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Fault detection and identification with a new

feature selection based on mutual information

Sylvain Verron ∗ , Teodor Tiplica , Abdessamad Kobi

LASQUO/ISTIA, University of Angers, 62, Avenue Notre Dame du Lac, 49000

Angers, France

Abstract

This paper presents a fault diagnosis procedure based on discriminant analysis and

mutual information. In order to obtain good classification performances, a selection

of important features is done with a new developed algorithm based on the mutual

information between variables. The application of the new fault diagnosis procedure

on a benchmark problem, the Tennessee Eastman Process, shows better results than

other well known published methods.
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1 Introduction

Nowadays, the control of complex manufacturing systems is becoming an es-

sential task in order to reduce the variability of products, or to insure a safety
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production (for humans and materials). In order to achieve this activity of su-

pervisory control, some authors call this AEM (Abnormal Event Management)

[1]. This is composed of three principal steps: firstly, a timely detection of an

abnormal event; secondly, diagnosing its causal origins (or root causes), which

is the purpose of this article; and finally, taking appropriate decisions and

actions to return the process in a normal working state. We will call ”fault”

an abnormal event, it is classically defined as a departure from an acceptable

range of an observed variable or a calculated parameter of the process [1]. So,

a fault can be viewed as a process abnormality or symptom, like an excessive

pressure in a reactor, or a low quality of a part of a product, and so on.

Three major categories of methods can be identified to achieve process con-

trol: data-driven, analytical and knowledge-based [2,1]. The knowledge-based

category represents methods based on qualitative models (FMECA - Failures

Modes Effects an Critically Analysis; Fault Trees; Decision Trees; Risk Analy-

sis) [3,4]. The analytical methods compare real process data to those obtained

by mathematical models of the system [5]. But, for large systems, obtaining re-

liable detailed models is difficult and can often conduct to false conclusions on

the state of the system. As a consequence, for systems with no (or not enough

reliable) models, one could prefers the application of data-driven techniques

which are quantitative models based on rigorous statistical development of the

process data.

In the literature, many data-driven techniques for fault detection and diagno-

sis can be found. Thus, Statistical Process Control (SPC) [6] techniques are

used in the case where, for different reasons, one is not able to control contin-

uously the process (or some process variables) and as a consequence samples

are taken (at constant or variable time steps). In the frame of the SPC, the
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control charts are very simple and useful fault detection tools. The X [7],

CUSUM (CUmulative SUM) [8] or EWMA (Exponentially Weighted Moving

Average) [9] control charts are widely used in manufacturing plants to monitor

the mean of a process variable. In order to monitor and control the disper-

sion of a process parameter, control charts like: R, S and S2 are frequently

employed [6]. In the case of qualitative variables, control charts like p, np, c,

u have been proposed to control the non-conformities or the non-conforming

products [6]. Unfortunately, due to the complexity of the manufacturing pro-

cesses, monitoring process parameters on different control charts like those

presented above is not sufficient to control the whole manufacturing process.

Indeed, this strategy has some major drawbacks : the false alarm rate are

inflated, the correlation between the variables is not taken into account, the

monitoring is complicated especially when the number of charts is becoming

important. For these reasons, in order to control several process parameters

in the same time, multivariate control charts like the T 2 of Hotelling [10], the

MEWMA (Multivariate EWMA) [11] and MCUSUM (Multivariate CUSUM)

[12] have been developed. The multivariate control charts give an easy to un-

derstand representation of a multivariate process evolution but have also a

major disadvantage: they do not give any information concerning the process

parameter responsible for an out of control situation detected on the chart.

Otherwise, we know that the process is out of control but we are unable to

do a reliable diagnosis by saying which process parameter changed or what

was wrong with the process. Many researches have been done in the last few

years and a great number of methods were proposed to overcome this inconve-

nience ([13–23]). A non-exhaustive comparative study on the recent diagnosis

techniques in the field of the SPC can be found in [24].
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Other FDI approaches are based on data analysis methods: like the Principal

Component Analysis (PCA) [25], Discriminant Analysis, Projection to Latent

Structures (PLS), supervised or not-supervised classification techniques, etc.

The PCA method captures the variability of a process in a lower dimensional

space than the process space. One can monitor the T 2 metric on the new

PCA axes or monitor the residuals (Q chart) of the PCA model [26]. Some

extensions of the PCA method like the Moving PCA [27], the Multiway PCA

[28], have been proposed in order to deal with serial correlations in the process

data or to monitor some batch processes. Numerous applications of PCA for

the fault detection and diagnosis can be found [29–31]. For example, we can

cite Harkat et al. [29] in which the authors propose a new detection index Di

on the PCA scores, in order to monitor an air quality monitoring network. The

PLS (Projection to Latent Structures) based approaches are used to establish a

relationship between the space of the final product quality characteristics and

the space of the process parameters. These techniques maximize the covariance

between a predicted matrix (generally product quality data) and a predictor

matrix (all other variables of the system) [32]. Some extensions of the PLS

techniques, like the Multiway PLS [33], can be found in the literature for batch

processes. A good comparative study concerning some of these fault detection

techniques can be found in [34].

Although all these techniques are well designed for the fault detection, one of

the most relevant technique for the diagnosis is the supervised classification.

Indeed, it is usual to see the fault diagnosis as a classification task whose objec-

tive is to class new observations to one of the existing classes. Many methods

have been developed for supervised classification. The Fisher Discriminant

Analysis (FDA) [35], the Support Vector Machine (SVM) [36], the k-Nearest
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Neighborhood (kNN) [37], the Digital Filtering and Discriminant Analysis

(DFDA) [38], etc. Other recent and new emerging classification approaches

are based on the use of some artificial intelligence techniques. Of course, we

can cite here the Artificial Neural Networks (ANN) [35] and particularly the

MultiLayer Perceptron (MLP) which is a very efficient non linear classifier; the

Bayesian network classifiers [39] like the Näıve Bayesian Network (NBN) [40],

the Tree-Augmented bayesian Network (TAN) [39], the k-dependence Bayesian

classifier [41], the Condensed Semi Näıve Bayesian Network (CSNBN) [42], etc.

Nevertheless, the classification (diagnosis) is an hard task in the detection

space like the PCA space or the original space (like used for the different con-

trol chart). Indeed, the space used for the detection is not frequently a space

where the different potential fault of a process can be well discriminated :

there are too many variables giving some noise for the discrimination, or the

transformation made in order to increase the detection performance leads to

decrease the classification performance. Moreover, just some variables of the

space are significant for the discrimination of the different faults. So, it seems

important to highlight here that in the case of non-informative (insignificant)

variables, the performances (in term of classification error rate) of the classi-

fiers presented above are decreasing as the number of non-informative variables

increases. Therefore a selection of the informative variables for the classifica-

tion task should be done in order to increase the accuracy of the classification

[43].

In this article, we present a new data-driven technique to diagnose the faults of

a system in steady state conditions. This procedure includes a feature selection

of the most informative variables of the system. Then, fault diagnosis is made

on these important variables with a discriminant analysis. Assumptions are
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made that a fault detection technique has detected an observation of the

system as faulty, and that two or more faults cannot occur simultaneously.

The article is structured in the following manner: in the section 2, we present

briefly some basic theoretical aspects concerning the discriminant analysis; in

the section 3 we propose a new fault diagnosis procedure based on the use

of the discriminant analysis technique on the variables selected according to

theirs informative potential for the classification task; the section 4 is an ap-

plication of this procedure on a benchmark problem - the Tennessee Eastman

Process; finally, in the section 5 some concluding remarks and outlooks of the

proposed fault diagnosis method are mentioned.

2 Discriminant Analysis

Concerning the Discriminant Analysis (DA), one can distinguish two different

aspects: the descriptive and the predictive aspect. Given a system with p vari-

ables (descriptors) and with k identified classes, the descriptive discriminant

analysis (or Fisher Discriminant Analysis) is generally used to find k − 1 new

descriptors of the system. These new k − 1 descriptors (which are a linear

combination of the original descriptors) are supposed to maximally discrim-

inate between the k identified classes of the system. The other aspect of the

discriminant analysis is the predictive one. The purpose of the predictive as-

pect is principally to allocate a new observation to one of the k identified

classes of the system. In the remaining of this article, we will focus mainly

on the predictive potential of the Discriminant Analysis and we will consider

Discriminant Analysis as a supervised classification method [35].
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Principally, two decision rules can be applied with a Discriminant Analysis:

the geometric one and the probabilistic one. The geometric one attributes to

the observation the class with the nearest mean to the observation. This rule

can conduct to false attribution if the variability of the classes are not iden-

tical. We will prefer the probabilistic DA that is based on the Bayes decision

rule. Giving k classes Ci (i ∈ {1, . . . , k}) a priori known, this rule allocates a

new observation x to the class Ci with the maximum a posteriori probability

P (Ci|x) giving the value of each descriptor, as defined in the equation 1.

x ∈ Ci, if i = argmax
i=1,...,k

{P (Ci|x)} (1)

This decision rule is named ”Bayes decision rule” because it is based on the

Bayes rule which gives the value of P (Ci|x) as stated in equation 2.

P (Ci|x) =
P (Ci)P (x|Ci)

P (x)
(2)

where P (Ci) is the a priori probability of x to belong to the class Ci. This

probability can be fixed differently : uniformly on all the classes (P (Ci) =

P (Cj) for each couple i, j); based on the historical data, with p(Ci) = ni

n
, where

ni is the number of observations of the class Ci, and n is the total number of

observations (n1 + . . . + nk = n); or under assumption that some classes are

most probable than other. In certain cases (noisy data, overlapping classes),

the discrimination is not easy with the decision rule of equation 2. thus, it can

be applied some techniques allowing the rejection of ambiguous observations:

ambiguity rejection, distance rejection (see [44,45]). In the equation 2, we can

see that for each class, the denominator is the same, so, it is not implicated
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in the discriminant function. Then, equation 1 can be rewritten as:

x ∈ Ci, if i = argmax
i=1,...,k

{P (Ci)P (x|Ci)} (3)

More, like in numerous articles ([46] for example), in order to simplify following

equations in the case of a gaussian distribution, we can rewrite equation 3 by

using the cost function K:

Ki(x) = −2 log(P (Ci)P (x|Ci)) (4)

where log represents the natural logarithm. So, for each observation x, the

allocating rule becomes:

x ∈ Ci, if i = argmin
i=1,...,k

{Ki(x)} (5)

In this article, we consider the classical assumption that data follow a mul-

tivariate normal distribution. The density function f of a normal variable

conditionally to a class Ci can be written as in equation 6, where p is the

dimension of the observation x, µi is the mean vector of the class Ci, Σi is

the covariance matrix of the class Ci, the symbol t represents the transpose of

a vector or a matrix, and |Σi| represents the determinant of the matrix Σi.

f(x|Ci) =
exp(−1

2
(x− µi)

tΣ−1

i (x− µi))

(2π)p/2|Σi|1/2
(6)

We are reminding here that, for ni samples of the class Ci, the Maximum

Likelihood Estimation (MLE) gives [35]:
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µ̂i =
1

ni

ni
∑

j=1

xj (7)

and:

Σ̂i =
1

ni − 1

ni
∑

j=1

(xj − µ̂i)(xj − µ̂i)
t (8)

We notify that in certain cases (presence of outliers in the data, limited number

of samples), the MLE can be quite inaccurate. In these cases, other estima-

tors, called robust estimators, can be used. There are several types of robust

estimators, we can cite for example M-estimator (maximum likelihood type

estimator) or R-estimator (estimator based on rank transformation) [47,48].

In the case of the multivariate normal distribution, the cost function Ki (see

equation 4) becomes:

Ki(x) = (x− µi)
tΣ−1

i (x− µi)− 2log(P (Ci))

+log(|Σi|) + plog(2π) (9)

and we can see that the term plog(2π) is the same for each class Ci, so it

does not contribute to the discrimination between classes. This cost function

is named Quadratic Discriminant Analysis (QDA). This classification rule

makes quadratic boundaries between each class.

If not enough data are available for a good estimation of each covariance

matrix Σi, it can be assumed that each Σi is equal to Σpool which is a pooled

covariance matrix given in equation 10 (where ni is the number of observed

samples for the class Ci).
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Σpool =
(n1 − 1)Σ1 + . . . + (nk − 1)Σk

n− k
(10)

So, in the case of pooled covariance matrix, the cost function given in the

equation 9 can be reduced to equation 11:

Ki(x) = (x− µi)
tΣ−1

pool(x− µi)− 2log(P (Ci)) + Cst (11)

where Cst is a constant equal to log(|Σ|) + plog(2π). The cost function given

in the equation 11 is named Linear Discriminant Analysis (LDA). This classi-

fication rule makes linear boundaries between each class. If we consider that

each observation has the same weight, under the assumption that we have the

same number of observations in each class, P (Ci) is equal for each class and so

the decision rule becomes to attribute to a new observation the class with the

least Mahalanobis distance (term (x− µi)
tΣ−1

pool(x− µi)) to the class center.

We have shortly presented some basic concepts of the QDA and the LDA, but

as indicated in the first section the performances of these classifiers are not

optimal in the presence of non-informative variables. It means that each vari-

able give some information for the classification task, but give also a certain

noise. A non-informative variable will be a variable giving little or none infor-

mation for the classification task, but bringing some noise which will increase

the classification error. So, a selection of informative variables is necessary in

order to obtain low classification error. In the next section we will propose a

new fault diagnosis method including a variable selection algorithm based on

the concept of the mutual information.
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3 Fault diagnosis based on discriminant analysis and mutual infor-

mation

In this section, we propose a fault diagnosis method including a variable se-

lection algorithm based on the mutual information. The algorithm is based

on two major steps: firstly, the variables are sorted according to theirs shared

mutual information with the class variable and secondly the more informative

variables are chosen based on the classification error rate.

3.1 Sorting the variables of the system with Mutual Information

The Mutual Information (I), or transinformation, of two random variables x

and y can be viewed as a quantity measuring the mutual dependence of the two

variables [49,50]. The mutual information is widely used in applications area

like the training of hidden Markov models, the prediction of the ribonucleic

acid, the registration of medical images and in feature selection for machine

learning.

The mutual information between two random variables x and y can be com-

puted as indicated in the equation 12, where P (x, y) is the joint probability

distribution function of x and y, and P (x) and P (y) are the marginal proba-

bility distribution functions of x and y respectively.

I(x; y) =
∑

x,y

P (x, y)log
P (x, y)

P (x)P (y)
(12)

In supervised classification, one can view the classes as a multinomial random

variable (that we will name C) with k possible values (where k is the number of
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classes of the system). So, one will be able to compute the mutual information

and identify the informative variables.

3.1.1 First approach: an univariate approach

In [42], authors demonstrate that the mutual information between a gaussian

(normaly distributed) variable and a multinomial (discrete) variable can be

computed as indicated by equation 13. In this equation, it is assumed that:

C is a multinomial random variable with k possible values and a probability

distribution given by P (C = c) = P (c); X is a random variable with a normal

density function of parameters µ and σ2; X conditioned to C = c follows a

normal density function with parameters µc and σc
2.

I(X; C) =
1

2

[

log(σ2)−
k
∑

c=1

P (c) log(σ2

c )

]

(13)

In this way, the mutual information (I) can be computed for all the variables

(descriptors) of the system. The most important variables for the classification

task will be those having an high I value comparing to other variables. So, we

can sort the variables in decreasing order of the mutual information that they

share with the class variable, and thus we obtain the variables sorted from the

most informative one to the least informative one for the classification task.

This approach is very fast but has a major drawback: the redundancy. Indeed,

assuming two variables with high mutual information with the class variable,

having these 2 variables in the model is not optimal if they share the same

information with the class variable (redundancy of the information), because

they bring the same information for the classification, but each one add his
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own noise to the classification, giving more misclassification errors. So, the

goal is to select a group of variable giving maximum information, but adding

a minimum of noise for the classification.

3.1.2 Second approach: a multivariate approach

We demonstrate (see appendix A) a new result about the mutual information

between a multivariate gaussian variable and a multinomial (discrete) variable.

This mutual information can be computed as indicated by equation 14. For

this equation, it is assumed that: C is a multinomial random variable with k

possible values and a probability distribution given by P (C = c) = P (c); X is

a random variable with a multivariate normal density function of parameters

µ and Σ; X conditioned to C = c follows a multivariate normal density

function with parameters µc and Σc.

I(X; C) =
1

2

[

log(|Σ|)−
k
∑

c=1

P (c) log(|Σc|)

]

(14)

It can be observed easily that if we assume that X is univariate, then X ∼

N(µ, σ2), |Σ| = σ2 and consequently the mutual information given in equa-

tion 14 is computed in the same way as in the equation 13. So, the result

demonstrated by Perez (equation 13) can be view as a particular case of our

demonstrated result (equation 14).

The mutual information (I) can be computed for all different groups of vari-

ables (descriptors) of a system. The most important group of variables for the

classification task will be the one that has a large I value. Indeed, adding more

variables to the model increases the amount of information of the model. In
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order to exploit this new result about mutual information, we have developed

a new sorting algorithm of the variables taking into account both the infor-

mation and the redundancy. This sorting algorithm is given below where Vi

represents the variable selected at step i, and p is the number of variables of

the system.

(1) (Initialization) V ← ∅

(2) (Selection loop) for i = 1 to p

a) (Computation of the mutual information) compute I for all possible

groups of dimension i including {V1, . . . , Vi−1}

b) (Selection of the variable) select as Vi the variable allowing the max-

imization of the mutual information I

(3) Output the set V containing the ordered variables.

The figure A.1 illustrates the above algorithm for a system described by 4

variables. This system has two different classes, and we have simulated 100

observations for each. Parameters of the two classes are given by :

µ
1

= [1 2 2 1] µ
2

= [2 1 1 2]

Σ1 =









































1 0.3 0.6 0.4

0.3 1 0.4 0.2

0.6 0.4 1 0.3

0.4 0.2 0.3 1









































Σ2 =









































1 0.8 0.3 0.6

0.8 1 0.2 0.5

0.3 0.2 1 0.5

0.6 0.5 0.5 1









































In the first step, the mutual information of each variable is computed, and the
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variable 3 is retained. At the second step, all possible groups of dimension 2,

but containing the first retained variable (variable 3), are formed and evaluated

with mutual information. We can see that the group {3,1} maximize the I.

So, the variable retained for this step is the variable 1. In the same way, at

step three, we formed all possible groups of dimension 3, but containing the

two first selected variables (variable 1 and 3), and evaluated them with the I,

and so on.

[Fig. 1 about here.]

This multivariate approach is more computation-consuming than the univari-

ate one. The complexity of the univariate approach is equivalent only to the

first step of the multivariate one. But, the multivariate approach that we pro-

pose is more exact than the univariate approach because it takes into account

the redundancy of information between the variables. To illustrate that on the

4 variables example, the univariate approach gives {2, 4, 3, 1}, compared with

the multivariate approach which selects the variable 3 before the variable 4

and gives {2, 3, 4, 1}. It signifies that information given by the variable 4 is

more redundant than the information given by the variable 3. This can be

due to the fact that the part of the mutual information given by the correla-

tion between variable 2 and 3 is more important than the part of the mutual

information given by the correlation between variable 2 and 4

3.2 Fault diagnosis procedure

The method is based on a wrapper approach [51]. The objective of this proce-

dure is to select a group of variables S giving good discrimination performances
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between the different faults (classes) of a system. The optimal way to obtain

a good classifier would be to estimate the misclassification rate of all the pos-

sible groups S. This solution can be effective for system with few variables,

but in many cases the number of possible groups is too high for this exhaus-

tive and time-consuming search. So, we propose a new procedure for the fault

diagnosis of a system with p descriptors (variables) as illustrated on the figure

A.2. We precise here that in order to take into account processes with multiple

set-points, a normalization of the data is made before the application of the

proposed procedure.

[Fig. 2 about here.]

In the first step, we sort the variables from the most informative to the least

informative one as presented previously (see paragraph 3.1). We precise that

if the QDA is used, the equation 14 is directly applied, but if the LDA is used

the equation 14 becomes:

I(X; C)=
1

2
[log(|Σ|)− log(|Σpool|)]

I(X; C)=
1

2
log

(

|Σ|

|Σpool|

)

(15)

In the second step of the procedure, we iteratively compute the misclassifi-

cation rate of each group Si of dimension i, composed of V1, V2, . . . , Vi where

V1 is the first most informative variable, V2 is the second most informative

variable, and so on. The misclassification rate is obtained with a well known

technique: the m-fold cross validation [52]. In the m-fold cross validation, the

training dataset is divided into m subsets and one of this is used as the testing

set while the m-1 other subsets are put together to form the training set. Then

the average and the standard deviation of the error for all m trials is computed
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[35].

Once the misclassification rate is computed for the p groups, the error function

of the number of features (variables) can be drawn (see figure A.3).

[Fig. 3 about here.]

On the figure A.3, we can see 3 areas: Area I represents an area where the error

decreases when the number of features increases, indicating that the number

of features is not sufficient to obtain good discrimination; Area II is a quite

constant error zone with Nmin the number of features having the lower error;

and in area III, the error increases when the number of features increases

implying that some of the features are not informative for the classification.

Our goal is to select the group of variables giving the lower error but with

the lower number of features. Thus, we will consider that Nbest is a better

choice than Nmin if its classification error is statistically equivalent to the

classification error of Nmin. So, the main idea is to select the group Smin of

dimension Nmin giving the lower average misclassification rate. After that,

hypothesis tests [53] are made in order to compare the average error of Smin

and the average error of all Si with i < Nmin. The test realized is a classical

equality test of the mean of two distributions (assumed normal) with unknown

(but estimated) variances. Then the group Sb (group where the average error

is statistically equal to the average error of Smin but with Nbest < Nmin) is

selected.

Using the same example as in the previous paragraph 3.1.2 (see the 4 variables

system), one can see (on the table A.1) the average and the standard deviation

of the error for the 4 groups of variables selected. We can see that the minimum

average error is obtained for the group S3, so we compare the average error of
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S3 with the average error of the group containing less variables than S3 (so,

S1 and S2). We give the result of the hypothesis tests (such as 1 signifies that

errors are statistically equal and 0 indicates that errors cannot be considered

equal) and select S2 = {2, 3} as the the best group.

[Table 1 about here.]

Once the best group Sb has been identified, we can easily use QDA or LDA with

those variables, and classify new observations of the system more accurately. If

the plant engineers confirm the diagnosis procedure, the new faulty observation

and his belonging class are stored in the database. This iteration will improve

the diagnosis performances of the procedure for future faulty observations.

Now, we will see an application of this approach on a benchmark problem: the

Tennessee Eastman Process (figure A.4).

[Fig. 4 about here.]

4 Application to the TEP

4.1 Presentation of the TEP

The Tennessee Eastman Industrial Challenge Problem was created by the

Eastman Chemical Company to provide a realistic industrial process in or-

der to evaluate process control and monitoring methods [54]. The Tennessee

Eastman Process (TEP) is a chemical process. It is composed of five major

operation units (see figure A.4): a reactor, a condenser, a compressor, a strip-

per and a separator. Four gaseous reactants A, C, D, E and an inert B are fed
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to the reactor where the liquid products F, G and H are formed. This process

has 12 input variables and 41 output variables. It has 20 types of identified

faults.

The TEP is entirely described in the article of Downs and Vogel [54]. This pro-

cess was simulated on Matlab by Ricker [55]. This plant is open-loop unstable.

So, it is also a benchmark problem for control techniques. Some fault detection

approaches have been tested on the TEP [34,56,57]. Some fault diagnosis tech-

niques have also been tested on the TEP [2,58–61] with the plant-wide control

structure recommended in Lyman and Georgakis [62]. On the same control

structure and for steady state conditions (base case chosen on the simulator),

we have taken into account 3 types of faults named: fault 4, 9 and 11 (see

table A.2) because they are good representations of overlapping data and so,

are not easy to classify. In other articles [59,60], authors focus only on 3 types

of faults and give the datasets they used. For this reason, we will take the

same data that in these articles and we will compare our approach to theirs.

[Table 2 about here.]

For each type of fault, we have 2 datasets: a training sample and a testing

sample, containing respectively 480 and 800 observations as indicated on the

table A.2. Of course, having such big amount of data in the database (1440

samples) is not very realistic in the case of real processes. We are using these

1440 samples of training only in order to make correct comparison with the

results of other authors. Nevertheless, we will also take into account the sce-

nario where only a small number of observations is available for each class of

fault.

All computations have been made on Matlab. For an unbiased comparison
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with the previously cited methods, new faulty observations were not added to

the fault database, as it was mentioned in the figure A.2. The fault database

is composed of the 3 training samples. We also have to notify that only 52

variables are taking into account in this problem because an input variable

(the reactor agitator speed) is constant.

4.2 The new procedure applied on the TEP

As this application has 52 variables, an exhaustive search of all possible groups

that can be formed is impossible: 4.5036e+015 possible groups. So, we will

apply the procedure that we have developed which is a free choice classifier (the

only condition is that the classifier assumes that the data are class conditional

normally distributed).

4.2.1 First step

We have compared, at this step, the univariate and the multivariate sorting

approaches. We have also applied the multivariate approach with LDA and

QDA. We remind that for sorting the variables, the choice of LDA or QDA

has no effect with the univariate approach (because no covariance matrix is

computed). A graphical result of the univariate approach is given in the figure

A.5.

[Fig. 5 about here.]

On the figure A.5, we can see that 2 variables have very high values of mutual

information (variables 51 and 9). We can also observed that 3 variables (vari-

ables 50, 19 and 18) obtain medium value of mutual information, and that
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several variables have a quite little value (variables 20, 38, 21, 37 and 46).

The results of the different approaches (univariate and multivariate) for the

eight first variables are given in the table A.3.

[Table 3 about here.]

We observe that the variables 9 and 51 seems to be the most informative one

because they are selected in the two first positions by each algorithm. Others

ordered variables are quite different between each algorithm. So, it seems to

be difficult, for the moment, to state that a variable in particular (other than

variables 9 and 51) will be important for the classification task.

4.2.2 Second step

In a second step, we have to apply a m-fold cross validation. Of course, the

choice of m is dependent of the number of example of the training dataset.

Here, as we have numerous samples of each classes, a value of 10 is chosen

(this value is suggested in many articles applying a cross validation). So, we

apply a 10-fold cross validation on the group of 52 variables. The results are

given in the figure A.6 where the upper graphs are the application of the LDA

and the lower graphs are the application of the QDA. In each case, the left

graph represents the results given with the univariate approach and the right

graphs are the results of the multivariate approach. For each graph, the Nbest

and the Nmin (see section 3.2) are represented.

[Fig. 6 about here.]

On the figure A.6, we can firstly observe that the misclassification average error

of the Linear Discriminant Analysis (LDA) is more important than the one
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induced by the Quadratic Discriminant Analysis (QDA). More, we can also

see that (like it was shown on the figure A.3) that to increase the number of

features can, in a first time, decrease the average error, but than in a second

time, the increasing of the number of feature leads to an increased average

error. We can finally observed that just one variable (the variable 51) is not

able to discriminate correctly between the different classes of fault.

4.2.3 Third step

At the third step, the group giving the lower misclassification rate is selected.

Then, hypothesis tests (with α = 5%) are made in order to find the smaller

group for an equivalent misclassification rate. The table A.4 gives the results

of this step.

[Table 4 about here.]

We can see that in the four cases, variables 9 and 51, (respectively the reactor

temperature and the reactor cooling water valve position) are selected. We

can conclude that these variables are very important in order to discriminate

the 3 types of faults. Of course, as the faults 4 and 11 are both a change in

the reactor cooling water inlet temperature, it is logical that the variables rep-

resenting the reactor temperature (variable 9) and the reactor cooling water

valve position (variable 51) can help to discriminate between these two faults.

But the advantage of the feature selection algorithm is that it concludes that

these variables can also discriminate the fault 9 (D feed temperature), which

has no evident link with the 2 variables. With different methods (contribution

charts, discriminant partial least square, genetic algorithms combined with

Fisher discriminant analysis), Chiang (in [59]) has obtained the same conclu-
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sion.

But, we can view that the multivariate algorithm has also selected the variable

21 (reactor cooling water outlet temperature). It is surprising to see that this

algorithm conclude on the importance of this variable even though the uni-

variate approach ordered it at the 8th position (see table A.3). So, it will be in-

teresting to compare classification performance between {51,9} and {51,9,21},

this study will be done in the next paragraph.

4.2.4 Fourth step

As mentioned in the procedure of fault diagnosis (see figure A.2), in the fourth

step we learn the classifier and to classify a new faulty observation of the in-

dustrial system. In an objective evaluation purpose of our procedure and to

compare it with the results of other published methods (like Support Vector

Machines), in a first case we classified 2400 new observations (800 of each

type of fault) of the TEP. The results are given in the table A.5. For the

LDA and QDA methods, we compute the misclassification rate (percentage of

observations which are not well classified). We are also giving the results of

other methods on the same data. The results for the SVM (Support Vector

Machines), PSVM (Proximal Support Vector Machines) and ISVM (Indepen-

dent Support Vector Machines) methods are extracted from [59] and [60]. The

results of the different methods in the space of the 52 variables {All} are also

given in table A.5 in order to demonstrate the advantage of a well chosen

reduced space for discrimination. But, as mentioned before, having so many

faulty observations is not common in practice. So, we analyzed the application

of the LDA and QDA techniques in the case of less data (60 samples of train-
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ing for each classes). The results (noted LDA60 and QDA60) are also given in

table A.5.

[Table 5 about here.]

An evident remark is that all the methods give better results in the reduced

space than in the space of all the variables. So, as expected, in order to well

diagnosis the disturbances of an industrial system, a feature selection is nec-

essary.

We can also view that on the same space ({All} or {51,9}) QDA outperforms

all the other methods. The fact that QDA outperforms LDA is not surprising

because LDA is a linear technique while QDA is a quadratic one. A graphical

explanation for these good results can be obtained in figure A.7, where we can

view that the 3 classes are overlapping in the multidimensional space with

non-linear frontiers for separation. These shapes signify that data are normal,

and this is an assumption of the QDA classifier. So, it is logical that QDA

obtains good performances on this problem.

An interesting remark is the fact that the results of QDA on the reduced

space ({51,9} or {51,9,21}) are quite similar to the results of the SVM based

techniques (SVM, PSVM, ISVM). Indeed, SVM are techniques requiring more

computational potential than QDA.

[Fig. 7 about here.]

An other important point (see table A.5), is that the best classification result

is obtained by the QDA classifier in the space {51,9,21}. This reduced space

has been found with our algorithm for feature selection. So, we can say that

this approach is relevant for the feature selection in the industrial systems.
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Finally, we can see that with a training data set of 60 samples by classes,

results are quite good in the reduced space. But, as attended, in the space of

all the variables poor performances are obtained. Indeed, obtaining a correct

estimation of a 52 × 52 covariance matrix with only 60 observation is quite

difficult. In this case (no many data), other estimation approaches should be

applied [63,64,46] in order to increase the precision of the estimation.

The confusion matrix for the QDA in the space {51,9,21} is given on table

A.6 and gives us the possibility to see how the discrimination of the different

faults is done by the QDA technique. Each column of the matrix represents

the instances in a predicted class, while each row represents the instances in an

actual class. For example, for 800 tested observations of fault 4, the diagnosis

procedure gives 6 observations as the fault 11, and 794 observations as the

fault 4, so 0,75% (6/800) of misclassified observations for the fault 4.

[Table 6 about here.]

We can see that the fault 4 and 9 are well discriminated. But, the fault 11

is less discriminable than the 2 others because this fault overlaps on the two

other.

We think that the proposed procedure can be applied online. Indeed, on a Pen-

tium 2.4GHz with Matlab, the first step (ordering the variable, multivariate

approach) takes near 15 seconds, the second step (the 10-fold cross valida-

tion) takes about 8 seconds, the third step (the hypothesis tests) is about

0.15 second, and the last step (classification tests) takes 0.03 second for 2400

observations. So, as the feature selection steps (the three first steps) can be

made during normal working condition of the process, the real diagnosis step

(the last step) takes near 1× 10−5 seconds, and can be used online.
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5 Conclusion and outlooks

We have presented a new supervised procedure for FDI. This method, after

a feature selection, makes classification of faulty observation with a discrimi-

nant analysis (QDA or LDA). The feature selection algorithm exploits a new

result that we have demonstrated on the mutual information between the class

variable and a normal multivariate variable. The application on the TEP of

this FDI procedure demonstrates that this method is relevant in order to do a

good feature selection and a good classification, and we obtained better results

than other published methods.

The feature selection algorithm and the classifier share a common assump-

tion: the normality of the data. It will be interesting to study the effect of

non-normality on this approach. But, it will be more motivating to improve

this method in order to take into account not normally distributed data. An

attractive way of research can be the use of gaussian mixture models [35]. But,

for instance, an analytical form of the entropy of a gaussian mixture does not

exist. So, mutual information between a gaussian mixture and a class variable

cannot be computed directly. This can be an interesting research field. An

other outlook of interest would be the extension of the method in order to

apply it to a classical regression model.

Another field of interest is the diagnosis of a non-identified fault type (no

historical data on this fault type). For the moment, the method we propose

cannot detect if a new type of fault appeared and the procedure randomly

attributes it to one already identified type of fault. So, extension of the method

with some procedure like described in [44] would be interesting.
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A About mutual information

This appendix presents the demonstration of the equation 14 which is the

mutual information between a multinomial variable and a multivariate normal

variable.

As demonstrated in chapter 9 of [50], the entropy h of a multivariate normal

distribution of dimension p can be written as:

h(X) = −
∫

x

P (x) log(P (x))dx =
1

2
log ((2πe)p|Σ|)

where P (x) represents the density function of a p normal variable, as given in

the equation 6. The definition of the mutual information gives:

I(X; C)=
k
∑

c=1

∫

x

P (c, x) log

(

P (c, x)

P (c)P (x)

)

dx

=
k
∑

c=1

∫

x

P (c)P (x| c) log

(

P (c)P (x| c)

P (c)P (x)

)

dx

=
k
∑

c=1

P (c)
∫

x

P (x| c) log (P (x| c)) dx

−
k
∑

c=1

∫

x

P (c)P (x| c) log (P (x)) dx
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We can see that the integral of the first term is the definition of the entropy of

a multivariate normal distribution with mean µc and covariance matrix Σc.

The second term can be developed as follow:

k
∑

c=1

∫

x

P (c)P (x| c) log (P (x)) dx

=
∫

x

k
∑

c=1

P (x, c) log (P (x)) dx

=
∫

x

P (x) log (P (x)) dx

=−
1

2
log ((2πe)p|Σ|)

then,

I(X; C)=
k
∑

c=1

P (c)
(

−
1

2
log ((2πe)p |Σc|)

)

+
1

2
log ((2πe)p |Σ|)

=−
1

2
log ((2πe)p)−

1

2

k
∑

c=1

P (c) log (|Σc|)

+
1

2
log((2πe)p) +

1

2
log(|Σ|)

=
1

2

[

log (|Σ|)−
k
∑

c=1

P (c) log(|Σc|)

]
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Group S1 S2 S3 S4

Variables {3} {3,1} {3,1,2} {3,1,2,4}

Average
error

26 15.5 10.5 11

Standard
deviation

12.2 8.9 7.2 7.2

Hypothesis
test

S3 − S1 S3 − S2 – –

Result of
the test

0 1 – –

Best group {2,3}

Table A.1
Selection of the best group for the example of the 4 variables system
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Class Fault type
Train
data

Test
data

1
Fault 4: step change in the reactor
cooling water inlet temperature

480 800

2
Fault 9: random variation in D
feed temperature

480 800

3
Fault 11: random variation in the
reactor cooling water inlet tem-
perature

480 800

Table A.2
Description of fault datasets
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Approach Ordered variables

Univariate 51, 9, 50, 19, 18, 20, 38, 21

Multivariate (LDA) 51, 9, 19, 29, 16, 20, 18, 7

Multivariate (QDA) 51, 9, 21, 50, 20, 38, 7, 18

Table A.3
Order of the 8 first variables for the example of the TEP
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Approach Best group

Univariate with LDA {51, 9}

Univariate with QDA {51, 9}

Multivariate with LDA {51, 9}

Multivariate with QDA {51, 9, 21}

Table A.4
Selection of the best group for the example of the TEP
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Misclassification rate

Method {All} {51,9} {51,9,21}

480 obs/classes

SVM 44% 6.5%

PSVM 35% 6.0%

ISVM 29.86% 6.0%

LDA 42.04% 31.58% 32.87%

QDA 18.83% 5.87% 5.67%

60 obs/classes

LDA60
58.21% 30.75% 32.29%

QDA60
60.75% 7.38% 7.33%

Table A.5
Misclassification rate of the different methods in the different spaces
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Class Fault 4 Fault 9 Fault 11 Total

Fault 4 794 0 34 828

Fault 9 0 777 73 850

Fault 11 6 23 693 716

Total 800 800 800 2400

Table A.6
Confusion matrix of QDA on the TEP data {9,21,51}
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