N

N

States based evolutionary algorithm
Sébastien Verel, Philippe Collard, Manuel Clergue

» To cite this version:

Sébastien Verel, Philippe Collard, Manuel Clergue. States based evolutionary algorithm. Workshop
selfstar at conference PPSN, Sep 2010, Krakow, Poland. hal-00518206

HAL Id: hal-00518206
https://hal.science/hal-00518206

Submitted on 16 Sep 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00518206
https://hal.archives-ouvertes.fr

States based Evolutionary Algorithm

Sébastien Veré?, Philippe Collard, and Manuel Clergire

L INRIA Lille - Nord Europe, France
2 University of Nice Sophia-Antipolis, France.

Abstract. Choosing the suitable representation, the operators andaihes of
the parameters of an evolutionary algorithm is one of thenpeiblems to design
an efficient algorithm for one particular optimization piein. This additional
information to the evolutionary algorithm generally isledl the algorithm pa-
rameter, or parameter. This work introduces a new evolatipalgorithm Sates
based Evolutionary Algorithm which is able to combine different evolutionary
algorithms with different parameters included differegpresentations in order
to control the parameters and to take the advantage of eadibf® evolution
algorithm during the optimization process. This paper gifiest experimental
arguments of the efficiency of the States based EA.

1 Introduction

The evolutionary algorithms are based on a search popnlafipotential solutions of
an optimisation problem. They iterate selection and reptent operators which favour
the exploitation with stochastic operators which favowe éxploration. Evolutionary
Algorithm (EA) is a general framework which has been provedcefficient on large
optimisation classes of problems. The efficiency of the Ekeidin the ability to man-
age the balance between the exploitation and the explarafithe search space. The
stochastic or selection operators must be chosen and gr@imgters must be tuned in
order to be efficient on the given optimisation problem. Aadane main difficulty for
an engineer or optimisation researcher is to choose suchtopand parameters. More
generally, the representation or coding of solutions eithe fithess function is also a
key in the design of EA[[{]8]. The problem could be difficult fine representation
or fitness function and not for another orﬂa [9]. Generallg dditional information
to the evolutionary algorithm is callesdgorithm parameter, or simplyparameter; and
the problem to choose efficient paramegtarameter setting. Two ways of parameters
setting are possible: first one is off-line before the rutemfcalledparameter tuning,
and the second is on-line during the run, cajpadameter control. A nice review of this
field of research has been made in the recent work of Lebtab. [E]. The algorithm
proposed in this work will use a parameter control methoteas of parameter tuning
method. The parameter of the States based EA will be modifidéhe during the run
by taking into account the current state of the search.



2 Statesbased Evolutionary Algorithm

To define the State based EA (SEA), we supposed to haslutionary algorithms.
Each algorithmFE A; is a stochastic population based operator defined on thelsear
spacesS: Vi € [1,n], EA; : 25 — 29

In a practical way, each' A; could have his own representation of solutions, but also
his own selection operator, variation operators (mutadiaoch crossover), and parameter
settings. The EA has only to be defined whatever the populatie.

A state of a solution is an integer number betweéh n] added to the solution which
indicates the EA applied on the solution. If different regmetations and fithess func-
tions are used for eacli4;, we suppose that the fithess of a solution does not change
when the state changesi, j, fi(s) = fj(stateMut;;(s)) wherestateMut;; is an
operator which changes the state of solutioinom i to j. The main principle of the
SEA is to control the population size of eaEt; according to the fitness values of the
actual solutions with a classical selection operator.

The total search population size is constant during the mdrgéven by a parameter.
The number of states is also a parameter of the algorithm. The initialization loé t
population is an operator which first choose the state of eatittion, and then apply
the initialisation operator of the solutions state. Oneaiien of the algorithm is the
succession of the stochastic population based operawestion, split,ZA;, merge,
state mutation, and replacement. Tdperator of selection choose a population from a
population included irS of solutions with their state. It selects the solutions adeo
ing to their fithess but not directly according to their stdtee splitting operator splits
the population frons into n sub-populations iis;. Each sub-population is composed
with all the solutions in the same state. Then, the EA coordmg to the solutions
state is applied on each sub-population. The EAs are indkgménand does not take
into account the result of the other EAs. The sizes of eachpsiplilations vary as
they are not defined by a parameter of the algorithm but by dgimeber of solutions in
each state. This stage could be parallelized. Mb®ing operator is a simple operator
which merges the sub-populations fron®; into one population of. After, a oper-
ator of state mutation is applied which possibly change only the state of solutidins
a solution changes from search spac® search spack the solution is moved with
the state change operatetate Mutationy;. Remember that the fithess of solutions
is maintained by a state change. It is possible to have statation operators which
changes the state of solutions in the same way for all solstio the same states in-
dependently of the solutions in other state. In that case pibssible to parallelize this
stage. Otherwise, it is not possible when for example, tlegatpr changes the state of a
fixed number of solutions. Thaperator of replacement is the classical operator which
creates a new population for the next iteration accordintpéopopulation from EAs
and the old population of solutions. Again, the replacendes not take into account
the states of solutions. The algoritfin 1 is the algorithmtafeSbased EA.

The selection of the right state is indirect and it is made ovith the fitness of the
actual solutions. If the solutions of a given state are bette hope that the selection
operator choose more often such solutions, and as a conmszjike state population
size should increase. Indirectly, the selection operaits more solutions in the rights
state.



Algorithm 1 States based evolutionary algorithm.
population + initialisation()
while continue(population) do
selected Pop < selection(population)
(pop1, . ..,popy) < split(selected Pop)
for all i € [1,n] do
popi < EAi(pop;)
end for
mergedPop < merge(popi, ... ,popn)
child < stateM utation(mergedPop)
population <+ replace(child, population)
end while

3 Experimental study

To conduct experimental study of the SEA, we test the allgoribn two classical prob-
lems in EA:OneMax andlong k-path problems. Those problems were used in recent
works of Fialho et aI.|]1]|]]2] which propose a parameters manhethods, the average
and the extreme Dynamic Multi-Bandits (resp. avg-DMAB areDMAB). It allows
the comparison of performances between the SEA and the eX®Nle authors takes
(1+X)—EAwith A = 50. To compare to this work, we use evolution algorithms withou
crossover, and using one of the same four mutation operaterstandard /I bit-flip
operator (every bit is flipped with the binomial distributiof parametet /I wherel is
the length of the bit-strings), and the-bit, 3—bit, and5—bit mutation operators (the
b—bit mutation flips exactly bits, uniformly selected in the parents). So there are four
evolutionary algorithms denotetlA; i = 1..4. The population size oF/ A; is \;. At
each iteration o' A;, the best solution is selected from thgsolutions in the parent
population. From this best solutiok, solutions are created using the mutation operator.
The generational replacement with elitism is used: all ffspoing solutions replace the
parent ones keeping the best solution founded in the paogntigtion. Thoser A; are
closed to(1 + A\)—EA.

The SEA controls the population size of the fduA;. The total population size is
A = A1+ X2+ A3+ A4 = 50. The selection method used is tournament selection of size
t, and the replacement method is generational with elitidme. State mutation operator
changes a state at random with a rat&achFE A; is running with the number of gen-
erationg. The meta-parameters of the SEA has been computed offyiaedesign Of
Experiments campaign. The tournament selection is uséddatate selection operator
with the tournament sizec< {2, 3,5}. The mutation operator changes the state of solu-
tions randomly with the state mutation rate {0.001,0.01, 0.05,0.1,0.15,0.2,0.25,0.4}.
The number of generations of eat; is g € {1, 5, 10, 25, 50, 100, 200, 400}.

3.1 OneMax problem

The oneMax problem, the "drosophila” of evolutionary cortgtion, is a unimodal
problem defined on binary strings of sizeThe fitness is the number ofi” in the



bit-string. In the experiments, the length of the bit stangl = 10*. In all reported
experiments, the initial solution is set (o, ..., 0).

The table[Jl shows the performances of the SEA compared tonxe af extreme
and average DMAB (ex-DMAB and avg-DMAB) and oracle strateggorted from
[. The performance of SEA are better than the average-DMA® worst than the
extreme-DMAB according to the non-parametric tests of @tin and Kolmogorov-
Smirnov (p-values are undéd~7). The figurd B shows a typical example of dynamics
of the SEA. Due to the difference of the number of iteratiotween the200 runs, we
show the run which gives the median performad&®{ generations). At the beginning,
the largest sub-population quickly becomes the one o$thi¢ mutation operator. This
operator is the best one at this stage. Around the generaiiin the population size
of the 1-bit mutation operator dominates the other ones. We carcenditiat the3-bit
mutation operator never able to dominate the others.3Hbie mutation is the operator
with best average fitness gain for fitness values betwsg8t and8400. Nevertheless,
the fitness gain of th& and3 bit mutations are close. The difference of performance
between SEA and ex-DMAB could be explain by the relative lacthe 3 bit mutation
operator. At the end, the/! bit-flip mutation has a population size around those of the
1-bit mutation. Indeed, this two operators have nearly thme$is gain for high fithess
value.

Table 1. Average and standard deviation number of generations tofttieal solution
out of 200 independent (for SEA) runs using the optimal meta-pararsete

Algo. Configuration Gens to Opt.qvgsa)
SEA t=2p=0059=25 6076504
avg-DMAB [C' =10~ = 25 W = 50 7727642
Ex-DMAB |C =1~ =250 W =50 5467513
Oracle strategy 5069202

The figureDZ allows to study the robustness of the meta-pdeamef the SEA. It
shows the average performances of the SEA computed offilim@g the Design Of
Experiments campaign according to the tournament sitlee state mutation rate,
and the number of generatiopsThe average performance is relatively independent of
the tournament size. The number of generations and theratgigion rate have more
impact on it. Extreme values of the number of generation2d0, and400) do not give
good performances. According to the state mutation ratgep#rformances increases
till p around).05 or 0.1, and decreases afterl. For the oneMax problem with= 10*
robust parameters seems totbe [2, 5], p € [0.05,0.1], andg € [25, 50]. In this case,
the window of robust meta-parameters is quite large.

3.2 Longk-path problem

The long path problerr[|[4] has been introduced to show thabbl@m instance can be
difficult to solve for a hill-climber-like heuristic even the search space is unimodal,
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Fig. 1. Example of run of the SEA withh = 2, p = 0.05 andg = 25 on the oneMax
problem: fitness, the relative number of solutions in eaatestare given. The chosen
example gives the median performance (gens t&89t).

i.e. a fitness landscape where the global optima is the singlé dptena. For such a
problem, a hill-climber guarantees to reach the globalnopin, but the length of the
path to get it is exponential in the dimension of the seareltspAs a consequence, a
hill-climbing-based heuristic cannot solve the problenpalynomial time. The ‘path
length’ takes then place in the rank of problem difficulty,tbe same level as multi-
modality, ruggedness, deceptivity, etc. The long path Ipm@] E] can be solved in

a polynomial expected amount of time fofla+ 1)—EA which is able to mutate more
than one bit at a time. Thid + 1)—EA can take some shortcuts on the outside of the
path so that it makes the computation more efficient.

Like in the work of Fialho, an additional mutation operatire 3/! bit-flip, has
been added to the operator set. The tfble 2 shows the perfoesaf the SEA and ex-
DMAB. The minimum and the median of number generations tovoyoh over200 runs
are presented. The performances for all algorithms ardyhigliables from one sample
to another. We perform the two non-parametric tests of Wibeo(W) and Kolmogorov-
Smirnov (KS). Forl = 43, the performances of ex-DMAB are better according to
KS with confidencel %, but only at confidencé% for W test. Forl = 49, the two
algorithms obtain similar results according both test W K8d For the problems with
[ = 55andl = 61, the SEA outperforms the ex-DMAB according the statistieats (p-
values are undei0—4). It is difficult to have a clear conclusion from those expezits
due to the large randomness of the results, but it seems BfaisSable to have better
performances than extreme value based DMAB on the largsistrioe of long-path
problems.
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Fig. 2. Average performance of the SEA on the oneMax problem with 10* com-
puted off-line during the Design Of Experiments campaigeoading to the state mu-
tation ratep, the number of generatiofy and tournament size From top to bottom
tournament size = 2, 3, 5. Average orb0 independent runs.

Table 2. Minimum and median number of generations to the optimaltsmiuwut of
200 independent runs using the optimal meta-parameters

l Algo. Configuration Gens to Opt.fin — median)
43 SEA t=2p=0.15¢g=10 20 — 3151
Ex-DMAB C =50~=50W =500 11 — 2216
Oracle strategy 2 —1202
49 SEA t=2p=04g=5 5 — 3755
Ex-DMAB |C = 100 v = 500 W = 500 17 — 3244
Oracle strategy 19 — 2668
55 SEA t=2p=01g=5 51 — 4126
Ex-DMAB |C = 100 v = 100 W = 500 161 — 6190
Oracle strategy 45 — 3224
61 SEA t=2p=0.1g=50 59 — 7950
Ex-DMAB C=50~=25W =500 80 — 10253
Oracle strategy 8 — 5408




The figure[B displays a typical example of run of the SEA on timgyB-path with
[ = 55. Again, we choose to show the one with the median perform&hi@$ gen-
erations). The search dynamics on long path problems ierdift from the one on the
oneMax problem. There is no large stage where the numberlafiGo in one state
dominates the others. Even the larger sub-population sidgation is not regular, and
draws a lot of random jumps. Those stochastic variationsibfpopulation size seem
to appear all along the search process, there is no diffeftegiwveen the beginning and
the end of the run. We can notice that the sub-populationef th bit-flip mutation
operator is more often the larger one. For this typical rbe,1t/! bit-flip mutation is
the larger one during0% of the total number of generation, thebit mutation21%
of times, the3-bit mutation12%, the3/1 bit-flip mutation5%, and the less used is the
5-bit mutation with1% of the total number of generations. For the most used mutatio
operator, the sub-population size is arodad; of the total number of solutions. It
also means that the other mutations are always appliedgitirérun.

1 —
fitness ———
5 bits
3 bits
0.8 ‘ ~ 1hbit 1
%) | : TfN—brrﬁp‘ra -fhi :
% 3/N bitAflip rate
E 0.6 i
o
>
(8]
c
S 04t 1
oy
Qo
L
0.2 1
0

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Generation

Fig. 3. Example of run of the SEA withh = 2, p = 0.1 andg = 5 on the long3-path
problem with! = 55: fitness, the relative number of solutions in each stategiaes.
The chosen example gives the median performance (gens 44 2§t

The robustness of the meta-parameters of the SEA is alsy &iuthe long path
problems. The figurﬂ 2 shows the median generation to reagjlobal optimum com-
puted off-line during the Design Of Experiments campaigroading to the state muta-
tion ratep, and the number of generatiopsOnly the tournament size= 2 is shown.
The similar performances are obtained for tournament3iaed5. A larger number
of generation for théZ 4, gives bad performances, apdnust be lower than00. For
this problemy = 1 can be used in contrary of the oneMax problem. The state rontat



rate seems to be more robust for this problem. Even if a ratenal0.1 improves the
performances of the SEA. The large set of parameters valves good performances.
The meta-parameters of the SEA are more robust for the lotiggrablems than for
the oneMax problem.
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Fig.4. Median generation (oveéi) independent runs) to optimal solution on the long 3-
path problems computed off-line during the Design Of Experits campaign accord-
ing to the state mutation rate. Tournament size4s 2. From top-left to bottom-right

[ = 43,49,55,61.

4 Discussion

In this paper we have presented the State based EA (SEA) asesafjéramework
which allows to choose efficient parameter setting on-lingrdy the run. Most often,
such approaches work with measure of performance on thaigpeised as evolvability
of solution or diversity of the population. The SEA propoaasew method which uses
directly the distribution of fithess of solutions producedthe operator to implicitly
select the parameters. Nevertheless, itis rather an adapéthod than an auto-adaptive
method because it manages two kind of dynamics: one to evbé/eolutions, and
one to evolve the parameters of the first ones. The rate ofigwnlof EA parameters



is different than those of the meta-parameters. A cruciahtpis to well adjust the
two dynamics in order they work in concordance. Like the liameéthods used in
previous works, the SEA uses an exploitation componentdtbokal selection) and
an exploration component (the state mutation). The way toage the computational
cost,i.e. the number of evaluations, between the operators (or éuohuty algorithms)
is different. In the AOS methods, one operator (or optindzaglgorithm) is used at
each generation, and the method controls the number of ggorefor each operator
during the run. In the SEA, several evolutionary algorithtas be used at the same
time, and the method controls the sub-population size dfi @igorithm. The SEA is
more parallel and the AOS more sequential.

The performance of the SEA should clearly depends on thenbalbetween the
exploitation and the exploration components. So, themaktorks must be done to
analyse and coordinate this balance. New experimentaikestuaust be conducted on
others problems to understand the advantageous and the fimiSEA. The oneMax
and long path problems are unimodal problems where the ptipnlbased algorithms
does not perform better than algorithms like+ \)-ES. So, next step will be study
the performance of the SEA on problems such as SAT problemsh&n compare the
SEA with the extreme Compass Dynamic Multi-Armed Barﬂit [6]
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