In G⋆
22×3, there are 480 maximum cliques of size 3 and 720
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q name # cliques geometry aut. group

22 2-qubit 15 GQ(2, 2) S6

2× 22 qubit/quartit 36 + 3 3×GQ(2, 2)′ G3
48 ⋊ S3

23 3-qubit 135 W5(2) Sp(6, 2)

32 2-qutrit 40 GQ(3, 3) Z
40
2 .W (E6)

3× 4 qutrit/quartit 24 + 4 as a 12-dit as a 12-dit

22 × 3 2-qubit/qutrit 60 4×GQ(2, 2) S4
6 ⋊ S4

2× 8 qubit/octit 72 + 15 6×GQ(2, 2)′ G6
48 ⋊ S6

4× 4 2-quartit 120 + 30 + 1 15-cube G15
48 ⋊ S15

22 × 4 2-qubit/quartit 360 + 15 3×W5(2)
′ (Z5

2 ⋊ S6)
3
⋊ S3

24 4-qubit 2295 W7(2) Sp(8, 2)

2× 9 qubit/9-dit 36 + 3 as a 18-dit as a 18-dit

2× 32 2-qutrit/qubit 120 3×GQ(3, 3) W ′(E6)
3.G48

2× 3× 4 qubit/qutrit/quartit 144 + 12 see Sec. 4 see Sec. 4

23 × 3 3-qubit/qutrit 540 4×W5(2) Sp(6, 2)4.S4

Table 3. Geometry of qudit mixtures: an excerpt from table 1 which emphasizes the

role played by symplectic polar spaces W2n−1(p) and their punctured part W ′
2n−1(p).

maximum cliques of size 4, to which one can attach the same number of non-complete

sets of mutually unbiased bases.

An interesting subgeometry of the two-qubit/qutrit system is found by taking the

incidence graph G
(5)
22×3 of maximum cliques of the Pauli graph intersecting each other at

5 points. The spectrum of this graph is {61, 19,−35}4 corresponding to four copies of

the doily GQ(2, 2) [alias L̂(K6)]. The automorphism group of this geometry is S4
6 ⋊ S4.

Similarly, the spectrum of the incidence graph for maximum cliques intersecting at

two points is {81, 25,−29}4, that represents four copies of the triangular graph L(K6).

Thus, the doily is a basic constituent of the two-qubit/qutrit system and builds up its

commutation structure, as one may have expected.

The two-qutrit/qubit system

The Pauli graph of the two-qutrit/qubit system contains 323 vertices and 120 maximum

cliques. The incidence graph of the maximum cliques reproduces the projective line

over the ring F9 × Z2 × Z3 and the spectrum of the dual Pauli graph G⋆
2×32 is

{541, 615, 348,−330,−624,−272}. It contains 19440 cliques of size three. Maximum

cliques of the Pauli graph intersect each other at 0, 1, 2, 5 or 8 points.

An interesting subgeometry of the two-qutrit/qubit system is found by taking the

incidence graph G
(5)

2×32 of maximum cliques of the Pauli graph intersecting each other at

5 points. The spectrum of this graph is {121, 224,−425}3 corresponding to three copies

of the dual graph G⋆
32 of the generalized quadrangle GQ(3, 3).
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The qubit/quartit and qubit/octit systems

Let us start with the lowest case of a mixture where a factor is not a prime: the

qubit/quartit system living in the Hilbert space dimension q = 2×4. As shown in Table

1, the maximum cliques studied from the dual Pauli graph G⋆
2×4 split into two parts,

that are a set of 3 independent (non-intersecting) cliques and a connected component of

36 cliques. The single qudit in dimension q = 18 has a similar splitting since σ(18) = 39

and ψ(18) = 36.

Let us denote G
⋆(c)
2×4 the connected subgraph of the dual Pauli graph. Its spectrum

is again that {161, 027,−84, 44} of a regular graph. Maximum cliques of the Pauli graph

intersect each other at 0, 1 or 3 points and there is a subgeometry of the qubit/quartit

system found by taking the incidence graph of maximum cliques interesting at 3

points. The spectrum of this latter graph G
(7)
2×4 is {51, 16,−12,−33}3 corresponding

to three copies of the punctured Pauli graph associated to GQ(2, 2)′ [see (19)♯]. The

automorphism group of this 3-point incidence graph is G3
48 ⋊ S3, where G48 is the

automorphism group of GQ(2, 2)′.

Similarly, one considers the qubit/octit system living in the Hilbert space dimension

q = 2 × 8. As shown in Table 1, the maximum cliques studied from the Pauli graph

G⋆
2×8 split into two parts, that are a set of 15 independent (non-intersecting) cliques

and a connected component of 72 cliques. Here, there exists no single qudit with such

a splitting. Let us denote G
⋆(c)
2×8 the connected subgraph of the dual Pauli graph. Its

spectrum is {321, 84, 063,−164}. Maximum cliques of the Pauli graph intersect each other

at 0, 1, 3 or 7 points and there is a subgeometry of the qubit/octit system found by taking

the incidence graph G
(7)
2×8 of maximum cliques interesting at 7 points. The spectrum of

this latter graph corresponds to six copies of of GQ(2, 2)′. The automorphism group of

this latter configuration is found to be the semidirect product of groups G6
48 ⋊ S6.

The two-qubit/quartit system

The two-qubit/quartit system corresponds to the decomposition q = 22×4 of the Hilbert

space dimension. We find 375 maximum cliques in the Pauli graph, that split as 360+15.

The 360 maximum cliques of the Pauli graph arrange each other in 7-tuples. The graph

spectrum of this latter graph G
(7)
22×4 is {131, 525, 39,−170,−55,−710}3. Thus, this is the

geometry is related to three copies of the punctured polar space W5(2)
′.

The two-quartit system

The two-quartit system corresponds to the decomposition q = 4 × 4 of the Hilbert

space dimension. The Pauli graph G4×4 contains 151 maximum cliques. The connected

subgraph G
⋆(c)
4×4 of the dual graph G⋆

4×4 corresponds to 120 maximum cliques of the Pauli

graph that intersect each other at 0, 1, 3 or 7 points. The graph G
(7)
4×4 featuring the

intersection of the 120 maximum cliques at 7 points has spectrum {−31, 31,−13, 13}15,

♯ The spectrum {51, 16,−12,−33} is that of the complement of the graph G′⋆
22 , displayed in (19).
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that corresponds to 15 copies of the cube graph. The automorphism group G48 of the

cube graph is similar to that of the punctured generalized quadrangle GQ(2, 2)′. The

automorphism group of the selected geometry G
(7)
4×4 is found to be G15

48 ⋊ S15.

The remaining 31 cliques intersect each other at 3 or 7 points. The 3-clique

intersection graph still splits into a isolated clique and a connected component of 30

maximum cliques. The connected component, of spectrum {281, 015,−214}, is the 15-

cocktail party graph, i.e. the dual graph of the 15-hypercube graph.

Pauli systems in dimension 24

A few results for dimension 24 are collected at the bottom of table 1. Here, a transition

towards a more complex behavior occurs. In smaller dimensional cases, all maximum

cliques of the Pauli graph Gq have size q − 1, while in dimension 24, in all the three

cases explored (24-dit, qubit/qutrit/quartit and 3-qubit/qutrit), they may also have

dimension 24− 1 and 24 + 1.

The 24-dit system follows the rules established in Sec. 2, as expected. The

automorphism group of the projective line P1(Z24) is found to be G224312 ⋊ (Z12
2 ⋊G144),

where G224312 is the product of two non elementary abelian groups of order 224 and 312.

The maximum cliques of the qubit/qutrit/quartit Pauli graph G2×3×4 split as

144 + 12 (as for a single q-dit with q = 99, since σ(99) = 156 and ψ(99) = 144).

The maximum cliques of the Pauli graph G2×3×4 intersect each other at 0, 1, 2, 3,

5, 7 and 11 points. The graph G
(7)
2×3×4 of intersection at 7-tuples has the spectrum

{3,−13}36. Similarly, one gets spec(G
(3)
2×3×4) = {151, 315, 16,−118,−32,−93,−53}3 and

spec(G
(2)
2×3×4) = {161, 027,−84, 44}3.

The Pauli graph G23×3 of the 3-qubit/qutrit system contains 540 maximum cliques.

There are |Sp(6, 2)| = 2903040 maximum cliques of size 4 in the dual graph G∗
23×3

corresponding to the same number of incomplete sets of mutually unbiased bases. The

maximum cliques of the Pauli graph intersect each other at 0, 1, 2, 3, 5 or 11 points

and the 5-tuples form a graph of spectrum {561, 1415, 235,−484}4, related to three copies

of the polar space W5(2). The automorphism group of this geometry is found to be

aut(G
(5)
23×3) = Sp(6, 2)4.S4, a straightforward generalization of what occurs for the 2-

qubit/qutrit system.

5. Conclusion

It has been shown for the first time that number theoretical functions σ(q) and ψ(q)

enter into the structure of commutation relations of Pauli graphs and geometries. For

single q-dits (in section 2), σ(q) and ψ(q) refer to the number of maximal commuting

sets and the cardinality of the projective line P1(Zq), respectively. For multiple qudits,

with dimension pn, p a prime number, (in section 3) the parameter q = p2n−1 enters in

the function σ(q) to count the size of the symplectic polar space W2n−1(p) (that carries

the multiple qudit system), and enters in the function ψ(q) to count the size of the
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basic constituent: the punctured polar space W ′
2n−1(p). For multiple qudit mixtures,

spacesW2n−1(p) andW
′
2n−1(p) are also found to arise as constituents of the commutation

structure.

The structural role of symplectic groups Sp(2n, p) has been found, as expected.

Other important symmetry groups are G48 = Z2 × S4, G144 = A4 × D6 and W (E6).

The group G48 is first of all the automorphism group of the single qudit Pauli group P1

and is important in understanding the CPT symmetry [27]. In this paper, it arises as

the symmetry group of the quartit, of the punctured generalized quadrangle GQ(2, 2)′

(see 19)) and as a normal subgroup of many systems of qudits (as shown in Table 1).

The torus group G144 occurs in the symmetries of the 6-dit, 12-dit, 18-dit and 24-dit

systems. The Weyl groupW (E6) happens to be central in the symmetries of three-qubit

and multiple qutrit systems. The understanding of symmetries in the Hilbert space is

important for the applications in quantum information processing.
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