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Supra-molecular structures formed by the self-assembly of functional molecular 

building blocks are a promising class of materials for future technologies.[1-3] Hydrogen 

bonding is particularly interesting for their fabrication as it provides both high selectivity and 

directionality. Recently, this concept was used to produce either two-dimensional or linear 

nanostructures at surfaces by molecular beam epitaxy.[4-8] Herein, we show that molecular 

films can evolve in time towards a close-packed organization induced by the activation of an 

original two-dimensional hydrogen bond network, consisting in H…Cl bonds. The 

combination of scanning tunneling microscopy experiments and density functional 

calculations was performed on Chlorine-Zinc-Phthalocyanines (ZnPcCl8) adsorbed onto 



Ag(111) surface. We demonstrate that the location of chlorine atoms on phenyl rings pre-

determines the final two-dimensional molecular network. 

The adsorption of large and flat Metal-Phthalocyanine (M-Pc) molecules is well 

documented on both metallic and semiconductors surfaces.[9-13] In this class of molecules, 

self-assembly is governed by the subtle balance between molecule-molecule and molecule-

surface interactions, which can be tuned by the modification of surrounding atoms of the 

phthalocyanine.[14] A large variety of organizations at surfaces has been reported depending 

on the nature of the central atom and surrounding atoms. Intermolecular interactions influence 

the way molecules will organize on the top of a surface. They can be either electrostatic in 

nature, including both multi-polar static and dynamical van der Waals contributions, or arise 

from orbital overlap, or both. The choice of ZnPcCl8, which is obtained from the substitution 

of half of the sixteen surrounding hydrogen atoms of ZnPc by chlorine atoms (Figure 1), was 

motivated by the possibility of building compact molecular organization mainly governed by 

hydrogen bonds. These molecules are well-known electron acceptors and interactions with the 

metallic surface result from partial charge transfer from surface electronic states to the lowest 

unoccupied molecular orbital (LUMO), of π type.[15] Thus, according to the strength of this 

overlap, symmetry of the host surface may more or less influence the way molecules adsorb 

and organize on this surface. In order to reduce the influence of the substrate on the molecular 

arrangement, Ag metal which has moderate reactivity and oxidation potential (i.e. electron 

donor character) appears in that sense a quite good candidate. Looking for minimal substrate-

molecule interaction motivated the choice for Ag(111) low surface energy and closed shell Zn 

(4s23d10) as central metal. 

This letter presents a combined experimental and theoretical approach on the 

molecular packing of ZnPcCl8 molecules deposited onto Ag(111) surfaces. Experiments 

involve room temperature scanning tunneling microscopy (STM) and theoretical calculations 

are based on density functional theory (DFT) within the framework of the projector-

augmented wave (PAW) method.[16] The evolution of three different two-dimensional 

arrangements observed on STM images, discussed with special attention to hydrogen bonds, 



demonstrates that the driving force for the final network is directly related to the formation of 

H…Cl contacts between molecules. Using the InteGriTy software package,[17] which achieves 

topological analysis following Bader's approach on electron densities given on 3D grids,[18] 

quantitative analysis of the main electronic contacts between molecules is investigated for all 

three structures. Just after the deposition of approximately 0.5 ML of ZnPcCl8 on Ag(111), 

large domains with well organized molecules are observed on STM images. Such an 

organization, denoted P1, is shown on figure 2a. Natural maturation during a few hours leads 

to a second two-dimensional network denoted P2 and represented in figure 2b. Finally, ten 

hours after deposition, the network transforms into a third arrangement denoted P3 and shown 

in figure 2c. Transformation from P1 to P3 can also be achieved in few minutes through 

gentle annealing at 320 K. In all cases, an individual molecule is imaged as a symmetric 

cross-like structure indicating that bonding to Ag surface atoms enforces a flat adsorption 

geometry. Moreover, two of the four molecular arms are aligned in all arrangements with one 

close-packed [110] direction of the Ag (111) substrate. As a consequence the two 

perpendicular arms of the molecule (symmetry A4) lie in-between two close-packed 

directions of the substrate (symmetry A3). The ripening process clearly increases the packing 

density: 0.33 molecule per nm2 in the initial P1 network (a=b =1.8 nm; α = 72°), then 0.38 

molecule per nm2 in the intermediate P2 network (a=1.8 nm; b =1.5 nm; α = 75°) and finally 

0.44 molecule per nm2 in the final P3 network (a= b =1.5 nm; α = 89°). 

During P1 to P2 transformation, ZnPcCl8 molecules moved as to join the first two 

opposite arms. The two other arms join during P2 to P3 transformation leading to the 

maximum compactness. However, P3 structure evidences also faulty lines reminiscent of P2. 

We failed in attempts we did to eliminate these faulty lines to realize full layer completion. 

Most probably, faulty lines participate to the stabilization of P3 network. In this letter, we 

intend to focus on the role of hydrogen bonding on the self-organization of Zn-Pc molecules 

and will not comment further on the role of such defect lines.  

An enlargement of each domain is represented on the right side of figure 2. In these 

representations a drawing of the unit cell and a representation of rigid ZnPcCl8 is superposed 



to STM images. Changing from P1 to P2, and then to P3 structure, molecules have moved in 

order to approach hydrogen atoms of one molecule towards Cl atoms of neighboring 

molecules, leading to the formation of H…Cl contacts. The role of hydrogen bonding on the 

molecular organization has been quantified by DFT calculations, taking experimental lattice 

parameters. The calculated molecular cohesive energy of the first 2D-arrangement (P1) is 

found to be 5.2 kJ per mole. The topological analysis of the theoretical electron density 

reveals that intermolecular contacts in this phase are very weak: as shown in figure 3a, no 

significant electronic overlap between molecules is evidenced. The shortest intermolecular 

distances (0.45 nm and 0.51 nm) correspond to the distances between two neighboring Cl 

atoms. Thus, intermolecular cohesive energy is mainly due to static multi-polar and 

dynamical van der Waals interactions. Similar interactions have been reported for other M-Pc 

molecule films deposited on metallic surfaces.[9-11] 

The calculated molecular cohesive energies for P2 and P3 structures are respectively 

12.5 and 16.4 kJ per mole. The different intermolecular electronic contacts involved in these 

molecular organizations are represented in figure 3. Calculation shows that contacts between 

the molecules are limited to the H…Cl and Cl…Cl contacts. From P1 to P3 the number of 

H…Cl contacts increases. In particular, H…Cl contacts which are lacking in P1 involve four 

out of eight hydrogen atoms in P2, and all eight hydrogen atoms in the final network P3. For 

this later structure, characteristics of the different critical points (CP) corresponding to 

intermolecular bonds are reported in Table1.  

The values of electron n(rCP) and potential energy V(rCP) densities at the critical point 

can be used to gauge the relative strength of the different electronic contacts. Half of the Cl 

atoms are involved in the strongest H…Cl contacts among which two groups can be 

distinguished: H(1)…Cl and H(2)…Cl. As shown in figure 3c, each molecule is connected to 

its neighbors by four H(1)…Cl and four H(2)…Cl contacts. The corresponding bond lengths 

0.269 and 0.277 nm for H(1)…Cl and H(2)…Cl respectively are significantly shorter than the 

sum of the van der Waals atomic radii: rH + rCl = 0.294 nm.[21] The H(1)…Cl contacts are 

slightly stronger than the H(2)…Cl ones as both n(rCP) and V(rCP) are about 30 percent larger. 



This H…Cl bonding involves not only dynamical interaction but also static multipolar 

interactions and overlap between H and Cl atoms, usually not observed in the case of classical 

van der Waals bonding. In addition, previous experimental and theoretical topological studies 

of intermolecular contacts in other organic compounds reported similar topological 

characteristics for C=O…H-C hydrogen bonds.[19,20] Hence, the H…Cl contacts evidenced 

here can be considered as hydrogen bonds. As shown in table 1 weak Cl…Cl intermolecular 

contacts involving the four remaining Cl atoms also contribute in the cohesion of the 

molecular packing. 

In the calculations discussed above, interactions between molecule and substrate were 

not explicitly taken into account.[22] Due to orbital overlap, partial electron transfer from the 

electron releasing Ag surface towards the electron withdrawing ZnPcCl8 molecule should be 

considered. This will influence the strength of the H…Cl bonds as well as the calculated 

cohesive energy that is here only indicative. To gain some insight into the effect of such a 

charge transfer, we investigated the ZnPcCl8 molecule having an additional electron in its 

LUMO. The resulting electronic redistribution mainly affects the Cl atoms, which become 

more negatively charged. This should lead to an enhancement of the H…Cl bonds via the 

coupling between charge transfer and strength of hydrogen bonds.[23] 

This present joint theoretical and experimental investigation has revealed how the two-

dimensional arrangement of molecules can be governed by their functional atoms. In the case 

of ZnPcCl8 deposited on the relative neutral Ag(111) surface, the final organization is driven 

by the activation of an original hydrogen bond network consisting on H…Cl electronic 

contacts. This activation occurs either in minute time after a gentle annealing at 320 K or after 

ten hours at room temperature. Thus, the structure kinetics can be described as follows: the 

two-dimensional arrangement of ZnPcCl8 observed just after deposit seems to minimize the 

interactions between molecules and the Ag(111) surface. Consequently, the molecules are 

aligned along the close-packed direction of the substrate. The topology of the corresponding 

electron density indicates that the main contribution to the intermolecular cohesive energy 

results from weak interactions without significant overlap between molecules. This first two-



dimensional arrangement is meta-stable, and structural re-arrangement follows in two steps. 

Activation of half of possible hydrogen bonds (i.e. four out of eight) leads to an intermediate 

network in a couple of hours. This induces a contraction of one of the lattice parameter and a 

gain in intermolecular cohesive energy. In a second step, the four remaining hydrogen bonds 

are activated as well leading to the final two-dimensional organization with additional gain in 

intermolecular cohesive. To summarize, we demonstrate that the final molecular packing onto 

surface is pre-determined by the location of substitution chlorine atoms on phenyl rings. Thus, 

molecular synthesis techniques allow choosing the suitable location of functional groups in 

order to design a large variety of two-dimensional molecular networks. This strategy allows 

the design of new surface structures and materials for future applications. 

Experimental and computational Section 

Sample preparation: Small amounts of ZnPcCl8 were evaporated under ultra-high vacuum 

conditions (10-10 mbar) onto Ag(111) surface . The Ag(111) surface was prepared by repeated cycles 

of argon sputtering (2.5 keV, 1 µA) followed by annealing at 720 K. ZnPcCl8 molecules were first out-

gassed in vacuum,  then evaporated from an effusion cell  onto the substrate kept at room temperature. 

The deposition rate was about 0.30 mono-layers per minute. (One monolayer corresponds to a 

complete layer of the dense molecular phase). 

Scanning tunneling microscopy: Images were recorded the VT-STM (Omicron) using 

tungsten etched tips. All experiments were performed at room temperature with tunnelling conditions 

in the range I=0.2 nA and V(tip) = -1.2 V . 

Computational details: All calculations have been performed within the framework of 

density functional theory (DFT) using the generalized gradient approximation (GGA) parametrization 

by Perdew-Burke-Ernzehoff for the exchange correlation energy.[24] We used the projector-augmented 

wave (PAW) method,[16] which uses augmented plane waves in order to describe the full wave 

functions and densities without shape approximation. Core electrons were treated within the frozen 

core approximation. Band structure calculation has been carried out with a plane wave cutoff of 30 Ry. 

All calculations have been performed at constant lattice parameters deduced from experiments. 



Atomic positions were relaxed using the original fictitious Lagrangian approach of Car and 

Parrinello.[25] In our simulations, the interactions between molecules and surface have been neglected. 

The topological analysis was performed using the InteGriTy software package,[17] which achieves 

topological analysis following Bader's approach on electron densities given on 3D grids.[18] 
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Figure 1: Optimized D4h structure of ZnPcCl8 obtained from DFT calculation on isolated 

molecules. 

Figure 2: STM images of the three two-dimensional arrangements of ZnPcCl8 molecules on 

Ag(111) obtained at room temperature: (a) immediately after the deposit (P1 phase);  (b) few 

hours later (intermediate P2 phase) and (c) after ten hours (final P3 phase). In the right 

column, models for the molecular superstructures are given for each phase. ZnPcCl8 

molecules are unrelaxed and drawn to scale on top of STM images. Chlorine atoms are 

represented by green spheres in position 3,4 of phenyl rings whereas H are in position trans 

2,5. 

Figure 3: Electron isodensity curves in molecular plane for P1, P2 and P3 arrangements, 

respectively shown on top, middle and bottom. The electron density values correspond to 

0.040 (grey curve) and 0.540 e- per Ǻ3 (black curve). For clarity, H(1)…Cl and H(2)…Cl 

electronic contacts are represented by large black segments . 

 

 

 

 



Table 1: Strongest intermolecular contacts of the P3 phase. n(rCP) and V(rCP) correspond 

respectively to the values of the electron density in e-Å-3 and the potential energy density in kJ 

mol-1 at the bond critical point (CP). The distance d corresponds to intermolecular bond length 

in nm between H…Cl or Cl…Cl atoms. 

Contact  n(rCP) V(rCP) d (nm) 

H(1)…Cl 0.064 -12.20 0.269 

H(2)…Cl 0.048 -9.06 0.277 

Cl…Cl 0.030 -4.90 0.373 

 

Suggestion for the table-of-contents: The substitution of surrounding H atoms of 

phthalocyanine by chlorine atoms determines the formation of molecular self-assembly at 

surfaces. The structure obtained after deposition (see picture) is induced by the activation of 

an original two-dimensional hydrogen bond network, consisting in H…Cl bonds between 

neighboring molecules. 
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