O. Angulo and J. C. Lopez-marcos, Numerical schemes for size-structured population equations, Mathematical Biosciences, vol.157, issue.1-2, pp.169-188, 1999.
DOI : 10.1016/S0025-5564(98)10081-0

D. Barbolosi, A. Benabdallah, F. Hubert, and F. Verga, Mathematical and numerical analysis for a model of growing metastatic tumors, Mathematical Biosciences, vol.218, issue.1, pp.1-14, 2009.
DOI : 10.1016/j.mbs.2008.11.008

URL : https://hal.archives-ouvertes.fr/hal-00262335

D. Barbolosi and A. Iliadis, Optimizing drug regimens in cancer chemotherapy: a simulation study using a PK???PD model, Computers in Biology and Medicine, vol.31, issue.3, pp.31-157, 2001.
DOI : 10.1016/S0010-4825(00)00032-9

D. Barbolosi, C. Faivre, and S. Benzekry, Mathematical modeling of MTD and metronomic temozolomide, 2nd Workshop on Metronomic Anti-Angiogenic Chemotherapy in Paediatric Oncology, 2010.

S. Benzekry, Mathematical analysis of a two-dimensional population model of metastatic growth including angiogenesis
URL : https://hal.archives-ouvertes.fr/hal-00516693

S. Benzekry, Passing to the limit 2D???1D in a model for metastatic growth, Journal of Biological Dynamics, vol.59, issue.sup1
DOI : 10.1016/0025-5564(90)90021-P

URL : https://hal.archives-ouvertes.fr/hal-00521968

F. Boyer, Trace theorems and spatial continuity properties for the solutions of the transport equation, Differential Integral Equations, vol.18, pp.891-934, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00004420

F. Billy, B. Ribba, O. Saut, H. Morre-trouilhet, T. Colin et al., A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy, Journal of Theoretical Biology, vol.260, issue.4, pp.545-562, 2009.
DOI : 10.1016/j.jtbi.2009.06.026

URL : https://hal.archives-ouvertes.fr/inria-00440447

A. Devys, T. Goudon, and P. Laffitte, A model describing the growth and the size distribution of multiple metastatic tumors, Discrete and Continuous Dynamical Systems - Series B, vol.12, issue.4, 2009.
DOI : 10.3934/dcdsb.2009.12.731

URL : https://hal.archives-ouvertes.fr/inria-00351489

R. Diperna and P. , Ordinary differential equations, transport theory and Sobolev spaces, Inventiones Mathematicae, vol.307, issue.3, pp.511-547, 1989.
DOI : 10.1007/BF01393835

A. Onofrio and A. Gandolfi, Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. (1999), Mathematical Biosciences, vol.191, issue.2, pp.159-184, 1999.
DOI : 10.1016/j.mbs.2004.06.003

A. Onofrio, U. Ledzewicz, H. Maurer, and H. Schättler, On optimal delivery of combination therapy for tumors, Mathematical Biosciences, vol.222, issue.1, pp.13-26, 2009.
DOI : 10.1016/j.mbs.2009.08.004

M. Doumic, Analysis of a Population Model Structured by the Cells Molecular Content, Mathematical Modelling of Natural Phenomena, vol.2, issue.3, pp.121-152, 2007.
DOI : 10.1051/mmnp:2007006

URL : https://hal.archives-ouvertes.fr/hal-00327131

J. Ml-ebos, C. R. Lee, W. Cruz-munoz, G. A. Bjarnason, J. G. Christensen et al., Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis, Cancer Cell, 2009.

J. Folkman, Antiangiogenesis : new concept for therapy of solid tumors, Ann. Surg, vol.175, 1972.

P. Hahnfeldt, D. Panigraphy, J. Folkman, and L. Hlatky, Tumor development under angiogenic signaling : a dynamical theory of tumor growth, treatment, response and postvascular dormancy, Cancer Research, vol.59, pp.4770-4775, 1999.

P. Hahnfeldt, J. Folkman, and L. Hlatky, Minimizing Long-Term Tumor Burden: The Logic for Metronomic Chemotherapeutic Dosing and its Antiangiogenic Basis, Journal of Theoretical Biology, vol.220, issue.4, pp.545-554, 2003.
DOI : 10.1006/jtbi.2003.3162

K. Iwata, K. Kawasaki, and N. Shigesada, A Dynamical Model for the Growth and Size Distribution of Multiple Metastatic Tumors, Journal of Theoretical Biology, vol.203, issue.2, pp.177-186, 2000.
DOI : 10.1006/jtbi.2000.1075

R. K. Jain, Normalizing tumor vasculature with anti-angiogenic therapy: A new paradigm for combination therapy, Nature Medicine, vol.7, issue.9, pp.987-989, 2001.
DOI : 10.1038/nm0901-987

F. Lignet, S. Benzekry, F. Billy, B. Bernard, O. Saut et al., Identifying optimal combinations of anti-angiogenesis drugs and chemotherapies using a theoretical model of vascular tumour growth

M. Paez-ribes, E. Allen, J. Hudock, T. Takeda, H. Okuyama et al., Antiangiogenic Therapy Elicits Malignant Progression of Tumors to Increased Local Invasion and Distant Metastasis, Cancer Cell, vol.15, issue.3, pp.220-231, 2009.
DOI : 10.1016/j.ccr.2009.01.027

G. J. Riely, Randomized Phase II Study of Pulse Erlotinib Before or After Carboplatin and Paclitaxel in Current or Former Smokers With Advanced Non???Small-Cell Lung Cancer, Journal of Clinical Oncology, vol.27, issue.2, pp.264-270, 2009.
DOI : 10.1200/JCO.2008.17.4656

G. W. Swan, Role of optimal control theory in cancer chemotherapy, Mathematical Biosciences, vol.101, issue.2, pp.237-284, 1990.
DOI : 10.1016/0025-5564(90)90021-P

S. L. Tucker and S. O. Zimmerman, A Nonlinear Model of Population Dynamics Containing an Arbitrary Number of Continuous Structure Variables, SIAM Journal on Applied Mathematics, vol.48, issue.3, pp.48-549, 1988.
DOI : 10.1137/0148032

B. You, C. Meille, D. Barbolosi, B. Tranchand, J. Guitton et al., A mechanistic model predicting hematopoiesis and tumor growth to optimize docetaxel + epirubicin (ET) administration in metastatic breast cancer (MBC): Phase I trial, J. Clin. Oncol, p.25, 2007.