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I. INTRODUCTION

Since about one hundred years, nonlinear science hadedttae attention of
researchers to circumvent the limitation of linear themirethe explanation
of natural phenomenons. Indeed, nonlinear differentiabéiqns can model
the behavior of oceans surface (Scott, 1999), the recuerehice age (Benzi
et al, 1982), the transport mechanisms in living cells (Murré889), the in-
formation transmission in neural networks (Naguet@l, 1962; Scott, 1999;
Izhikevich, 2007), the blood pressure propagation in egefPaquerot and
Remoissenet, 1994) or the excitability of cardiac tissugeseler G.W. and
Reuter H., 1977; Keener, 1987). Therefore, nonlinear seieppears as the
most important frontier for a better understanding of mnat{Remoissenet,
1999).

In the recent field of engineering science (Zakharov and \Wabt998;
Agrawal, 2002), taking into account the nonlinearity hdeve¢d to achieve
spectacular progresses in terms of transmission capadaitieptical fibers
via the concept of soliton (Remoissenet, 1999). More rdgenbnlinear
differential equation, arising in many areas of physicsldgy, chemistry and
ecology, have naturally inspired unconventional methdgsacessing which
allow to transcend the limitations of classical linear noeth (Teuscher and
Adamatzky, 2005). This growing interest for processingiapfions based on
the properties of nonlinear systems can be explained bylikeraation that
fundamental progress in several fields of computer scieeems sometimes
to stagnate. Novel ideas coming from interdisciplinarydiebften open
new directions of research with unsuspected applicatidesidcher and
Adamatzky, 2005).

On the other hand, complex processing tasks require mgeitisystems
that are able to adapt and learn by mimicking the behaviouhwhan
brain. Biologically inspired systems, most often desdlitiy nonlinear
reaction-diffusion equations, have then been proposedragaient solutions
to solve very complicated problems unaccessible to modemNeumann
computers. It was in this context that the concept(dV N has been
introduced by L. Chua and L. Yang as a novel class of inforomgbrocessing
systems with potential applications in such areas as imageepsing and
pattern recognition (Chua and Yang, 1988; Chua and Yangg8)198n
fact, CNN is an acronym for Cellular Neural Network when used in
the context of Brain science or Cellular Nonlinear Netwankthie context
of emergence and complexity (Chua, 1998). Since the pioneek of
L.O Chua, the CNN paradigm has rapidly evolved to cover a watege
of applications drawn from numerous disciplines, inclgditificial life,
biology, chemistry, physics, information science, noneorttional methods
of computing (Holderet al, 1991), video coding (Venetianet al, 1995;
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Arenaet al, 2003), quality control by visual inspection (Occhipiet al,
2001), cryptography (Yu and Cao, 2006; Caponettal, 2003), signal-image
processing (Julian and Dogaru, 2002),... (see (Tetzlai22for an overview
of the applications).

In summary, these latest two decades devoted to the studyoiVs
have led scientists to solve problems of artificial intellige by combining
the highly parallel multiprocessor architecture(olN N s with the properties
inherited from the nonlinear bio-inspired systems. Amadmg tasks of high
computational complexity routinely performs with nonlaresystems, one can
cite finding the optimal path in a two dimensional vector figAdjladzeet
al, 1997), image skeletonisation (Chua, 1998), finding thetekbpath in
a labyrinth (Chua, 1998; Rambidi and Yakovenchuk, 2001 )¢antrolling
mobile robot (Adamatzkyet al, 2004). However, the efficiency of these
nonlinear systems for signal-image processing or patesrognition does not
come only from their biological background. Indeed, thelmearity offers
an additional dimension lying in the signal amplitude, whigives rise to
novel properties not shared by linear systems. Noise relagtraa nonlinear
dissipative lattice (Marquiét al, 1998; Comteet al, 1998), contrast enhance-
ment based on nonlinear oscillators properties (Morfu amuhtg, 2004), edge
detection exploiting vibration noise (Honglet al, 1998), optimization by
noise of non-optimum problems or signal detection aided digenvia the
famous stochastic resonance phenomenon (Gammaitahil 998; Chapeau-
Blondeau, 2000; Comte and Morfu, 2003), constitute a nomicése list of
spectacular examples where the properties of nonlinetersgshave allowed
to overcome the limitation of classical linear approaches.

Owing to the rich variety of potential applications insgirby nonlinear
systems, rapidly the efforts of researchers have focusdtdeoaxperimental
realization of such efficient information processing degic Two different
strategies were introduced (Kuhnert, 1986; Chua and Yar”@3)Land
nowadays, the fascinating challenge of artificial intellige implementation
with C N N is still under investigation.

The first technique dates back from the late eighties withvibeks of
L. Kuhnert who proposed to take benefit of the properties obBsov-
Zhabotinsky type media for image processing purposes (&thri986;
Kuhnertet al, 1989). The main idea is that each mico-volume of the active
photo-sensitive chemical medium acts as a one-bit-processresponding
to reduced/oxidized state of the catalyst (Agladtel, 1997). This feature of
chemical photosensitive nonlinear media has allowed tdampnt numerous
tools of image processing. Edge enhancement, classicedtipes of math-
ematical morphology, the restoration of individual comeots of an image
with overlapped components (Rambédial, 2002), the image skeletonisation
(Adamatzkyet al, 2002), the detection of urban roads or the analysis of
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medical images (Teuscher and Adamatzky, 2005) represeamtfaoverview

of processing tasks computed by chemical nonlinear medaveider, even
considering the large number of chemical “processors’yérg low velocity

of trigger waves in chemical media is sometimes incompatibith real

time processing constraints imposed by practical apjdinat(Agladzeet

al, 1997). Nevertheless, the limitations of these unconeeatimethods of
computing no way dismiss the efficiency and high prospediseoprocessing
developed with active chemical media (Adamatzky and de L@ogtello,

2003).

By contrast, analog circuits do not share the weakness opteeious
strategy of integration. Therefore, because of their tiead- processing
capability, electronic hardware devices constitute thessthacommon way to
implementC' N N's (Chua and Yang, 1988). The first step to electronically
develop aC' NN for image processing purposes consists of designing an
elementary cell. More precisely, this basic unit@fV Ns usually contains
linear capacitors, linear resistors, linear and nonlineartrolled sources
(Chua and Yang, 1988; Comte and Marquié, 2003). Next, to ¢etep
the description of the network, a coupling law between dsllmtroduced.
Owing to the propagation mechanism inherited from the oomtiis-time
dynamics of the network, the cells do not only interact witleit nearest
neighbors but also with cells that are not directly connetdgether. Among
the applications which can be electronically realized, cae cite character
recognition (Chua and Yang, 1988), edge filtering (Corateal, 2001;
Chenet al, 2006), noise filtering (Marquiét al, 1998; Comteet al, 1998;
Julian and Dogaru, 2002), contrast enhancement and gray dstraction
with a nonlinear oscillators network (Morfu, 2005; Morétial, 2007).

On the other hand, the principle 6TN N's integration with discrete electronic
components is closely related to the development of noatiredectrical
transmission lines (NLTLs) (Remoissenet, 1999). Indeedjeu certain
conditions (Chua, 1998), the parallel processing of infation can be ruled
by nonlinear differential equations which also describe ¢lrolution of the
voltage at the nodes of an electrical lattice. It is thenrcieat considering a
one dimensional lattice allows signal filtering, while ending the concept to
a two dimensional network can provide image processingegijins.

The development of NLTLs was mainly motivated by the fact thase
systems are quite simple and relatively un expansive exgeral devices
allowing to study quantitatively the properties of nonhnevaves (Scott,
1970). In particular, since the pioneering works by Hiratd Suzuki (Hirota
and Suzuki, 1970) and by Nagashima and Amagishi (Nagashich&mag-
ishi, 1978) on electrical lines simulating the Toda latffgeda, 1967), these
NLTLs, which can be considered as analog simulators, pesigseful way to
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check how the excitations behave inside the nonlinear mediéger, 1985;
Kuusela, 1995; Marquiét al, 1995; Yamgouét al, 2007).

This chapter is mainly devoted to the presentation of somécpéar
nonlinear processing tools and to discuss their electiomptementation with
discrete components.

After having introduced the readers into a brief mechardesicription of
nonlinear systems, we first present a review of the progedidoth purely
inertial systems and overdamped systems. Then, in thewfioiipsections,
we take advantage of these properties to develop uncoovahtnethods of
processing. Especially, considering the features of gurartial systems,
we reveal the possibility to perform various image progegsasks such as
contrast enhancement of a weakly contrasted picture, ttraction of gray
levels, or the encryption of an image. The electronic skefthe elementary
cell of this inertial CNN is proposed and the nonlinear properties which
allows the previous image processing tasks are experitheimeestigated.
Next, the third part of this chapter is exclusively devotedthe filtering
applications inspired by reaction-diffusion media, liker instance, noise
filtering, edge detection or extraction of interest regioms weakly noisy
contrasted picture. In each case, the elementary cell cdlgatronicC N N
is developed and we experimentally investigate its belmawidhe specific
context of signal-image processing. We conclude by diseggshe possible
microelectronic implementations of the previous nonlnegstems. In
addition, the last section contains some perspectivesifard developments
inspired by recent properties of nonlinear systems. Iri@dar, we present a
paradoxical nonlinear effect known as stochastic resanéBenziet al, 1982;
Gammaitonket al, 1998; Chapeau-Blondeau, 1999) which is supposed to have
potential applications in visual perception (Simonattal, 1997).

We trust that the multiple topics proposed in this contiims will help
the readers in better understanding the potential apjitatbased on the
properties of nonlinear systems. Moreover, the variouselgic realizations
presented in this chapter will constitute a serious baakugglofor future
experiments and studies devoted to nonlinear phenomenattelVfor an
interdisciplinary readership of physicist and engineeas,finally hope that
this chapter will encourage the readers to perform their experiments.
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[I. MECHANICAL ANALOGY

In order to understand the image processing tools inspiyeldeoproperties of
nonlinear systems, we present here a mechanical analo@pgsé nonlinear
systems. From a mechanical point of view, we consider a obfggarticles

of massM submitted to a nonlinear forcg deriving from a potentia and
coupled with springs of strength. If W, represents the displacement of the
particlen, the fundamental principle of the mechanics writes:

d*W, aw, dd
M n no_ 1
dt? +A dt aw,, + B, @)
2
whereM ddt2 represents the inertia term ahgg corresponds to a friction

force. Furthermore, the resulting elastic foigg applied to thent" particle
by its neighbors can be defined by:

R,=D (Wj—Wn>, )
JENT

whereNr is the neighborhood, namelyr = {n — 1,n + 1} in the case of
a one dimensional chain.
We propose to investigate separately the purely inertiglecahat is

2 2
Md W >> )\M, and the overdamped one deduced W}\téw << )\d—W.
dt? dt dt? dt

A. Overdamped Case

In this section, an overdamped system is presented by riegjehe inertia
term of eq. (1) compared to the friction force. We specificatinsidetr = 1
and the case of a cubic nonlinear force

fW) = -WW —a)(W —1), (3)

deriving from the double well potentid(WW) = — fOW f(u)du as repre-
sented in figure 1 for different worths of The roots of the nonlinear force
0, and1 correspond to the positions of the local minima of the paatnt
namely the well bottoms, whereas the raotrepresents the position of
the potential maximum. The nonlinearity threshelddefines the potential
barrier A between the potential minimum with the highest energy amd th
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FIGURE1. Double well potential deduced from the nonlinear force (3) Fora < 1/2 the
well bottom with highest energy is locatedlat = 0, the potential barrier is given by
A =[5 f(uw)du = ¢(a) — ¢(0) . (b) Fora > 1/2 the symmetry of the potential is reversed:
W = 1 becomes the position of the well bottom of highest energythagbotential barrier is

A= [ fu)du = ¢(a) — p(1).

potential maximum. To explain the propagation mechanisthigichain, it is
convenient to define thexcited statéy the position of the potential minimum
with the highest energy, and thest stateby the position corresponding to the
minimum of the potential energy. As shown in figurédl, the excited state
is 0 and the rest state iswhen the nonlinearity threshold < 1/2. In the
casea > 1/2, since the potential symmetry is reversed, the excitee stat
becomed and the rest state i(figure 1(b)). The equation which rules this
overdamped nonlinear systems can be deduced from eq. d8ednwhen
the second derivative versus time is neglected compardubtiirst derivative
and when\ = 1, eq. (1) reduces to the discrete version of Fisher’'s equatio
introduced in the 1930’s as a model for genetic diffusiosifer, 1937):

aw,
T DW,iq1 + Wyq —2W,) + fF(W,,). 4

1. Uncoupled case

We first investigate the uncoupled case, thabDis= 0 in eq. (4) to reveal the
bistability of the system. The behavior of a single partafidisplacementV’
and initial positiont’’° obeys to

AW
= W —a)(W —1). (5)

The zeros of the nonlinear forc W = 1 andW = 0 correspond to
stable steady states, whereas the sklte= « is unstable. The stability
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analysis can be realized by solving eq. (5) substitutingniielinear force
f=-W(W —a)(W — 1) by its linearized expression near the considered
steady statedl’* € {0,1,a}. If fy-(W*) denotes the derivative versiis

of the nonlinear force folW = W*, we are led to solve:

dw . " *
E:fW(W)(W_W)"i'f(W) (6)
The solution of Eq. (6) can then be easily expressed as
(W U
W(t)=W*4CefvWit _ 22~ 7
w fw (W) )

whereC' is a constant depending on the initial condition, that isithtal
position of the particle. The solution (7), obtained witlireelr approximation
of the nonlinear forcef, shows that the stability is set by the sign of the
argument of the exponential function.
Indeed, forllW* = 0 andIW* = 1, the sign offy (W *) is negative, involving
thatV (¢ — oo) tends to a constant. Therefore, the two poifts = 0 and
W* =1 are stable steady states.
On the other hand, fd* = «, fy/(W*) is positive, inducing a divergence
for W(t — o0). W* = «is an unstable steady state.

We now focus our attention to the particular case= 1/2 since it will
allow interesting applications in signal and image proicgssontext.

This case is intensively developed in Appendix A, where ghswn that
the displacement of a particle with initial positid%i® can be expressed by

1

Wo 1
W(t) N 5(1 * \/(WO _ %)2 _ WO(WO _ l)e%t) ®)

This theoretical expression is compared in figure 2 to theerigal results
obtained solving eq. (5) using a fourth order Runge-Kutgoathm with
integrating time steplt = 1072 . As shown in figure 2, when the initial
conditionW? is below the unstable state= 1/2, the particle evolves toward
the steady statds Else, if the initial conditio??® exceeds the unstable state
a = 1/2, the particle evolves towards the other steady stafherefore, the
unstable states = 1/2 acts as a threshold and the system exhibits a bistable
behaviour.

2. Coupled case

We now consider the coupled case  0). In such systems ruled by eq.
(4), the balance between the dissipation and the nonliyegiies rise to
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FIGURE2. Bistable behaviour of the overdamped system in the @asel /2. Left: Evolution
of a particle for different initial conditions in the ran¢@ 1]. The solid line is plotted with the
analytical expression (8) whereas {9 signs correspond to the numerical solution of €%). for
different initial conditionsi?’© € [0; 1]. The potentiak obtained by integrating the nonlinear force
(3) is represented at the right to provide a reference.

the propagation of a kink, that is a localized wave, calldtusgive soliton
which propagates with constant velocity and profile (Resengt, 1999). To
understand the propagation mechanism, we first considewvea& coupling
limit and the caser < 1/2. The case of strong couplings, which corresponds
to a continuous medium, will be discussed later since italto theoretically
characterize the waves propagating in the medium.

1.1. Weak coupling limit As shown in figure 3a), initially, all particles
of the chain are located at the positidrthat is at the excited state. To initiate
a kink, an external forcing allows the first particle to crtespotential barrier
in W = « and to fall in the right well, at the rest state defined by thsifmn
W = 1. Thanks to the spring coupling the first particle to the selaame, but

despite the second spring, the second particle attemptass the potential
3

barrier with heightA (o) = —% + % (Morfu, 2003) (see figure 8h)).

According to the value of the resulting force applied to themsd particle
by the two springs compared to the nonlinear fofcbetween|0, «a], two
behaviors may occur:

1. If the resulting elastic force is sufficiently importantallow the second
particle to cross the potential barriér(«), then this particle fall in the
right well and pulls the next particle down in its fall. Sineach particle
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*(W.) = | (W,)

A(a):

FIGURE3. Propagation mechanisrtu) Initially all particles of the chain are in the excited state
0, that is at the bottom of the well with highest ener@}) State of the chain far > 0. The first
particle has crossed the potential barreand attempts to pull the second particle down in its fall.

of the chain successively undergoes a transition from thiezkstate) to

the rest statd, a kink propagates in the medium. Moreover, its velocity
increases versus the coupling and as the barrier decrezmaeglfy, asy
decreases).

2. Else, if the resulting force does not exceed a criticaliedl.e. if D <
D*(«)), the second particle cannot cross the potential barrittars stays
pinned at a positiom in [0; «[: it is the well known propagation failure
effect (Keener, 1987; Erneux and Nicolis, 1993; Klagkal, 2000; Comte
et al, 2001).

The mechanical model associated with eq. (4) reveals thabhenweak
coupling limit the characteristics of the nonlinear systera ruled by the
coupling D and the nonlinear threshold. Moreover, the propagation of a
kink is due to the transition from the excited state to thé seste and is only
possible when the couplin® exceeds a critical valuP*(«).

1.2. Limit of continuous media The velocity of the kink and its profile
can be theoretically obtained in the limit of continuous methat is when
the couplingD is large enough compared to the nonlinear strength.
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Then, in the continuous limit, the discrete Laplacian of €¢) can be
replaced by a second derivative versus the space vatiable

ow O*W
TR

+ f(W). (9)

This equation, introduced by Nagumo in the 1940s as an el@myear®presen-
tation of the conduction along an active nerve fiber, has goant meaning
in understanding transport mechanism in biological syst@dagumcet al,
1962; Murray, 1989).

Unlike the discrete equation (4), the continuous equa®ra{imits prop-
agative kink solution only iffo1 f(u)du # 0, which reduces tax # 1/2 in
the case of the cubic force (3) (Scott, 1999).

Introducing the propagative variabfe= 2z — ct, these kinks and anti-kinks
have the form (Fife, 1979; Henry, 1981)

W) =5 [1 + tanh (N%(g - £o>>], (10)

where&, is the initial position of the kink for = 0 and where the kink
velocity is defined by: = +1/D/2(1 — 2a).

Whena < 1/2, the excited state i8, and the rest state is Therefore, the
rest statel spreads in the chain, which set the sign of the velocity atingr
to the profile of the kink initiated in the nonlinear system:

1. If the profile is given by (¢) = % [1 — tanh (Tg_D(g — §O)>] , a kink

propagates from left to right with a positive velocity= /D /2(1 — 2«)
(fig. 4.(a) left).

2. Else, if the profile is set bW/ () = %[1+tanh (ﬁ(g—go)ﬂ , akink

propagates from right to left with a negative velocity: —/D/2(1—2«)
(fig. 4.(a) right).

Whena > 1/2, since the symmetry of the potential is reversed , the excite
states becomes and the rest state 8. The propagation is then due to a
transition betweer to 0 which provides the following behaviour:

LUW(E) =4 [1 — tanh (Tg_D(g - 50))] , a kink propagates from right
to left with a negative velocity = \/D/2(1 — 2«) (fig. 4.(b) left).
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FIGURE4. Propagative solution of the continuous Nagumo equa@ipmith D = 1. Spatial
representation of the kink fdr= 0 in dotted line and for = 20 in solid line. The arrow indicates
the propagation direction, the corresponding potentieggsesented at the right end to provide a
reference(a) a = 0.3. (b) @ = 0.7.

2. Else ifW(¢) = 1 [1 + tanh (2\/12_D(§ - 50))] , a kink propagates from

left to right with a positive velocityy = —+/D/2(1 — 2«) (fig. 4.(b)
right).

B. Inertial systems

In this section, we neglect the dissipative term of eq. (Ijhpared to the
inertia term and we restrict our study to the uncoupled cadeteover, in
image processing context, it is convenient to introduce @inear force f

under the form

fWV) = —Z(W —m)(W —m — a)(W —m + a), (11)

where,m anda < m are two parameters which allow to adjust the width and
heightA = wla*/4 of the potentialp (fig. 5):

BOW) = — /O Fu)du. (12)
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«—first particle: W,

_— second particle: W,

Potential energy

2
m-ai 2
W (Arb. Unit)
FIGURES. Double well potential deduced from the nonlinear forcE) {epresented for

m = 2.58, a = 1.02 andwg = 1. A particle with an initial conditioiV? < m — a+/2 evolves
with an initial potential energy above the barrisr

The nonlinear differential equation which rules the undedpghain can be
deduced by inserting the nonlinear force (11) into eq. (Ihw) = 0.
Neglecting the dissipative term, the particles of unitagsmare then ruled
by the following nonlinear oscillator equations:

LW,
= ). (13)

1. Theoretical analysis

We propose here to determine analytically the dynamics efribnlinear
oscillators obeying to eq. (13) (Morfu and Comte, 2004; Mcef al, 2006).
Settingz; = W; — m, eq. (13) can be rewritten as

dzxi

Tk —wizi(z; — a)(z; + ). (14)

Noting ¥ the initial position of the particlé and considering that all the
particles have initially a null velocity, the solutions of.e (14) can be
expressed with the Jacobian elliptic functions as

z;(t) = 2%cen(wit, k;), (15)
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wherew; and0 < k; < 1 represent respectively the pulsation and the
modulus of thecn function (see recall on the properties of Jacobian elliptic
function in Appendix B).

Deriving twice eq. (15) and using the properties (85), we get

CZ? = —2dwisn(wit, k;)dn(wit, k;),
d*x; 0 2 2 2
I —z,w;cen(wit, k;) |dn(wit, k;) — kisn®(wit, k;)|. (16)

Using the identities (86) and (87), eq. (16) can be rewriéign

(17)

dQZL'i . 2]{710012 9 2](31—1 02
a2 9 T 2k; Ti |

2

Identifying this last expression with eq. (14), we get thdsption of the
Jacobian elliptic function

w; = woy/ 2 — a2, (18)
and its modulus
1 20
22Y — a2 (19)

Lastly, introducing the initial conditio®V = x? + m, the solution of eq.
(13) can be straightforwardly deduced from egs. (15), (b8)@9):

Wi(t) = m + (W —m)en(wit, k;), (20)

with

L = my
2 (W2 —m)? —

wi(W2) = wo /(W2 —m)2 —a? and k(W) = = (21)

Both the modulus and the pulsation are driven by the initiaddition 1.
Moreover, the constraints to ensure the existence of theapahw; and of
the modulus respectively writg3V? — m)? — o > 0 and0 < k; < 1.
These two conditions restrict the range of the allowedahitbnditionsiv

to | — oo; m — a\/i] U [m + av/2; + oo|, as shown in figure 6, where
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FIGUREG. . (a): Normalized pulsation /wy versus the initial conditioV?. (b) Modulus
parametek versusWZ.O. The parameters of the nonlinearity = 2.58, a = 1.02 impose the
allowed amplitude range— oo; 1.137] |J[4.023; + oof.

the pulsation and the modulus are represented versus tia¢doinditioniV.
Note that this allowed range of initial conditions corresgsalso to a particle
with an initial potential energy exceeding the barrebetween the potential
extrema (see figure 5).

2. Nonlinear oscillators properties

To illustrate the properties of nonlinear oscillators, vensider a chain of
length N = 2 particles with a weak difference of initial conditions andtw
a null initial velocity. The dynamics of these two oscillegas ruled by eq.
(20), where the pulsation and modulus of both oscillatoesdiven by their
respective initial condition. Moreover, we have restidoberr study to the case
of the following nonlinearity parameters = 2.58, o = 1.02, wy, = 10* .
We have applied the initial conditiod? = 0 to the first oscillator, while
the initial condition of the second oscillator is set#d) = 0.2, which
corresponds to the situation of fig. 5.

Figure 7(a) shows that the oscillations of both particles take placenin t
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FIGURE7. (a) Temporal evolution of the two oscillators. Top: evolutiditiee first oscillator
with initial condition Wy = 0. Bottom: evolution of the second oscillator with initialruition
Wg = 0.2. (b) Temporal evolution of the displacement differerfcieetween the two oscillators.

Parametersin = 2.58, a = 1.02 andwg = 1.

range[W?; 2m — W] as predicted by eq. (20), thatfi; 5.16] for the
first oscillator and0; 4.96] for the second one. Moreover, owing to their
difference of initial amplitude and to the nonlinear beloawf the system,
the two oscillators quickly attain a phase opposition fog first time at
t = tope = 1.64 x 1072, This phase opposition corresponds to the situation
where the first oscillator has reached its minimii(¢,,:) = 0, whereas
the second oscillator has attained its maximidf(t,,;) = 4.96. As shown
in figure 7(b), the displacement differenaét) = Ws(t) — Wy(¢) is then
maximum fort = t,,, and become®(t,,;) = 4.96. For this optimal
time, a “contrast enhancement" of the weak difference dfainconditions
is realized, since initially the displacement differencas@(t = 0) = 0.2.
Note that in fig. 7(b), the displacement difference between the two oscillators
also presents a periodic behavior with local minima andllotaxima. In
particular, the differencé(t) is null fort = 3.96 x 1075, ¢ = 1.81 x 1074,
t = 35 x 1074 ¢t = 521 x 107% minimum fort = 1.4 x 1074,
t = 464 x 1074, ¢t = 1.47 x 1073 and maximum fort = 3 x 1074,
t = 6.29 x 1074, t = 1.64 x 10~3. These characteristic times will be
of crucial interest in image processing context to definefiltered tasks
performed by the nonlinear oscillators network.

Figure 6(a) reveals that the maximum variation of the pulsation comgpare
to the amplituddV’?, that isAw /wy, is reached folW? = m — a/2, that
is for a particle with an initial potential energy near theriga A. Therefore,
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to quickly realize a great amplitude contrast between the dgcillators, it
could be interesting to launch them with an initial amplagudeann — av'2,
or to increase the potential barrier height We choose to investigate this
latter solution by tuning the parameter of the nonlineasityhen the initial
amplitude of both oscillators remaif®? = 0 andW; = 0.2. The results

[npt topt
- TN |
X S
1 1
Nl Nl
§f\! -1 &N -1
T Y L
%-5 %-5
0 1 2 3 0 1 2 3
t x 107 t x 1073
(@) (b)
tapt tnpt
5
S S
= 2!
~ -1 ~ -]
> ~
13 13
%_5 %_5
0 1 2 3 0 1 2 3
t x10° t x10°7
(© (d)

FIGURES. Influence of the nonlinearity parameteon the displacement differendebetween
the two oscillators of respective initial conditiosand0.2. Parametersn = 2.58 andwo = 1. (a):
(topt = 1.75 x 1073; ¢ = 0.4). (b): (topt = 1.66 x 1073; o = 1.05). (c):

(topt = 1.25 x 1073; o = 1.5). (d): (topt = 0.95 x 1073; o = 1.63).
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are reported in figure 8, where we present the evolution ofiiffierenced (¢)
for different worths ofo.

As expected, when the nonlinearity parameténcreases, the optimal time
is significatively reduced. However, wheris adjusted near the critical value
(m—WJ)/+/2 asin figure 8d), the optimum reached by the differenife)
is reduced tod.517 for « = 1.63 instead 0f4.96 for &« = 1.02. Even
if it is not the best contrast enhancement which can be peddrby the
system, the weak difference of initial conditions betwedsm tivo oscillators
is nevertheless strongly enhanceddos= 1.63.

To highlight the efficiency of nonlinear systems, let us édesthe case of
alinear forcef (W) = —woW in eq. (13).

In the linear case, the displacement differea¢e) between two harmonic
oscillators can be straightforwardly expressed as

0(t) = ecos(wpt), (22)

where e represents the slight difference of initial conditionsvibetn the
oscillators. This last expression shows that it is impdesib increase
the weak difference of initial conditions since the diffiece §(¢) always
remains in the rangé—¢; ¢]. Therefore, taking into account nonlinearity
is a convenient solution to overcome the limitation of linegstem and to
enhance a weak amplitude contrast.

[1l. I NERTIAL SYSTEMS

In this section, we present different image processingstaskpired by
the properties of the nonlinear oscillators presented atige [I.B. Their
electronic implementation is also discussed.

A. Image processing

By analogy with a particle experiencing a double well patnthe pixel
number(i, j) is analog to a particle (oscillator) whose initial positicorre-
sponds to the initial gray IevéVi?j of this pixel. Therefore, itV x M denotes
the image size, we are led to consider a two dimensional mkiwo Cellular
Nonlinear Network C N N), consisting of uncoupled nonlinear oscillators.
The node;, 5 of this CNN obeys to

dQVVi-j 2
e —wo(Wij —m—a)Wi; —m+a)(W;; —m),  (23)
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withi =1,2...N andj = 1,2.., M.

Note that we take into account the range of oscillatihs 2m — W]
predicted in section 11.B.2 to define the gray scale of thegesa namely)
for the black level an@m = 5.16 for the white level.

The image to process is first loaded as initial condition atrtbdes of the
C' N N. Next, the filtered image for a processing titnean be deduced noting
the position reached by all oscillators of the network a$ #pecific timet.
More precisely, the state of the network at a processing tim@btained by
solving numerically eq. (23) with a fourth order Runge-kKadgorithm with
integrating time stegt = 10~°.

1. Contrast enhancement and image inversion

The image to process with the nonlinear oscillator netwarkhie weak
contrasted image of figure (&). Its histogram is restricted to the range
[0; 0.2], which means that the maximum gray level of the im&ge) is the
initial condition of at least one oscillator of the netwowile the minimum
gray level of the imag€0) is also the initial condition of at least one oscillator.
Therefore, the pixels with initial gray leveél and 0.2, oscillate with the
phase differencé(t) predicted by figure 7b). In particular, as explained
in section 11.B.2, their phase differendét) can be null for the processing
timest = 3.96 x 1074, 1.81 x 1074, 3.5 x 10~%, 5.21 x 10~*; minimum for
t=1.4x10"%4.64 x 1074, 1.47 x 10~3 and maximum fot = 3 x 1074,
6.29 x 1073, 1.64 x 1073. As shown in figure 9b), (d), (f) and (h),
the image goes through local minima of contrast at the psicgsimes
corresponding to the zeros @ft) . Furthermore, the processing times
providing the local minima of(¢) realize an image inversion with a growing
contrast enhancement (Fig. (&), (¢) and (j)). Indeed, since the minima
of §(t) are negative, for these processing times the minimum ofrthiali
image becomes the maximum of the filtered image and viceavelastly,
the local maxima of(¢) allow to achieve local maxima of contrast for the
corresponding processing times (Figs.(e9. (i), (k)). Note that the best
enhancement of contrast is attained at the processing timfor which §(t)

is maximum. The histogram of each filtered image in fig. 9 ats@als the
temporal dynamic of the network. Indeed, the width of thegmhistogram is
periodically increased and decreased, which involvesttteatontrast of the
corresponding filtered image is periodically enhanced duced.

Another, interesting feature of the realized contrast i®iteined by the
plot of the network response at the processing tigpe (Morfu, 2005). In-
deed, this curve also represents the gray level of the pitéhe filtered image
versus their initial gray level. Therefore, the horizordals corresponds to
the initial gray scale, namelfp); 0.2], whereas the vertical axis represents
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FIGURE. Filtered images and their corresponding histogram néthwith the nonlinear
oscillators network (23) for different processing timés) : Initial image (¢ = 0). (b) :
t=2396x107% (c):t=14x10"% (d): t =181 x 1074, (e) : t =3 x 10™%. (f) :
t=35x10"% (g) :t =464 x 1074, (h) : t =521 x 1074, (4) : t = 6.29 x 1074, (§) :
t=1.47 x 1073, (k) : t = topt = 1.64 x 1073, Parametersm = 2.58, o = 1.02, wp = 1.
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FIGURE10. Response of the nonlinear system for different nontityeparametersy at the
corresponding optimal tim&,,: (solide line) compared to a uniform rescaling (dotted liri)e
curves are obtained with egs. (20) and (21) setting the tintleet optimum value defined by the
maximum ofé(t) (see fig. 8). In addition, we let the initial conditioHXB’iO varying in the range

[0; 0.2] in egs. (20) and (21)a): (topt = 1.75 x 107 3; a0 = 0.4). (b):
(topt = 1.66 x 1073; a = 1.05). (¢): (topt = 1.25 x 1073; a = 1.5). (d):
(topt = 0.95 x 1073;a = 1.63). wo = 1

the gray scale of the processed image. Such curves aredpiotfgyure 10
for different values of the nonlinearity parameterand at the optimal time
defined by the maximum of(¢). In fact, these times were established in
section 11.B.2 at figure 8.

Moreover, to compare our nonlinear contrast enhancementitaform one,
we have superimposed (in dotted line) the curve resultiognfa simple
multiplication of the initial gray scale by a scale facton flg 10.(a), since
the response of the system for the lowest value: i most often above the
dotted lines, the filtered image at the processing tippe = 1.75 x 103
for a = 0.4 will be brighter than the image obtained with a simple rescal
As shown in Fig. 10.(b), increasing the nonlinearity parameterto 1.05
involves an optimum timé.66 x 10~2 and symmetrically enhances the light
and dark gray levels. When the nonlinearity parameter igstelfl to provide
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the greatest potential barrier (Figs. 10c) and (d)), the contrast of the
medium gray level is unchanged compared to a simple regcdliforeover,
the dark and light grays are strongly enhanced with a grelitrtion when
the potential barrier is maximum, that is for the greatefiievaf o (Fig. 10.

(d)).

2. Gray level extraction

Considering processing times exceeding the optimal tigpe we propose
to perform a gray level extraction of the continuous graylescapresented
figure 11(a) (Morfu, 2005). For a sake of clarity, it is convenient to ride
the white level by).2 whereas the black level remaifis

For the9 specific times presented in figure 11, the response of therayst
displays a minimum which is successively reached for eawcél lef the
initial gray scale. Therefore, time acting as a discrimimgparameter, an
appropriate threshold filtering allows to extract all psalith a gray level in
a given range. Indeed, in figure 11, the simplest case of aaurthreshold
Vi, = 0.25 provides9 ranges of gray & closely different processing times,
which constitutes a gray level extraction.

Moreover, owing to the response of the system, the width @&tktracted
gray level ranges reduces in the light gray. Indeed, thegangracted in
the dark gray for the processing timle= 3.33 x 1072 (fig. 11(c)) is
approximatively twice greater than the range extractedhénlight gray for
t = 3.51 x 10~ (figure 11(7)). To perform a perfect gray level extraction,
the threshold has to match with a slight offset the temporalution of the
minimum attained by the response of the system. Under thegditons, the
width of the extracted gray range is set by the value of tHeof

Note that, the response of the system after the optimal psiogtimes also
allows to consecutively enhance fragment of the image wiiterént levels
of brightness, which is also an important feature of the ienpgpcessing.
For instance, in Belousov-Zhabotinsky-type media thipprty of the system
enabled Rambidi and co-workers to restore individual comepds of the pic-
ture when the components are overlapped (Ramdtidi, 2002). Therefore,
we trust that considering the temporal evolution of the immbapded in our
network could give rise to other interesting image procegsperations.

3. Image encryption

Cryptography is another field of application of nonlineastsyns. In fact, the
chaotic behavior of nonlinear systems can sometimes peodbaotic-like
waveforms which can be used to encrypt signals for securerzorications
(Cuomo and Oppenheim, 1993; Dedietual, 1993). Even if many attempts
to break the encryption key of these cryptosystems and tgevet the
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FIGURE11l. Gray level extraction. The response of the system iesepted at the top of each
figure. At the bottom of each figure, a threshold filtering & fiftered image is realized replacing the
pixel gray level with 0.2 (white) if that gray level exceette threshold/;;, = 0.25, otherwise with
0 (black). (a) : Initial gray scalg(t = 0). (b) : t = 3.3 x 1073, (c) : t = 3.33 x 1073. (d) :
t=3.36x10"3.(e) :t =3.39 x 1073, (f) : t =3.42 x 1073. (g) : t = 3.45 x 1073. (h) :
t=3.48 x 1073, (i) : t = 3.51 x 1073, (§) : t = 3.54 x 10~3. Nonlinearity parameters:
m = 2.58, o = 1.02 andwg = 1
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information have been reported (Short and Parker, 1998&tnet al, 2003),
cryptography based on the properties of chaotic osciblastifl attracts the
attention of researchers owing to the promising applicatiof chaos in data
transmission field (Kwok and Tang, 2007).

Contrary to most studies, where the dynamics of a singleahi usually
considered, we propose here a strategy of encryption bas#tealynamics
of a chain of nonlinear oscillators. More precisely, we ¢desthe case of
a noisy image loaded as initial condition in the inertia retnintroduced in
section I.B. In addition, we add a uniform noise oyref.1; 0.1] to the weak
contrasted picture of the coliseum represented in Fig:)9Since the pixels
of the noisy image take a gray level in the rarig®.1; 0.3], an appropriate
change of scale is realized to reset the dynamics of the gvayd to[0; 0.2].
The resulting image is then loaded as initial condition ia tietwork. For a
sake of clarity, the filtered images are presented at diftgpeocessing times
with the corresponding system response in figure 12.

Before the optimal time, we observe the behavior descrimedection
III.LA.1: the image goes through local minima and maxima afitcast until
the optimum time,,,, = 1.64 x 10~3, where the best contrast enhancement
is realized (Fig 12a)).

Next, for processing times exceedifg;, the noisy part of the image seems
to be amplified while the coherent part of the image beginsetdels and
less perceptible (see Fig. 1&) and 12(c) obtained fort = 3.28 x 10~*
andt = 6.56 x 1073). Lastly, for greater processing times, namely=
8.24 x 1072 andt = 9.84 x 1073, the noise background has completely
hidden the coliseum which constitutes an image encryption.

Note that this behavior can be explained with the respongedfystem, as
represented below each filtered image of Fig. 12. Indeed,thetresponse
of the system versus the initial condition does not displdpexiodic-like"
behavior, the coherent part of the image remains perceffiy). 12(a) and
(b)). By contrast, as soon as‘eriodicity” appears in the system response,
the coherent image begins to disappear (Fig.(d. Indeed, the response
of Fig. 12(c) shows that 4 pixels of the initial image with 4 different gray
levels take the same final value in the encrypted image (seartow lines).
Therefore, the details of the initial image, which corrasgmto quasi-uniform
area of the coherent image, are merged and thus disappéde eéntrypted
image. Despite the previous merging of gray levels, sindeenmduces
sudden changes in the gray levels of the initial image, tHsenconserves
its random feature in the encrypted image. Moreover, sineesystem tends
to enlarge the range of amplitude, the weak initial amoumiaige is strongly
amplified whatever the processing time exceedjpg The periodicity of the
system response can then be increased for larger procédsserguntil only
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FIGURE12. Encrypted image and the corresponding response of tiimear oscillators
network for different times exceedirtg,:. (a) : Enhancement of contrast of the initial image for
t=topt = 1.64 x 1073, (b) : 1 =3.28 x 1073. (¢) : t = 6.56 x 1073, (d) : t = 8.24 x 1073,
(e) : t = 9.84 x 1073, Parametersin = 2.58, a = 1.02, wo = 1.

the noisy part of the image is perceptible (Fig. (#2.and(e)). A perfect
image encryption is then realized.

To take advantage of this phenomenon for image encryptiencoherent
information, that is the enhanced image of Fig.(&42. must be restored using
the encrypted image of Fig. 12). Fortunately, owing to the absence of
dissipation, the nonlinear systems is conservative anerséde. It is thus
possible to go back to the optimal time that is when the infdfom was the
most perceptible.

However, the knowledge of the encrypted image is not suffidie com-
pletely restore the coherent information, since at the ygiimm time, the
velocity of the oscillators was not null. Consequentlysihecessary to know
both the position and the velocity of all particles of thewmtk at the time
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FIGURE 13. Sketch of the elementary cell of the inertial systemanda are adjusted with
external DC sources whereasX is the inverting amplifier gain obtained usifig.081C N
operational amplifier. Th& N4148 diode allows to introduce the initial conditiomﬁ’io.

PW)=(W-m+a)(Wr-m)(W-m-a)K/100

of encryption. The information can then be restored solvinmerically eq.
(23) with a negative integrating time stdp= —107°.

Under these conditions, the time of encryption constittiesencryption
key.

B. Electronic implementation

The elementary cell of the purely inertial systems can beldg@ed according
to the principle of figure 13 (Morfet al, 2007). First, a polynomial source
is realized with analogAD633JNZ multipliers and classical inverting
amplifier with gain— K. Taking into account the scale factbf10 V! of
the multipliers, the response of the nonlinear circuit torgout voltagelV; is
given by

2

P(W,) = 1

(Wi —m)(W; —m — a)(W; — m + «), (24)

where the rootsn, m — a, m + « of the polynomial circuit are set with
three different externaDC' sources. As shown in figure 14, the experimental
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FIGURE 14. Theoretical cubic law (24) in solid line compared to thpegimental characteristic
plotted with crosses. Parameters:= 2.58 V, a = 1.02 V, K = 10.

characteristic of the nonlinear source is then in perfece@agent with its
theoretical cubic law (24).

Next, a feedback between the input/output of the nonlinieewits is ensured
by a double integrator with time constaRC' such that

K2
W:_m//(wi_ero‘)(Wi—m—a)(Wi—m)dt. (25)

Deriving twice eq. (25), the voltaghd’; at the input of the nonlinear circuit
obeys to

W K?2
dt2 100R2(C?

(W, —m+a)(W; —m —a)(W; —m), (26)

which corresponds exactly to the equation of the purelytisesystem (13)
with

wo = K/(10RC). 27)

Lastly, the initial conditionW? is applied to the elementary cell via a
1N4148 diode with threshold voltagér = 0.7 V. Indeed, we adjust the
diode anode potential td’ + V; with an external DC source involving that
the diode cathode potential is initially seti. Then, according to section
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FIGURE15. :(a): Temporal evolution of two elementary cells of the chainhwitspective initial
conditionst = 0V (top) andWé) = 0.2V (bottom). (b): Evolution of the voltage difference
between the two oscillators. Parameteis= 10, R = 10K2, C = 10nF, m = 2.58V,
a = 1.02V, topt = 1.46ms.

11, the circuit begins to oscillate in the rang&’”; 2m — W], while the
potential of the diode anode remaiis + 1. Assuming thatn > W} /2,
which is the case of our experiments, the diode is instaoiasig blocked
once the initial condition is introduced. Note that usingiedé to set
the initial condition presents the main advantage to “bagérnhe effect of
dissipation inherent in electronic devices. Indeed, thenisic dissipation of
the experiments tends to reduce the amplitude of the asoilRlV”. As
soon as the potential of the diode cathode is beltif; the diode conducts
instantaneously, introducing periodically the same ahitondition in the
elementary cell. Therefore, the switch between the twaestaf the diode
presents the advantage to refresh the oscillations ardplito their natural
worths as in absence of dissipation.

In summary, the oscillations are available at the diode adghand are
represented in figure 15. (a) for two different initial camhs, namely
WD = 0V (top) andW? = 0.2V (bottom). As previously explained,
the way to introduce the initial condition allows to balartbe dissipative
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FIGURE16. Response of the system to a set of initial conditﬁdﬁ% € [0; 0.2] at the optimal
time. The solid line is obtained with egs. (20), (21) and @atting the time to the theoretical
optimal valuel.64ms, the initial condition varying irfj0; 0.2V]. The crosses are obtained
experimentally for the corresponding optimal time6ms. ParameterskR = 10K 2, C' = 10nF,
m = 2.58V,a =1.02V, K = 10.

effects since the oscillation remains with the same angitutnamely in
the rangel0V'; 5.34V] for the first oscillator with initial conditiord, and
[0.2V7; 5.1V] for the second one. Moreover, these ranges match with a
fairly good agreement the theoretical predictions presgbint section 11.B.2,
that is [0V; 5.16V] for the first oscillator and0.2V; 4.96V] for the
second one. Figure 1) also reveals that the two oscillators quickly
achieve a phase opposition at the optimal tipp = 1.46ms instead
of 1.64ms as theoretically established in section 11.B.2. The oatidhs
difference between the two oscillators in figure (b%.reaches local minima
and maxima in agreement with the theoretical behaviourrebsgen section
Ill. A maximum of 5.1V is obtained corresponding to the phase opposition
Wi(top) = OV andWsy(t,,:) = 5.1V. Therefore, the weak difference of
initial conditions between the oscillators is stronglyrieased at the optimal
time ¢,,.. Despite a slight discrepancy ©1% for the optimal time, mainly
imputable to the component uncertainties, a purely inemtalinear system
is then implemented with the properties of section Ill.

To perfectly characterize the experimental device, we nosu$ on
the response of the nonlinear system to different initiahdittons in the
range[0V; 0.2V]. The plot of the voltage reached at the optimal time
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topt = 1.46ms versus the initial condition is compared in figure 16 to
the theoretical curve obtained for the optimum time definedséction
I1.B.2, namely1.64 ms. The experimental response of the system is then
gualitatively confirmed by the theoretical predictions,iethallows to valid

the experimental elementary cell for the contrast enhaeoc¢presented in
section I11.A.1.

Lastly, we also propose to investigate the response of th&esy after
the optimum time, since it allows the extraction of gray lsveln order to
enhance the measures accuracy, we extend the range df doitiditions to
[0, 0.5V] instead of[0, 0.2V]. The corresponding experimental optimal
time becomes,,, = 564us, whereas the theoretical ones, deduced with the
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FIGURE17. Theoretical response of the purely inertial systemiddivle) compared to the
experimental ones (crosses) for 4 different times and fange of initial conditiong0; 0.5V].
ParameterskR = 10K, C = 10nF, m = 2.58V, o = 1.02V, K = 10. (a) experimental time
t = 564us corresponding to the theoretical time= 610us. (b) experimental timeé = 610us and
theoretical timer13us. (c) experimental time = 675us and theoretical tim&89us. (d)
experimental time = 720us and theoretical tim&41us.
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methodology exposed in section I1.B.2,d$0us. The resulting theoretical
and experimental responses are then plotted in figur@ LWhere a better
agreement is effectively observed compared to figure 16 .

We have also reported the experimental device responséree different
times beyond the optimal tintg,,, = 564 s in figure 17(b), (c), (d), namely
for the experimental times = 610us, t = 675us andt = 720us. Since
a time scale facto§10/564 = 1.1684 exists between the experimental and
the theoretical optimal time, we apply this scale factorite three previous
experimental times. It provides the theoretical timié8us, 789us, 841us.
For each of these 3 times, we are then able to compare theimegndal
response to the theoretical one deduced by letting thalisitindition vary in
[0; 0.5V]in egs. (20), (21) and (27). Despite some slight discregsnthe
behaviour of the experimental device is in good agreemethttivé theoretical
response of the system for the three processing times excgi optimal
time. Therefore, the extraction of gray levels, presentesection 111.A.2, is
electronically implemented with this elementary cell.

IV. REACTION-DIFFUSION SYSTEMS
A. one dimensional lattice

The motion equation (4) of the nonlinear mechanical chamatao describe
the evolution of the voltage at the nodes of a nonlinear etedtattice. This

section is devoted to the presentation of this nonlineatiédal lattice.

The nonlinear lattice is realized by coupling elementarlfsceith linear

resistorsR according to the principle of figure 18.(a). Each elementaty

(@ (b)

FIGURE18. (a) Nonlinear electrical lattice(b): The nonlinear resistaR v 1. .
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FIGURE19. Current-Voltage caracteristics of the nonlinear resistohe theoretical law (28) in
solid line is compared to the experimental data plotted witieses. The dotted lines represent the
asymptotic behavior of the nonlinear resistor. Parametdts = 3.078 K2, V;, = 1.12V/,
Vo =0.545V,8 = 1.

consists of a linear capacit@r in parallel with a nonlinear resistor whose
current-voltage characteristic obeys to the cubic law

Inp(u) = Puu = Vo)(u = V;)/(RoVa V), (28)

where0 < V, < V, are two voltages{ is a constant and, is analog to a
weighting resistor.

The nonlinear resistor can be developed according to tWerdifit method-
ologies. The first way to obtain a cubic current is to consttiercircuit of
figure 18.(b) with three branches (Comte, 1996; Binczizdd, 1998). A linear
resistorRs, a negative resistor and another linear resigtpare successively
added in parallel thanks thiV4148 diodes. Due to the switch of the diodes,
the experimental current-voltage characteristic of figl@easymptotically
displays a piecewise linear behaviour with successivelpsitipe slope, a
negative one and lastly a positive one.

This piecewise linear characteristics is compared to tHscclaw (28)
which presents the same rodts, V;, and0 but also the same area below
the characteristic betweénandV/,. This last conditions leads 16 = 1 and
Ry = 3.078 K (Morfu, 2002c).

An alternative way to realize a perfect cubic nonlinear entris to use
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FIGURE20. Realization of a nonlinear resistor with a polynomiatgm@tion circuit.
B8 =10V,V;

a nonlinear voltage source which provides a nonlinear gelt&(u) =
Bu(u—V,)(u—Vy)/(V,Vs) + u as shown in figure 20 (Comte and Marquié,
2003).

This polynomial voltage is realized witd D633J N Z multipliers and
classicall’ LO81C N operational amplifiers. A resistdt, ensures a feedback
between the input/output of the nonlinear source such ti@atGhm'’s law
applied toR, corresponds to the cubic current (28):

P(u)—u
— =1 . 29

R ~iz(w) (29)
As shown in Fig. 21, this second method gives a better agneewith the
theoretical cubic law (28).

Applying the Kirchhoff laws, the voltag¥,, at then'" node of the lattice
obeys to

auv, 1
C i = E(UnJrl + Un,1 — 2Un) - INL(Un)v (30)

wherer denotes the experimental time and= 1...N represents the node
number of the lattice.
Moreover, we assume zero-flux or Neumann boundary conditiarich
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FIGURE21. . Current-Voltage characteristics of the nonlineaistesof fig. 20. Parameters:
B=—-10VaVp, Vo = -2V, V}, =2V

involves forn = 1 andn = N respectively

dU 1

Co = (U —U) = In(Uh), (31)
dU. 1

Cd—;v — E(UN_l - UN) - INL(UN)- (32)

Next, introducing the transformations

Un RQ T
W, =—, D =—ap, t=———, 33
Vi 7 RoaCf (33)
yields the discrete Nagumo equation in its normalized form,
aw,
p7al DW, 1+ W,y = 2W,) + f(W,). (34)

Therefore, an electronic implementation of the overdampeivork pre-
sented in section II.A is realized.
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B. Noise filtering of a 1D signal

One of the most important problem in signal or image processi probably

to remove noise from a coherent information. In this sectiom intensively
develop the principle of nonlinear noise filtering inspitedthe overdamped
systems (Marquiét al, 1998). In addition, using the electrical nonlinear net-
work introduced in section IV.A, we also present an eledtranplementation

of the filtering tasks .

1. Theoretical analysis

To investigate the response of the overdamped network toisy rsignal

loaded as initial condition, we first consider the simpleeca a constant
signal with a sudden change of amplitude. Therefore, weystuel discrete
normalized Nagumo equation

aw,,
= DWoes + Wy = 2W,) + f(W,), (35)

with f(W,,) = =W, (W,, — a)(W,, — 1) in the specific casex = 1/2.
Furthermore, the initial condition applied to the cellis assumed to be
uniform for all cells, except for the celN/2 where a constant perturbation
b° is added; namely:

N
Wat=0) = V°  Vn#o

The solution of eq. (35) to the initial condition (36) can bgpeessed under
the following form

W, (t) = V,.(t) + eb,(t) (37)

Inserting eq. (37) in eq. (35), we collect the terms of ordan@ 1 ine with
the reductive perturbation methods to obtain the set oédfitial equations
(Taniuti and Wei, 1968; Taniuti and Yajima, 1969):

v,
dt
b,
dt

D(bpyq + bp_1 —2b,) — (3V2 =2V, (1 + a) + )b, (39)
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Assuming thal/, is a slow variable, eq. (38) reduces to

av,

which provides the response of the system to a uniform Initadition °
(see details in Appendix A):

V(t)z%(l—i— Lt ) (41)
VO =12 — Voo - 1e-

Next, to determine the evolution of the additive perturtiait is convenient
to consider a perturbation under the following form

b,(t) = I1,(2Dt)g(t), (42)

wherel,, is the modified Bessel functions of orde(Abramowitz and Stegun,
1970). Substituting eq. (42) in eq. (39), and using the prtyye the modified
Bessel function:

dl,, (2Dt
% = D(In+1 + In—1)7 (43)
we obtain straightforwardly
dg [ 2 |
- = —2Dg — [3V? -2V, (1 —a) +alg, (44)
thatis
dg [ 2 |
— = =2Ddt — |3V} = 2V,(1 — a) + «|dt. (45)
g L _
Noting that
df(Va) 5 dv,
dt = —|:3Vn —2Vn(1—oz)+a %, (46)
and deriving eq. (40) versus time, we get
Vi 2
=T 3V:—-2V,(1 —a)+«al, (47)
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whereV etV denote the first and second derivative versus time.
Combining eq. (47) and eq. (45) allows to expreés as:

oV

g(t) = Ke™"" —

(48)

where K is an integrating constant.
Deriving eq. (41), we obtaip(t) and thus the evolution of the perturbation:

1,(2Dt)e 2Pt /2 VO(VO — 1) (VO - 1)

bo(t) = K -

= (49)

(V0 32— Voo - -]

Writing b,,(t = 0) = bY, provides the value of the integrating constant
The evolution of the perturbatidn, (¢) is then ruled by:

s I,(2Dt)e ?Pte3

bu(t) = 3 3 (50)

(%= 12 = il — et

Lastly, in the case of multiple perturbations, the perttidvaat then!” node
of the lattice obeys to

b0, Ly _n(2Dt)e ?Ple=%
ba(t) =D 20 , (51)

" k%—atwww—nfﬂ

e

wherel,,._,, is the modified Bessel function of ordet — n.

Eq. (41) shows that the evolution of the constant backgro@ed not depends
on the couplingD. By contrast, eq. (51) reveals that the couplifigcan
be tuned to speed-up the diffusion of the perturbation vattadfecting the
constant background. Therefore, in signal processingezbnthis property
can be used to develop a noise filtering tool.

2. Theoretical and numerical results

In order to valid the theoretical analysis developed iniead¥/.B.1, we have
solved numerically eq. (35) using a fourth order Runge-&atgorithm with
an integrating time stedgt = 10~2. Moreover, a uniform initial condition
V9 = 0.4 is loaded for all theN = 48 cells of the network excepted for
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FIGURE22. (a) Temporal evolution of a uniform initial conditioti® = 0.4 applied to the
whole network(b) Temporal evolution of the perturbation applied to the eel= 24 for D = 0.5
andb® = 0.2. (¢) Temporal evolution of the perturbation applied to the eel= 24 for D = 5 and

b0 = 0.2. Solid line: theoretical expressions (41) and (5@) signs: numerical results.

the 24" cell. Indeed, for this cell, an additive perturbatibh = 0.2 is
superimposed onto the constant backgroliidn order to match exactly the
initial condition (36) considered in the theoretical sentiV.B.1.

We have first investigated the evolution of both the condtackground and
the perturbation versus time. In fig. 22, the numerical tsquibtted with(o)
signs match with a perfect agreement the theoretical eptdidicted by eqs.
(41) and (51).

Moreover, the curvesa) of Fig. (22) shows that the constant background
given by eq. (41) is unaffected by the nonlinear systemsewesthe coupling
valueD. By contrast, the behaviour of the system for the additiveupleation
b° depends on the coupling paramefer(curves(b) and(c)). Indeed, for
weak coupling values, namelp = 0.5, the perturbation slowly decreases
and seems to be quasi-unchanged, whereaBfer 5, the curve(c) exhibits
a greater decreasing behavior. After the time= 0.4, the perturbation is
significantly reduced folD = 5. Therefore, the coupling parametBrcan
be tuned to speed up the diffusion of the perturbation witliigturbing the
constant background. Furthermore, the time acts as a pegawtdch adjusts
the filtering of the perturbation.

The state of the lattice for two different processing tinseepresented in fig.
23 (a) and(b) for the previous coupling values, thatis = 5 andD = 0.5
respectively. The initial perturbation represented intetbiine (curve(I))
has almost disappeared for the specific value of the couglirg 5 and for
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FIGURE23. Response of the lattice to a uniform initial conditiomrapted by a constant
perturbation at two different processing timés) signs: numerical results; solid line: theoretical
expression (51)(a): D = 5; (b): D = 0.5. (I) initial condition fort = 0, (I1) state of the lattice
fort =1, (I111) state of the lattice fot = 2.

a processing time = 2 (Fig. 23(a) curve(I1I)). As expected, the curve
(I11) of Fig. 23(b) shows that the perturbation is not filtered for= 0.5
and for the same processing time= 2. Furthermore, in both cases the
constant background is slowly attracted by the nearediesstdite, that i in
our case.

Note that the spatiotemporal views of fig. 24 also revealtti@nhoise filtering
is performed forD = 5 and a processing time= 2.

0.6

05
204

0.3

A

0.2

FIGURE24. Spatio-temporal view of the response of the lattice éopttevious initial condition.
(a): D =5.(b): D=0.5.
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FIGURE25. Noise filtering of a one dimensional signal with an overdad nonlinear network.
(a) : noisy sinusoidal signal sampled and loaded as initial ¢ardat the nodes of the lattice.

o =0.15, N =48 and A = 0.264. (b), (¢), (d), (e) correspond to the filtered signal obtained for
the following couples of processing timend couplingD: (b) (¢t = 0.4, D = 0.5); (¢)
(t=1,D =05);(d) (t =04,D =5); (e) (t =1,D = 5).

Lastly, to valid the processing task realized by the overpkzoinsystem,
we propose to remove the noise from a more complex signdljgl@anoisy
sinusoidal signal. The signal is first sampled with a totahbar of samples
corresponding to the size of the overdamped network, namVelyNext, a
serial to parallel conversion is realized to load tNesamples at the nodes
of the1D lattice. Therefore, we are led to consider the distributbmitial
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FIGURE26. (a) Temporal evolution in normalized units of a uniform init@ndition
WO = 0.4 applied to the network(b) Temporal evolution of the perturbation applied to the cell
n = 24 for b° = 0.2 and D = 0.5 corresponding to a coupling resistd®® = 3K Q. (c) Temporal
evolution of the perturbation applied to the cell= 24 for 4% = 0.2 and D = 5 corresponding to a
coupling resistorR = 30092. C' = 33nF’, Nonlinearity parameterg = 1, V,, = 1.12V/,
Vo = 0.545V involving o = 0.49.

conditions of figure 2%a) obeying to

2n 1
L= Acos (2022 + = 4, 52
T COS<7TN>+2+T} (52)

wheren,, is a discrete white gaussian noise®f/ S amplitudes = 0.15.

A and2/N represent respectively the amplitude and the frequenchef t
coherent signal.

We first numerically investigate the response of the netwatiik the coupling

D = 0.5. As in the case of a constant background corrupted by a local
perturbation, the system is unable to remove the noise fr@arsinusoidal
signal for both the processing times presented in fig.(i2%and (d). By
contrast, for the favorable value of the couplidg = 5, the noise is
completely filtered at the processing tirhe- 1 as shown in fig. 2%e).

3. Experimental results

To valid the electronic implementation of the nonlinearseofiltering tool,
we consider the nonlinear electrical lattice introducedeéation IV.A with
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FIGURE27. Response of the lattice to a uniform initial conditiomrapted by a constant
perturbation at two different processing times. Pararset@r= 33nF, V, = 1.12V,
Va = 0.545V, o = 0.49. (a): R = 30092 thatisD = 5;(b): R =3KQthatisD = 0.5. (1)
initial condition for t=0,(IT) state of the lattice fot = 2 (7 = 0.1ms), (1) state of the lattice for
t =4 (r =0.2ms).

the nonlinear resistor of figure 18). In order to match the coupling value
D = 5andD = 0.5, the coupling resistoR? is set toR = 3002 and

R = 3K respectively. Moreover, all results are presented in nbred
units using the transformation (33) to allow a direct congmar with the
theoretical analysis of section IV.B.2. First, we expenadly report in fig 26
the temporal evolution of the set of initial conditions cisting of a constant
signal locally corrupted by a perturbation. As predictedhir theoretical
section, the constant background is unaffected whateeecalipling value
(curve (a)) whereas when the coupling is adjusted to its favorableevalu
D = 5, the perturbation can be removed after a normalized prowetme

t = 0.4 (curve(c)). This results is also confirmed by the spatial response of
the system at two different processing times. Indeed, assho Fig. 27,
the state of the lattice far = 2 and¢ = 4 provides the signal without the
perturbation only if the coupling is chosen equal 5.

Lastly, we propose to filter the noisy sinusoidal signal of fig8.(a).
After a processing timé = 0.6, the noise is completely removed for the
couplingD = 5 (fig. 28(c)), which is not the case if the coupling is set to
D = 0.5 (fig. 28(b)). Therefore, with a suitable choice of both processing
time and resistor coupling, a noise filtering tool inspirgctte properties of
the nonlinear overdamped network is electronically immatad. Moreover,
according to the transformation (33), the processing timdd:be adjusted
by the worth of the capacitd@r' to match real time processing constraints.
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FIGURE28. Noise filtering of a one dimensional signal with an eleatrnonlinear lattice(a) :
normalized noisy sinusoidal signal given by eq. (52) loaathitial condition at the nodes of the
lattice.c = 0.15, N = 48 and A = 0.264. (b) : Filtered signal obtained for a processing time
t = 0.6 (t = 92.3us) and a couplingD = 0.5 (thatisR = 3KQ). (c) : Filtered signal obtained
for a processing timé = 0.6 (7 = 92.3us) and a couplingD = 5 (that isR = 3002). Parameters:
C =100nF,5=1,V, =1.12V,V, = 0.545V.

C. 2D filtering: Image processing

We now numerically extend the properties of the one dimeragitattice to
a two dimensional network. We are led to conside€’& N whose cell
statelV, ;, representing the gray level of the pixel numbgf, obeys to the
following set of equations:

dW;

yr =fWi)+D Y Wis—Wiy),  i,j=2.N-12.M—1,(53)

(k,l)eNT

where Nr = {(i — 1;5), (i + 1,4), (4,5 + 1), (i,7 — 1)} is the set of the
four nearest neighborsy x M the image size and(1V; ;) represents the
nonlinearity. The boundary conditions for the edges of thage express

dlej

dt f(WLj) + D(W17j71 + WQJ' + W11j+1 - 3W17j), ] — 2M - 1
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AWy ; :
d;” = f(Wy;)+DWyjo1+ Wy + Wi — 3Way), j = 2.M — 1
dw; :
= fWin) + D(Wiery + Wi + Wig = 3Wiy), i = 2.8 ~ 1
aw; :
dt7M = fWin) + DWisy iy +Wigan + Wig—y —3Wi ), i =2.N — 1

while for the image corners, we consider the two neareshbeig, that is

d‘fl/tlvl = f(Wi1) + D(Way + Wiy — 2Wh),
dvgé\’ﬂ = f(Wn1)+DWy_11+ Wy —2Wy1),
dW;,M = FWin) + DWans + Wini—1 — 2Wya).

1. Noise filtering

The initial condition applied to the cell j of the network corresponds to the
initial gray Ievelm?j of the noisy image represented in fig. 29. The image
after a processing timeis obtained noting the stat&’; ;(¢) of all cells of the
network at this specific time(Comteet al, 1998).

In fig. 30, we have reported the filtered image obtained at thegssing
timest = 1,t = 3,t = 6,¢t = 9 and for the coupling value® = 0.075,
D =0.1, D = 0.2 andD = 0.3 respectively. The bistable behaviour of the
system established in section Il.A.1 involves a naturaligian of the image

FIGURE29. Noisy image of the Coliseum.
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towards the two stable states of the system, namely 0 andrhedns that,
as time grows, the image evolves to a black and white patt€herefore,

to realize a correct noise filtering, the coupling parametet the processing
time must be adjusted.

For the lowest coupling valu® = 0.075, fig. 30 shows that the noise
is not removed before the image is binarized. For the cogpliarameter
D = 0.2andD = 0.3, even if the noise is quickly removed, the filtered
image becomes blurred fdr = 6 andt = 9 (Fig. 30(k),({), (0),(p)).
Therefore, these settings of the coupling parameter angpuopriate. In fact,
in fig 30.(f) and(g), we have obtained the filtered image with the best setting
of the coupling and of the processing time, that is a couplihg= 0.1 and
the processing times= 3 ort = 6. Indeed, the filtered images are neither
blurred nor binarized. Moreover, the system does not onyoree the noise,
it also enhances the contrast of the initial image.

2. Edge Filtering

Because of a strong relationship between edge and objemymiion, edge

detection constitutes one of the most important steps fagrecognition.
Indeed, scene information can often be interpreted thanksetedges. Clas-
sical edge detection algorithms are based on a second oarderivative

operator (Gonzalez and Wintz, 1987) while nonlinear teghes of edge
enhancementare mainly inspired by the properties of madiffusion media

(Rambidiet al, 2002; Chua and Yang, 1988).

We propose here a strategy of edge detection based on thagatign
properties of the nonlinear diffusive medium (Coretel, 2001). The image
loaded in the 2-Dimensional network is the black and whiwyse of fig.
31(a).

We have established in section Il.A.2 that a 1D lattice meddly the
Nagumo equation supports kink and anti-kink propagatioringwo the
bistable nature of the nonlinearity. Indeed, if the nordiriy threshold
parameterr < 1/2, the stable staté propagates, while i > 1/2 the stable
state( propagates. Therefore, extending this property to a 2 Déioaal
network allows to perform either erosion far > 1/2 or dilation for
a < 1/2, which are basic mathematical morphology operations, coniyn
performed in image processing (Serra, 1986). Moreovehgfinitial image
is subtracted to the image obtained with the network obetingg. (53) ,
we can deduce after a processing titnéhe contours of the image. We have
reported in Fig. 31b) the contour of a black and white image and its profile
obtained with this method. The profile of the contour showas itis resolution
is about 10 pixels, which is too important to allow a good edgkancement
of a more complex image.



46 S. MORFU, P. MARQUIE, B. NOFIELE AND D. GINHAC

(V)

FIGURE30. : Noise filtering of the image represented in Fig. @9, (b), (¢), (d). Filtered
image obtained foPD = 0.075 and for the respective processing tintes 1,¢ = 3, ¢ = 6 and
t=29. (e), (f), (9), (h) Filtered image obtained fabD = 0.1 and for the respective processing

timest = 1,¢t = 3,t = 6 andt = 9. (3), (), (k), (I) Filtered image obtained fab = 0.2 and for
the respective processing times= 1,¢t = 3, ¢t = 6 andt = 9. (m), (n), (o), (p) Filtered image
obtained forD = 0.3 and for the respective processing tintes 1,¢ = 3,¢ = 6 andt = 9.
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This poor resolution is mainly imputable to the spatial exgpan of the kink
which results from the initial condition loaded in the lagti Since the kink
expansion reduces with the coupling, a natural solutiorsistéin lowering
the coupling. Unfortunately, the existence of the propagafailure effect
provides a lower bound of the couplidg* and thus hinder a contour detection
with a good resolution. An alternative solution can be dewpet by using
a nonlinearity which forbids the existence of the propamafailure effect.
Indeed, it has been shown for dissipative media (Bressiudf Rowlands,
1997) or for systems where both inertia and dissipationadkert into account
(Comteet al, 1999), that an inverse method allows to define a nonlinear
function for which exact discrete propagative kinks exigspecially, in the
purely dissipative case, such function expresses

f(Wi;) = De {(1 — a/2) — (agWi; + a1)?

Dag(aowij + CLl)
_ : 2D(agW;. ; (54
1 _ (aoWi,j + a1)2 + (ag ¥ + al) ( )
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FIGURE31. Contour detection of a black square in a white backgrogaplinitial image and its
profile. (b) Edge detection of the object and its profile obtained withsttaedard cubic nonlinearity
(5) with thresholdx = 1/3. Processing timé = 4, D = 1. (¢) contour and the corresponding

profile obtained with the nonlinearity (54). Processingetim= 4, D = 1.
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wheree = 0.5, a, = 0.9, ag = 1.483 anda; = —0.742 to ensure that
the zeros of the nonlinearity remain 1/3 and1. As expected, when this
new nonlinearity is numerically implemented, the resolntof the detected
contour in Fig 31(c) reduces to 3 pixels.

Note that edge enhancement with the nonlinear overdampearieis not
restricted to a black and white image. Indeed, the concepased on the
propagation properties of the system and can be extendée: toase of an
image with 256 gray levels. For instance, we numericallyppse to show the
contour enhancement of Fig. 32) by considering the methodology used for
the edge detection of the black and white picture.

The simulation results are summarized in Fig. 32 for diffiénerocessing
times in the favorable case of the nonlinear function (54)is Iclear that
once again the time allows to adjust the quality of the prsicgs Indeed, for
processing times belotv= 1, the edges of the image details are not revealed,
whereas for processing times exceedingg, the details begin to disappear.
Furthermore, as times grows, the contours of the image ssealed less thin
owing to the propagation mechanism. The best contour ernaet is thus
performed when the image details have not yet disappearddvaen the
enhanced contours remain sufficiently thin. In fact, thigation corresponds

to the intermediate processing tirhe= 1.33 (Fig. 32(e)).

3. Extraction of regions of interest

As explained in the previous subsections, in the case ofithie @onlinearity,
a nonlinearity thresholdv = 0.5 allows to perform noise filtering, while
consideringy # 0.5 provides the contour of an image with a poor resolution.
Moreover, the nonlinearity (1) can be determined using an inverse method
to optimize the filtering task. Therefore, the choice of tlwalimearity is of
crucial interest to develop interesting and powerful imageessing tools. In
this section, we go one step further by proposing a new neatity to extract
the regions of interest of an image representing the solgdyetween two
rods of metal (Morfuet al, 2007).

The noisy and weakly contrasted image of Fig. 33 presentgiémne of
interest:

e First, the two rods of metal constitute the background ofitinege in light
gray;

e The stripe in medium gray at the center of the image represtm
“soldered joint";

e A white spot corresponds to a “projection” of metal occugrauring the
soldering of the two rods of metal,

e A dark gray spot represents a gaseous inclusion inside tergtg joint.
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FIGURE32. Contour enhancement of a an image with 256 gray leveligedawith the modified
nonlinearity (54).(a) Initial image. (b), (¢), (d), (e), (f), (g). (h), (¢) and(j) Filtered image for
the respective processing times= 0.33,¢ = 0.66,¢t = 1,¢t = 1.33,¢t = 1.66, t = 2, t = 2.33,

t = 2.66 andt = 3.
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FIGURE33. Noisy and weakly contrasted image of a soldering betweemods of metal. The
image histogram is represented at the right.

3.1. Limit of the bistable Network We first discuss the inability of the
bistable overdamped network ruled by eq. (53) to extractitbbjects of the
image. As explained in section II.A.1, the bistability issened by using the
cubic nonlinearity (3). According to the mechanical dgstion of the bistable
system presented in section Il, a pixel of the image is antdog particle
experiencing a double well potentia(\W') = — fo u)du and coupled to
its four nearest neighbors by springs of stren@thAs schematlcally shown
in Fig 34, the particle with initial p05|t|0|’brV0 is attracted in one of the two
wells of potential depending on the competltlon betweerréisalting elastic
force

Particle

i-1]

i+14

(@ (b)

FIGURE34. Mechanical point of view of the bistable overdamped oetwsed for image
processing(a): The pixel with coordinates, ; and gray levelV; ; is analog to an overdamped
particle coupled by springs of strengihto its 4 nearest neighborgb) : The particle is attracted in
one of the two wells of the bistable potential according ®rbsulting elastic force applied by the 4
coupled particles.
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@ (b) ©

FIGURE35. Filtered images obtained with the bistable overdampéaiark described by eq. (3)
and (53) in the case = 1/2. Coupling parameterD = 0.05. Processing timega) ¢ = 4; (b) :
t = 10; (c) : t = 3000.

D Y <Wk,l—Wi,j>, (55)

(k,l)eNT

and the nonlinear forcg(W; ;).

This property of the system involves that for sufficientlyga time, the
network is organized near the two stable states set by tHenearity, namely
0 andl. Inimage processing context, it means that the resultitegditl image
tends to an almost black and white pattern. Fig. 35 confirimssstiolution of
the filtered image versus the processing time since, whebia nanlinearity
is considered, a quasi- black and white image is obtaindtdirhet = 3000
(Fig. 35(c)).

Note that for none of the proposed processing times, thalilesisystem
was able to properly remove the noise and to enhance theasomf the
regions of interest. Indeed, fér = 4 the noise is reduced but the details
of the image begin to disappear (Fig. @9). Especially, the projection is
merged into the background for= 10, revealing that the bistable nature of
the system destroys the coherentinformation of the initialge (Fig. 35)).
Therefore, the inability of the overdamped system to exttiae regions of
interest is directly imputable to the bistable nonlineacéf ().

3.2. The multistable network To solve this problem and to keep the
coherent structure of the image, we introduce a nonlineaith a multistable
behavior. For instance, the following nonlinear force

F(W) = —B(n—1)sin [27?(71 - 1)W] , (56)



52 S. MORFU, P. MARQUIE, B. NOFIELE AND D. GINHAC

FIGURE36. Multistable potential represented for= 9.82 x 10~2 andn = 5. The potential
barrier between two consecutive extrema jsr.

derives from a potentiab(1V') = — fOW f (u)du which presents wells and
a potential barrier height between two consecutive pakaktrema defined
by /7. This potential is represented in Fig 36 in the case of 5 wells of
potential.

The multistable behavior of the network obeying to eq. (53thvthe
sinusoidal force (56) can be established by consideringticeupled case.
SettingD = 0 in eq. (53), we obtain

dWiyj
dt

= —f(n —1)sin {277(71 — 1)Wi73} . (57)

The stability analysis of the system can be performed wighnttethodology
developed in section Il.A.1 by considering the roots of thisoidal force
(56). According to the sign of the derivative of the sinusditbrce, we
can straightforwardly deduce that the unstable steadgsstdtthe system are
given by

Wi = 2k +1)/(2(n — 1)) with keZ, (58)
while the stable steady states are defined by
Wr=k/(n—1) with keZ. (59)

The eq. (57) is solved in Appendix C to give the temporal etiofuof an
overdamped particle experiencing the multistable poaénfifig. 36 in the
uncoupled case.

If k& denotes the nearest integer(af — 1)W?;, andWW; the initial position
of the particle, the displacemelit; ;(¢) of the particle obeys to

1 2 k
_ ; " 1 0 —B(n—1)“2xt — (60
71) [arc an( an(m(n — 1)W; e + n_1 (60)
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The multistable behaviour of the system is illustrated in f&y, where we
have reported the temporal evolution of a particle subhitbedifferent initial
conditions in the rangf); 1]. Itis clear that the unstable steady states of the
systemiV,,,;, act as thresholds, while the stable steady stéfgscorrespond

to attractors. Indeed, the final state of the particle depemdhe value of the
initial condition compared to the thresholds,;,.. Especially, if we neglect
the transient, the asymptotic behavior of the uncoupled/orét reduces to
the following rules

2% — 1 o 2k+1

Zf m < ij < m Wiyj(t —> +OO) = (61)

k
(n—1)
Therefore, the asymptotic functioning (61) of the uncodpietwork proves
the multistable behavior of the system.

We now numerically use this multistable feature to extréet tegions of
interest of the image. In the coupled case, a pixel withahigray level
Wi?j can take one of the possible stable states according to the competition
between the sinusoidal force and the resulting elastieforbe specific case

n = 5 is numerically reported in Fig. 38.

Unlike the bistable network, the noise is quickly removetheut disturbing
the coherent structure of the image consisting of “the ptma", “the
gaseous inclusion”, “the background" and the “soldereat]dqiFig. 38(a)
fort = 0.2 and(b) for t = 2). Next, for sufficiently large time, namely

1
th4

0.8

VVrhj o N - W'l j
W, —W;

0.4
th

t

02 | — W
I/Vl‘hl V‘\e\e‘—a—é 1
0 0.05 0.1 0.15 0.2 025 004 0 -0.04
normalized time t 74 VK /)

FIGURE37. Temporal evolution of an overdamped particle expenmgnthe multistable
potential. Parameters: = 5 and = 0.25. Solid line: theoretical expression (6@)) signs:
numerical results obtained solving eq. (57)
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G)] (b) (©)

FIGURE38. Filtered images obtained with the multistable overdaginpetwork described by
egs. (53) and (56). Nonlinearity parametefs= 9.82 x 10~2, n = 5. Coupling parameter:
D = 1.6. Processing timegia) t = 0.2; (b) : t = 2; (¢) : t = 5000.

t = 5000, the image no longer evolves and each defect of the soldering
appears with a different mean gray level corresponding ®ajrthe) stable
steady states of the system (Fig. @8). An extraction of the interest regions

of the image is then performed with this overdamped network.

3.3. Electronic implementation of the multistable network The elec-
tronic implementation of the multistable network is reaizaccording to the
methodology of Fig. 39, by coupling elementary cells witielar resistors.
Each elementary cell includes a capacitor in parallel witloalinear resistor

i-11

i1

i+14

U,

v i+1,-1 l]i+],j l]i+1!j+1

FIGURE39. Electronic sketch of the multistable nonlinear netwdtkRepresents the coupling
resistor,C a capacitor and? 7, @ nonlinear resistor.



NONLINEAR SYSTEMS FOR IMAGE PROCESSING 55

whose current-voltage characteristics can be approxahatehe sinusoidal
law on the rangé—2V'; 2V]:

[NL(U) ~ []\4 Sin(27TU). (62)

The methodology detailed in the section IV.A to realize thbic nonlinearity
with a polynomial source can be once again used to obtainnbsadal law
(62). First, a least square method at the orifeallows to fit the sinusoidal
expression (62) by a polynomial la#(U) in the range[—2V; 2V]. It
provides the coefficients of the polynomial sourB¢U) to generate the
sinusoidal current

Ini(U) = P(U)/Ro. (63)

The experimental current-voltage characteristics is amengbin Fig. 400b)
to the theoretical expression (62). The weak discrepamtissrved between
the theoretical and experimental laws can be reduced bgasarg the order

&

1 U (Vol) I

S

0 005 01 015 02 025 03 035 04 045 05 © N —o© 5
time (ms) Iy, (mA)

(a) (b)

FIGURE40. (a) : Response of an elementary cell of the multistable netwodifterent initial
conditions in the uncoupled case. The plot of the theoretixaression (60) in solid line is compared
to the experimental results represented by crog$¢s.Nonlinear current-voltage characteristics.

The sinusoidal law (62) in solid line matches the experiralectaracteristics ir- signs. The
Components values afgy = 2K2, C = 390nF, Iy = 2mA. The zeros of the sinusoidal current
defines thel unstable state§;,1, Uino, Urns, Urnga Which correspond to thresholds and the
stable steady statés;, U5, U3, U, Uz which correspond to attractors.
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of the least square method. However, enhancing the agréenignthe
sinusoidal law presents the main disadvantage to consilyeracrease the
number of electronic components used for the realizatiothefnonlinear
resistor. Nevertheless, at the ordér, the experimental nonlinear current
presents) zeros and its derivative ensures the existencé sfable steady
states and unstable steady states. It is thus not of crucial intereisidi@ase
the order of the approximation, provided that the nonlirmearstor exhibits
the multistability.

Applying the Kirchhoff laws to the electrical network of Fi§9, we deduce
the differential equation, which rules the evolution of trwtageU, ; at the

nodes(i, j)

du; ; 1
O = —Lu(U)+ 5 Y, U= Uiy). (64)

dr
(k,\)ENT

Ineq. (65),Nr = {(i;j—1), (i;5+1), (i—1;4), (i+1;4)} denotes the
neighborhood and represents the experimental time.
Next, the transformations

MuBo_ Uiﬂj:m_’j(n—l)—2andl):%, (65)

T:tRoc, ﬁ: (n—l)Q’

lead to the normalized equation

dWi,j P(Wi,j(n — 1) — 2)
= — +D > (Wi —Wiy).  (66)
(k,l)eNT

The normalization is completed by noting that 1¢7;, ; € [0; 1], that is for
P{Wm(n— 1) —2:| = _RO[NL {Wm(n— 1) —2:|
~ —B(n—1)*sin(2r(n — )W, ;). (67)

The experimental network described by eq. (66) appears asnalog
simulation of the normalized multistable network used foage processing.

Let us finally reveal the multistable behaviour of the eletagncell of
the experimental network by investigating its response ifferént initial
conditions in the uncoupled case. In addition, to allow &aticomparison
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with the theoretical expression (60), all the results aesented in normalized
units in Fig. 40(a). First, we note that the component uncertainties does
not explain the observed discrepancies. The poor matchatgeen the
experimental results and the theoretical prediction iseraimputable to the
nonlinearity provided by the nonlinear resistor, which sloet follow exactly
the sinusoidal law (62). Nevertheless, the multistabl@erty of the system is
experimentally established. Indeed, there exifireshold valued/;;,1, U2,
U:nz andUy,, which allow to determine the final state of the elementary cel
among theb possible stable steady statég;, Uy, U;, U;, UZ. Therefore,
the image processing task inspired by the multistable ptppé the system

is implemented with the electronic device of Fig. 39.

V. CONCLUSION

In this chapter, we have reported a rich variety of image @ssing operations
inspired by the properties of nonlinear systems. Considesi mechanical
analogy, we have split the class of nonlinear systems intelpunertial
systems and overdamped systems. Using this original g¢iseri we have
established the properties of nonlinear systems in theegbrdf image
processing.

For purely inertial systems, image processing tasks sudtoaast en-
hancement, image inversion, gray level extraction or imageryption can
be performed. The applications of the nonlinear techniquresented in
this review are similar to those developed by mean of chdmictve
media (Teuscher and Adamatzky, 2005), even if these lastanaed rather
overdamped than inertial. In particular, the dynamics af tfonlinear
oscillators network, which enables contrast enhancemantalso be used to
reveal “hidden images". Indeed, “hidden images" are defasfiltagment of
picture with brightness very close to the brightness of thage background.
Despite a weak difference of brightness between the hiddegée and the
image background, our nonlinear oscillators network veike advantage of
its properties to reveal the hidden image.

Another interesting property of this network is to reveahsecutively fields
of the image with increasing or decreasing brightness &réifit processing
times. We trust that this feature, also shared by Beloudwbztinsky chem-
ical media, may have potential applications in image anglys medicine
(Teuscher and Adamatzky, 2005).

Lastly, the noise effects in this purely inertial networkdes to cryptography
applications. Unlike classical cryptography deviceslthvith chaotic oscilla-
tors, we have proposed an encryption scheme based on thsibditg of our
inertial system. Moreover, the encryption key, which easuthe restoration
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of the initial data, is the time of evolution of the data loddie the nonlinear
network. Therefore, the main advantage of our device is ltwaan easy
change of the encryption key.

On the other hand, the properties of strongly dissipativexardamped
systems can also give rise to interesting image processais} tFor instance,
we have shown the possibility to realize noise filtering, eedgtection, or
extraction of regions of interest of a weakly contrastedys& Concerning
noise filtering applications based on reaction-diffusicedia, the processing
is based on the transient behavior of the network since ttered image
depends on the processing times. By contrast, the extraofioegions of
interest presents the main advantage to be independentfi®processing
time since the filtering is realized when the network reachesationary
pattern. Therefore, this feature can allow an automatidempntation of
the processing task.

VI. OUTLOOKS
A. Outlooks on microelectronic implementation

For each nonlinear processing example, we have attemptpbfmse an
electronic implementation using discrete electronic congnts. Even if these
macroscopic realizations are far from real practical agpions, they present
the main advantage to valid the concept of integration of CidiNfuture
development in microelectronics.

Indeed, in recent years, the market for solid-state imagems has been
experiencing explosive growth due to the increasing demdad mobile
imaging systems, video cameras, surveillance, or bioosettimprovements
in this growing digital world continue to be made with two m&mage
sensor technologies: charge coupled devices (CCD) and C840$ors. The
continuous advances in CMOS technology for processors &N have
made CMOS sensor arrays a viable alternative to the pop @& €ensors.
New technologies provide the potential for integrating gngicant amount
of VLSI electronics into a single chip, greatly reducing ttwest, power con-
sumption, and size of the camera (Fossum, 1993; Fossum; $887, 2000;
Litwiller, 2001). In past years, most of the work on compledQS systems
have dealt with the integration of sensors providing a pseicey unit at chip
level (system-on-chippproach) or at column level by integrating an array of
processing elements dedicated to one or more columns (Y2@08; Acosta,
2004; Kozlowski, 2005; Sakakibara, 2005). Indeed, piggkl processing is
generally dismissed because pixel sizes are often too targe of practical
use. However, as CMOS image sensors scale to Prh8processes and
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under, integrating a processing element at each pixel arpgodneighboring

pixels becomes feasible. More significantly, employing@cpssing element
per pixel offers the opportunity to achieve massively gafadomputations

and thus the ability to implement full image systems reqgjirsignificant

processing such as digital cameras and computational rsefisonaz, 1998;

Smith, 1998; Gamal, 1999). The last significant progressh\tOS technolo-

gies make possible the realization of vision systems on @f§nCs). Such

VSoCs are eventually targeted to integrate within a sentigotor substrate
the functions of optical sensing, image processing in spacktime, high-

level processing, and the control of actuators. These dupsist of arrays
of mixed-signal processing elements (PEs) which operaaedordance with
single instruction multiple data (SIMD) computing arcleiieres.

The main challenge when designing a SIMD pixel parallel seasray is
the design of a compact, low-power, but versatile and fuliygpammable
processing element. For this purpose, the processingifuncan be based
on the paradigm of Cellular Neural Networks (CNN). CNN canvimwed
as a very suitable framework for systematic design of imageEgssing
chips (Roska, 2000). The complete programmability of thergonnection
strengths, its internal image-memories, and other additifeatures make
this paradigm a powerful front-end for the realization ofigle and medium-
complexity artificial vision tasks (Espejo, 1996). Some grof-concept
chips operating on preloaded images have been designeedBegk 1999;
Czuni, 2001). Only a small amount of researches have inted)i@NN on
real vision chips. As an example, Espejo (Espejo, 1998)rte@b4 x 64
pixel programmable computational sensor based on a CNN. dfip is the
first fully operational CNN vision-chip reported in litetaie which combines
the capabilities of image-transduction, programmablegesprocessing and
algorithmic control on a common silicon substrate. It hascegsfully
demonstrated operations such as low-pass image filteramgecand border
extraction, and motion detection. More recently, otherkgdnave focused
on the development of CMOS sensors including the CNN panadRgtras,
2003; Carmona, 2003). The chip consists of 1024 processiitg arranged
into a32 x 32 grid, and contains approximatively 500000 transistors in a
standard 0.5:m CMOS technology. However, in these pioneering vision
chips, the pixel size is often over than 1®n x 100 yum. Obviously,
these dimensions can not be considered as realistic diorten$or a real
vision chip. A major part of this crucial problem should besakred in
future years by using the new emergent CMOS technologieeelt, CMOS
image sensors directly benefit from technology scaling dyceng pixel size,
increasing resolution and integrating more analog andalifjinctionalities
on the same chip with the sensor. We expect that furthemgrali CMOS
image sensor technology and improvement in their imagimnppaances will
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eventually allow the implementation of efficient CNN dedexhto nonlinear
image processing.

B. Outlooks on processing applications

The nonlinear processing tools developed in this chapteirdrerited from
the properties of homogeneous media. In the case of applisabased on
the properties of reaction-diffusion media, it could besfesting to consider
the effects of both nonlinearity and structural inhomogte® Indeed, novel
properties inspired by biological systems, which are nathBomogeneous
than homogeneous (Keener, 2000; Moefual, 2002a; Morfuet al, 2002b;
Morfu, 2003), could allow to optimize the filtering tools ddeped in this
chapter.

For instance, in section IV.C.1, the noise removal methaskdaon the
homogeneous Nagumo equation provides a blurry filtered émalg con-
stitutes an additional difficulty to extract the edge of theage with an
accurate location. Indeed, noting that the contours ofittage corresponds to
step-like profiles, the diffusive process increases théapmxpansion of the
contours. To avoid this problem, anisotropic diffusion baen introduced in
order to reduce the diffusive effect across the image conftus method has
been proposed by Perona and Malik to encourage intraregioothing in
preference to interregion smoothing (Perona and Malik0).9% obtain this
property, Perona and Malik replaced the classical lineatragpic diffusion
equation

oI
% = div(V1), (68)
by
HELD _ giu(y(v1))v), (69)

in order to adapt the diffusion with the image gradient. I$.e§68) and
(69), I(x,y,t) represents the brightness of the pixel located at the $patia
position(x, y) for a processing time, while || V|| is the gradient amplitude.
Moreover, the anisotropy is ensured by the funcgofiVI||) which “stops"”

the diffusion across the edges. For instance, Perona arll dtaisidered the
function

9(2) = ——, (70)
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whereK is a positive parameter.

Noting that whenz — oo, g(x) — 0, the effect of anisotropic diffusion
is to smooth the original image while the contours are preskr Indeed,
the edge of the image corresponds to brightness discotiigwihich lead
to strong values of the image gradient (Blagtkal, 1998). This interesting
property of anisotropic diffusion is illustrated in Fig 41.

For a sake of clarity, the algorithm developed by Perona amdikMs
rather extensively detailed in Appendix D and we only disdusre the results
obtained by filtering the noisy picture of fig 41.(a). Conyréw the isotropic
nonlinear diffusion based on the Nagumo equation, the efidgleecimage
remains well localized for all the processing times presénbh Fig. 41.
However, although the noise seems removed for processias texceeding
t = b, the contrast of the image is never enhanced. Thereforsgtaopic
diffusion and nonlinear diffusion do not share the same weak and it could
be interesting to attempt to circumvent the limitationsta$ two techniques.

For instance, if we compare the continuous equation (9) aflinear
diffusion with the anisotropic equation (69) proposed byoRa and Malik, it
is clear that the anisotropy can be introduced in our systienthe coupling
parameterD. Moreover, with the Perona and Malik's method, the pixels
brightness does not directly experiences the nonlineastyn our method.
Therefore, the nonlinear noise filtering tool presenteceitisn IV.C.1 could
be more efficient if the interesting properties of anisoicagiffusion were
also considered by introducing a coupling law. Especially,expect that the
anisotropy preserves the location of the image edges, whel@onlinearity
enhances the image contrast and removes the noise in thdigsne

Lastly, we close this chapter by presenting another intieigggnd non-
intuitive phenomenon, which takes place in nonlinear sgstander certain
conditions. This effect, known as Stochastic Resonanee&fBR), has been
introduced in the eighties to account for the periodicityoaf ages (Benzét
al, 1982). Since then, SR has been widely reported in a growamigty of
nonlinear systems (Gammaitoei al, 1998), where it has been shown that
adding an appropriate amount of noise to a coherent signalratnlinear
system input enhances the response of the system. Detetsobthreshold
signal using noise has been proven in neural informatiocgs® (Longtin,
1993; Nozakiet al, 1999; Stocks and Manella, 2001) and in data transmis-
sion fields (Barbay, 2001; Zozor and Amblard, 2003; Moefual, 2003;
Comte and Morfu, 2003; Duan and Abbott, 2005) as well as m&dion
transmission in array of such coupled stochastic resoratodner et al,
1998; Chapeau-Blondeau, 1999; Bascastes, 2002; Morfu, 2003). Recent
studies have also shown that noise can enhance image pencggitnonotto
et al, 1997; Mosset al, 2004), autostereograms interpretation (Ditzinger
al, 2000), visual perception via eyes micro-saccade in retittmgleret al,
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FIGURE41. : Noise filtering based on anisotropic diffusion. Thefitig image are obtained
using the algorithm detailed in Appendix D with the paranet# = 0.01 and K = 0.09. (a)
initial image, (b), (¢), (d), (e), (), (g9), (h), (¢) image for the respective processing tintes 1,
t=2,t=3,t=4,t=5,t=6,t="7,t=28.

1998), image processing (Vaudek¢ al, 1998; Chapeau-Blondeau, 2000;
Histace and Rousseau, 2006; Blanchardl, 2007). The investigation of
noise effects in nonlinear systems is undoubtedly of greatést in nonlinear
signal processing or in image processing context (Zozorfanblard, 1999;
Zozor and Amblard, 2005).

We thus propose to present the phenomenon of S.R. using thedaodogy
exposed in (Chapeau-Blondeau, 2000). Moreover, to shosuahperception
of the S.R. effect, we consider the black and white image of2i), where
we note the probabilityp,; to have a white pixel angpy = 1 — p; the
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probability to have a black one.

A gaussian white spatial noigg ; with R.M.S. amplitude value is added in
each pixell; ; of the initial image. The resulting noisy image is then thgd
filtered with a threshold&;;, to obtain the imagé,, according to the following
threshold filtering rule:

Zf [i,j + 1 > Vi, then Ibqy,j =1
else I, , = 0. (71)

The similarity between the two imagésand, can then be quantified by the
cross-covariance (Chapeau-Blondeau, 2000)

C][b == ) (72)

0.65
0.6

0.5

0.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Noise RMS amplitude o
(b)

FIGURE42. :(a) : Initial black and white image witlpl = 0.437. (b) : similarity measures
(72) and (73) versus the noise RMS amplitude valder V;;, = 1.1.
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()

where< . > corresponds to an average over the images.
These two similarity measures are defined by

or by

pi(1 = Fy(Vin — 1))

%}1 {Pl (1 — Fy(Vin — 1)> N (1 _p1> (1 - Fn(vth)ﬂ .

pl(l - Fn(Vth - 1)) _plfh.
V(1 =)@ —ad)

with g1 = p1(1 — F,(Vyr, — 1)) + (1 — p1)(1 — F, (Vi) and whereF, is
the cumulative distribution function of the noise.

In the case of a gaussian white noisefdfl/.S. amplitudes, the cumulative
distribution function can be expressed under the form

Ry, =

and

C/WIIZ7 =

1 1 U
F,(u) = 3 + §erf <E> (74)

In eq. (74) the error function is defined by f(u) = % J exp(—t?)dt.
The two quantities (72) and (73) are plotted versus the RM&ramplituder
in figure 42(b), where a resonant-like behavior reveals the standardastich
resonance signature. Indeed, there exists an optimum d@mbuoise that
maximizes the similarity measures (72) and (73). Accordindig.42(b),
this optimal noiseRM S value isc = 0.4.
To valid the similarity measures, we qualitatively analyke pictures ob-
tained for different noise amplitudes . It is confirmed in fig3 that the
noise optimal value = 0.4 allows the best visual perception of the coliseum
through the nonlinear systems.

Even if the model of human visual perception is more complanta
standard threshold filtering (Balyet al, 2002), this simple representation
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@ 0) © (d)

FIGURE43. (a), (b), (¢), (d), Threshold filtered image with the rules (71) and a threshold
Vi, = 1.1 and with white gaussian noise with respective RMS noise iaimdiglc = 0.1, 0 = 0.4,
oc=0.8,0=1.4.

is convenient to determine analytically the optimum amaooihoise that
provides the best visual perception of images via Stoahd®tisonance.
Moreover, the S.R. phenomenon is shared by a wide class dinean

systems including neural networks which also interveneshia process
of images perception. Since neurons are basically thrdstbeVices that
are supposed to work in a noisy environment, the interestoakidering
noise effect seems to be of crucial importance in order teeldgvartificial

intelligence applications that perfectly mimic the reah&aeior of nature.
Therefore, for the next decades, we trust that one of the imtstesting

challenge could be to complete the description of nonlin@adels by
including the contribution of noise effects.
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APPENDIX A. RESPONSE OF A CELL OF THE OVERDAMPED
NETWORK

In the uncoupled case, and far= 1/2, a particle of displacemeft” obeys
to

dw 1
— = ~W(W — 5)(W —1). (75)

Separating the variables in Eq. (75) gives

2dW 4dW 2dW

_ = — 76
w W —1/2 * wW—-1 at, (76)
which can be integrated to obtain
W(W —1) 1y
— ‘=K 2 77

whereK is an integration constant. Equation (77) can be arrangbddome
a second order equation W

1 1 1 1
w? <1 - K65t> - W<1 - K65t> - ZKe*Et =0. (78)

Provided that the discriminant is positive, the solutioresgven by:

1 1 1
W)=~ 4~y —— . 79
®) 272V 1 - Ke 2t (79)

Assuming that initially, the position of the particlei® (t = 0) = W°, we
can express the integration constahtnder the form

WO WO —1)
K= o1

2

(80)

Inserting the constant (80) in the solution (79) leads toftflewing expres-
sion of the displacement:

W) =1

2 (1 . \/(WO — Ly oo — 1)e%t>'

(81)
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Assuming that whert — +oo, the particle evolves to the steady states
W = 0for W° < 1/2 andW = 1 for W° > 1/2, we finally obtain
the displacement of the particle with initial positi&hi® as

1

wo— 1
W(t) = 5(1 + 1 > (82)
\/(WO _ %)2 _ WO(WO _ 1)e—§t

APPENDIX B. RECALL ON JACOBIAN ELLIPTIC FUNCTION

We recall here the properties of Jacobian elliptic functioised in section
II.LB. These three basic functionsi(u, k), sn(u,k), dn(u,k) play an

important role in nonlinear evolution equations and arisenfthe inversion
of the elliptic integral of first kind (Abramowitz and Stegur970):

(83)

o= [t
’ 0 \/l—krsisz7

wherek € [0; 1] is the elliptic modulus. The jacobian elliptic functiongar
defined by

sn(u, k) = sin(y), ecn(u, k) = cos(1)), dn(u, k) = y/1 — ksin®(v)). (84)

This definition involves the following properties for thertatives:

dSn(u7k) —

— " = en(u, k)dn(u. k),

dcn(uak) _

— o = —sn(uk)dn(u. k),

D) g, ena ), )
U

Considering the circular function properties, we also have
sn®(u, k) + en®(u, k) = 1. (86)
Moreover, using the result (84), we obtain the followingritity:

dn®(u, k) + ksn?(u, k) = 1. (87)
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APPENDIX C. EVOLUTION OF AN OVERDAMPED PARTICLE
EXPERIENCING A MULTISTABLE POTENTIAL

The equation of motion of an overdamped particle submiti¢te sinusoidal
force (56) expresses

% = —f(n —1)sin [277(11 — I)W], (88)

whereW represents the particle displacement.

The steady states of the system are deduced from the zeroe nbhlinear
force. Using the methodology exposed in section 11.A.1, e establish that

the roots of the nonlinear force correspond alternativelyrtstable and stable
steady states. It is an integer, the unstable and stable states of the system
respectively write

k . 2%+l

Wene = 2(n — 1)
Separating the variables of eq. (88), we obtain

aw

= —f(n — 1)dt. (90)
sin [277(11 - 1)W}
Using the identityin(2a) = 2sin a cos a, €q. (90) becomes

aw
tan [r(n — 1)W]cos? [r(n — 1)W]

= —B(n — 1)dt. (91)

Next, considering the derivative of the tangent functiordn (91), yields

1 Ydtan[r(n — 1)W] t
m(n—1) /0 tan [r(n — )W] _/O 28(n — 1)dt. (92)

A direct integration of eq. (92) gives

tan [w(n - 1)W} = tan [ﬂ(n - I)Wo] g~ Aln=1)*2mt (93)
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whereV° denotes the initial position of the particle.
Inverting the tangent function, provides straightforwsittie solution of eq.
(88) under the form

W(t) = ﬁ {arctcm (tan(w(n — 1)W°)eﬁ(”1)22”>} + %, (94)

wherek is an integer coming from the tangent inversion.

Note that from a physical point of views must ensure that the particle
position evolves towards one of the stable states of thesyfr a sufficiently
large time, that is wheh— +o0.

Indeed, for an initial condition between two consecutivestahle steady
states, the asymptotic behavior of the uncoupled netwankreduce to the
following rule:

2k —1 o 2k+1 k
am—y W <gm-py Wl t©=g—g 9
This rule can be transformed to get
if k ! <(n-1)W°<k+ = W (t — +00) i (96)
_ — — — g
2 2 (n—1)

Lastly, identifying eq. (94) with eq. (96) when— +oo, we deduce that
must be the nearest integeridf’(n — 1).

APPENDIX D. PERONA AND MALIK ANISOTROPIC DIFFUSION
ALGORITHM

We recall here the algorithm introduced by Perona and Maldompute their
method based on anisotropic diffusion equation.

The anisotropic diffusion equation (69) can be discreti@it the time step
dt to obtain

dt
I =TI+ =Y g(VI,)VI,,. (97)

S peNr

In eq. (97),I! represents the brightness of the pixel located at the pasiti
s in a discrete two-dimensional grid which corresponds tdfiltered image
after a processing time 7, is the number of neighbors of the pixelthat is
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4, except for the image edge wheyje = 3 and for the image corners where

ns = 2. The spatial neighborhood of the pixelis noted Nr. The local
gradientVI, , can be estimated by the difference of brightness between the
considered pixe and its neighbop:

VI,,=1I1,—1I, pecNr (98)

Lastly, the description of the system is completed by degirtine edge
stopping functiory(x) as the lorentzian function:

1

__Tigg’

g9(z) (99)

whereK is a positive parameter.
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