Investigation of the thermal efficiency of a staggered elliptic-tube heat exchanger for aeroengine applications
K. Kritikos, C. Albanakis, D. Missirlis, Z. Vlahostergios, A. Goulas, P. Storm

To cite this version:

HAL Id: hal-00516876
https://hal.archives-ouvertes.fr/hal-00516876
Submitted on 13 Sep 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Accepted Manuscript

Investigation of the thermal efficiency of a staggered elliptic-tube heat exchanger for aeroengine applications

K. Kritikos, C. Albanakis, D. Missirlis, Z. Vlahostergios, A. Goulas, P. Storm

PII: S1359-4311(09)00231-2
DOI: 10.1016/j.applthermaleng.2009.07.013
Reference: ATE 2865

To appear in: Applied Thermal Engineering

Received Date: 14 May 2009
Accepted Date: 23 July 2009

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Investigation of the thermal efficiency of a staggered elliptic-tube heat exchanger for aeroengine applications

K. Kritikosa, C. Albanakisa, D. Missirlisa*, Z. Vlahostergiosa, A. Goulasa, P. Stormb

a Laboratory of Fluid Mechanics and Turbomachinery, Department of Mechanical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54 124, Greece

b MTU Aero Engines GmbH, Munich, Germany

*Corresponding author. E-mail address: misirlis@eng.auth.gr (D. Missirlis).

Abstract

In this paper, a numerical investigation of the thermal performance of a heat exchanger designed for aero engine applications is performed with the use of computational fluid dynamics (CFD). For this purpose, the exact geometry of the heat exchanger was modeled, and additionally the use of a porous medium methodology was adopted. For the latter the behaviour of the heat exchanger was described by experimentally derived pressure drop and heat transfer laws. The heat transfer performance of the heat exchanger can be described by the Nusselt number of the flow and the temperature distribution inside the heat exchanger. At the present work the CFD results regarding the overall and local Nusselt numbers and the temperature distributions were compared to available experimental data and were found to be in agreement. Thus, both approaches could be used for the detailed investigation of the thermal performance of the heat exchanger so that useful conclusions could be derived.

Keywords: heat exchanger, heat transfer, Nusselt number, porous medium, pressure drop.
1. Introduction

Nowadays, the pressure for reducing fuel consumption and pollutant emissions and the development of environmentally friendlier aero engines is significantly increased.

Towards this direction, aeronautic engineers are obliged to exploit every aspect of the
operation of an aero engine. Focused on this goal, MTU Aero Engines has developed the concept of the Intercooled Recuperative Aero engine (IRA), which uses a less conventional but more efficient thermodynamic cycle, Boggia [1].

The concept of the recuperative engine is shown in Fig 1. As it can be seen, a number of heat exchangers are installed inside the exhaust nozzle of an aero engine, immediately downstream of the turbine exit. The main target of the heat exchangers is the exploitation of the thermal energy of the turbine exhaust gas in order to pre-heat the compressor outlet air before combustion and thus to decrease fuel consumption and pollutant emissions.

Fig. 1 The IRA aero engine

Since the heat exchangers are a critical part of this technology, the optimization of their performance can maximize its benefits. For this reason, experimental and numerical methods can be introduced. The performance of the heat exchanger was investigated experimentally in the work of Albanakis et al. [2]. However, in their work it was not possible to proceed to detailed measurements inside the heat exchanger core in order to investigate the local heat transfer performance and towards this direction numerical methods can be used.

Such an effort is presented in this work where computational tools are developed in order to provide a detailed view of the flow field and the heat transfer taking place inside the heat exchanger core. The numerical investigation is performed with two
approaches: at first, with the use of computational fluid dynamics (CFD), where the exact geometry of the heat exchanger was modeled and second, with the use of a porous medium methodology where the behaviour of the heat exchanger was described by experimentally derived pressure drop and heat transfer laws.

The first attempts to investigate the behaviour of this heat exchanger have been presented in the work of Missirlis et al. [3,4] who presented an experimental and numerical study of the heat exchanger. In their work the heat exchanger was treated as a porous medium with predefined pressure drop derived from detailed experimental measurements. Additionally, Yakinthos et al. [5,6], presented an optimization effort of the overall heat exchanger installation with the use of the previously developed porous medium model together with a wide range of experimental measurements. In these works, the main parameter under consideration was the reduction of pressure losses since the experimental measurements were corresponding to isothermal flow conditions. Thus, the heat transfer efficiency of this heat exchanger has not been extensively studied yet. The latter is the main target of the present work.

The investigation of the flow field and the heat transfer in tube bundle heat exchangers has been presented in detail in various works of international literature. Studies involving flow-over-tube bundle heat exchangers, consisting of either elliptical or circular tubes, have been the subject of numerous experimental and numerical works. An extended experimental work aiming to study the pressure losses and the heat transfer of flow through a tube bundle heat exchanger has been performed by Zukauskas and
Ulinskas [7]. After examining many different geometrical settings and parameters, they suggested correlations for heat transfer with the Reynolds and Prandtl number and for the pressure drop with the velocity and the geometrical characteristics.

Furthermore, Ahmad [8] did a bibliographic work and a numerical effort to present the dependence of the drag coefficient and thermal field with Reynolds number for flow over a single cylinder. Mandhani et al. [9] used a numerical model to extract results for the local heat transfer characteristics of the flow over a circular tube bundle for a wide range of Prandtl number. Bouris et al. [10] and Horvat et al. [11] investigated the effect of the tube shape on heat exchange mechanism where they concluded that the elliptic tubes are more efficient. For the optimization of the thermal performance of a tube bundle heat exchanger, numerical studies were performed by Matos et al. [12,13,14] by changing the spacing and the eccentricity of the tubes. Similar investigations were performed by Stanesku et al. [15] and showed that the optimal spacing decreases as the Reynolds number increases and as the length of the heat exchanger in flow direction increases.

As far as the macroscopic porous modeling is concerned, Horvat and Catton [16] used a volume-averaging technique to model the heat transfer of a plate with circular fins.

In all previous works, the heat transfer performance of the heat exchanger was mainly described by the Nusselt number of the flow inside the heat exchanger. Thus, a similar approach was followed in the present work and the heat transfer performance of the heat
exchanger was investigated with the analysis of the overall and local Nusselt numbers and the temperature distributions inside the heat exchanger.

2. Description of the flow field inside tube bundles.

For the determination of the phenomena that governs the flow, experimental investigations were performed in wind tunnels where staggered tube bundle heat exchanger cores were mounted. The studies of Umeda and Yang [17] were focused on that direction. In their work an effort was made to derive correlations between the heat exchanger core characteristics and the type of the flow: laminar, turbulent or transitional.

The characteristic Reynolds number of the flow was defined as:

\[\text{Re} = \frac{U_{\text{max}} L}{\nu}, \]

where \(L \) is a characteristic length and \(U_{\text{max}} \) is the maximum velocity inside the heat exchanger core.

Based on this definition and using the tube diameter as the characteristic length, the flow is considered to be laminar when \(\text{Re} < 200 \), turbulent when \(\text{Re} > 6000 \) and transitional when \(200 < \text{Re} < 6000 \).

Under certain conditions, flow separation can occur downstream the heat exchanger tubes and von Karman vortices are created which are shedding downstream. The
A dimensionless number that characterizes such a flow is the Strouhal number as defined in eq. 1:

\[St = \frac{f \cdot D}{U_\infty} \]

(1)

where \(f \) is the frequency of the shedding vortices and D is the cylinder diameter. The characteristic Reynolds number for a cylinder is defined in eq. 2:

\[Re = \frac{U_\infty D}{\nu} \]

(2)

For Reynolds number values greater than 1000, the Strouhal number of a single cylinder has an almost constant value of 0.21.

Fig. 2 Flow inside a cylinder array

For compact type heat exchangers the spacing between the tubes is characteristically small in order to achieve higher values of heat exchange surface and heat transfer coefficients. In such cases, the flow field development inside the heat exchanger core is being significantly affected by the main flow surrounding the tubes and an ‘X-type’ flow is being developed, as presented in **Fig. 2**. This type of flow is surrounding the tubes and their wake regions, which remain almost completely stabilized near the trailing edge region of the tubes. However, at the last row of tubes the development of
the wake region is not being limited by the ‘X-type’ flow and vortex shedding appears and the flow field develops an unsteady nature.

3. Experimental setup

The heat exchanger model is corresponding to the straight part of the complete heat exchanger geometry. It is constructed in a 1:1 scale and consists of 144 elliptic tubes, placed in a 4-3-4 staggered arrangement. Additional details can be found in the work of Albanakis et al. [2]

For the experimental measurements, the air inlet temperature was set at 60°C and 80°C while the air temperature difference between inlet and outlet was equal to $\Delta T=29^\circ\text{C}$ and $\Delta T=47^\circ\text{C}$ respectively. For each temperature difference three different flow rates were examined. For the experimental measurements, the corresponding Reynolds numbers indicate that the flow is within the transitional regime. However, as it was shown in the work Missirlis et al. [4,5] a turbulent flow CFD computation can provide useful results.

4. Numerical methodology

The numerical analysis consists of two approaches. In the first approach, the detailed modeling of a characteristic flow passage of the exact geometry of the heat exchanger is performed, as shown in Fig. 3. In the second one, the heat exchanger is modeled macroscopically as a porous medium.
As already mentioned, the heat exchanger under investigation consists of a number of elliptic tubes placed in a staggered arrangement. Thus, vortex shedding is expected to appear downstream of the last row of tubes and thus, it was decided to proceed with unsteady computations.

4.1 CFD modeling of a flow passage of the heat exchanger

For the detailed modeling of the heat exchanger an in-house code developed in the Laboratory of Fluid Mechanics and Turbomachinery (LFMT) was used. The computational domain consists of one characteristic flow passage, presented in Fig. 3.

Even though the computation was performed with a 3D solver, only one plane of the flow was computed, corresponding to the symmetry axis of the wind tunnel. Thus, the flow field solution is performed under a 2D approach. Thus, a computational grid of 45584 (814×2×156) cells was created. During the grid creation process, special care was given to the regions where significant variations in the flow quantities were expected, as presented in Fig. 3.

The boundary conditions that were used are periodicity at the top and bottom boundaries and symmetry in the north - south direction, as presented in Fig. 3. In addition, a constant temperature value is imposed on the tube walls, set equal to the temperature of water circulating inside the tubes during the experimental measurements.
Since the flow field is an unsteady one, it was necessary to make an estimation of the time period and the frequency of the vortex shedding behind the elliptic tubes.

Considering that the Strouhal number in shedding flows over a cylinder has a value of 0.21 and using the small axis of the elliptic tube as the characteristic length and the inlet velocity as a characteristic velocity, a frequency of approximately 1000 Hz is calculated and the estimated time period of the vortex shedding is 0.001 sec. Hence, the time step for the unsteady calculation was selected as a small part of the time period and more specifically, equal to 1×10^{-5} sec.

The solved equations are the continuity equation, eq. 3, the Favre averaged Navier-Stokes equations, eq. 4, and the equation of energy, eq. 5. For the pressure calculation the SIMPLE algorithm is applied. The density fluctuations calculation was based on the Karki-Patankar [19] procedure. The flow was solved with the Finite Volume Method while the discretization scheme HLPA of Zhu [20] was used. The computation was performed on a cluster of 22 processors, the communication of which was based on MPI.

For the turbulence modeling, eq.6 and eq. 7, the Launder-Sharma low Reynolds $k - \varepsilon$ model [21] was used.

Continuity:
\[
\frac{\partial \bar{p}}{\partial t} + \frac{\partial}{\partial x_i} (\bar{p} \bar{u}_i) = 0
\] (3)

Momentum:

\[
\frac{\partial}{\partial t} (\bar{p} \bar{u}_i) + \frac{\partial}{\partial x_j} (\bar{p} \bar{u}_j \bar{u}_i) = -\frac{\partial \bar{p}}{\partial x_i} + \frac{\partial}{\partial x_j} (\tau_{ji}^{tot})
\] (4)

Total energy:

\[
\frac{\partial}{\partial t} (\bar{e}_0) + \frac{\partial}{\partial x_j} (\bar{p} \bar{u}_j \bar{e}_0 + \bar{u}_i \bar{p} + \tilde{q}_j^{tot} - \bar{u}_i \tilde{r}_{ij}^{tot}) = 0
\] (5)

where

\[
\bar{e}_0 = \bar{e} + \frac{\bar{u}_i \bar{u}_k}{2} + \bar{k} \quad \bar{e} = C \bar{T}
\]

\[
\tilde{r}_{ij}^{tot} = \tilde{r}_{ij}^{lam} + \tilde{r}_{ij}^{turb}
\]

\[
\tilde{r}_{ij}^{lam} = \mu \left(\frac{\partial \bar{u}_i}{\partial x_j} + \frac{\partial \bar{u}_j}{\partial x_i} - \frac{2}{3} \frac{\partial \bar{u}_k}{\partial x_k} \delta_{ij} \right)
\]

\[
\tilde{r}_{ij}^{turb} = \mu \left(\frac{\partial \bar{u}_i}{\partial x_j} + \frac{\partial \bar{u}_j}{\partial x_i} - \frac{2}{3} \frac{\partial \bar{u}_k}{\partial x_k} \delta_{ij} \right) - \frac{2}{3} \bar{p} \bar{k} \delta_{ij}
\]

\[
\tilde{q}_j^{tot} = \tilde{q}_j^{lam} + \tilde{q}_j^{turb}
\]

\[
\tilde{q}_j^{lam} = -C_p \frac{\mu}{Pr} \frac{\partial \bar{T}}{\partial x_j} \quad \tilde{q}_j^{turb} = -C_p \frac{\mu}{Pr} \frac{\partial \bar{T}}{\partial x_j}
\]
Turbulence kinetic energy:

\[
\frac{\partial (\bar{P}k)}{\partial t} + \frac{\partial}{\partial x_j}(\bar{P} \bar{u}_j \bar{k}) = \frac{\partial}{\partial x_j}\left[\left(\mu + \frac{\mu}{\sigma_k}\right) \frac{\partial \bar{k}}{\partial x_j}\right] + P_k - \bar{\varepsilon}^* + 2\frac{\mu}{\bar{\rho}}\left(\frac{\partial \sqrt{\bar{k}}}{\partial x_j}\right)^2
\]

where

\[
P_k = \gamma_{\text{urb}} \frac{\partial \bar{u}_j}{\partial x_j}, \quad \mu_t = c_\mu f_\mu \frac{\bar{k}^2}{\bar{\varepsilon}^*}.
\]

Isotropic part of turbulent dissipation:

\[
\frac{\partial (\bar{P}\bar{\varepsilon}^*)}{\partial t} + \frac{\partial}{\partial x_j}(\bar{P} \bar{u}_j \bar{\varepsilon}^*) = \frac{\partial}{\partial x_j}\left[\left(\mu + \frac{\mu}{\sigma_\varepsilon}\right) \frac{\partial \bar{\varepsilon}^*}{\partial x_j}\right] + c_{\varepsilon_1} f_\varepsilon \frac{\bar{\rho} \bar{E}^*}{\bar{k}} P_k - c_{\varepsilon_2} f_2 \frac{\bar{\rho} \bar{E}^{*2}}{k} + 2\mu_t \frac{\mu}{\bar{\rho}}\left(\frac{\partial \bar{u}_j}{\partial x_j}\right)^2
\]

where

\[
f_\mu = \exp\left(-\frac{3.4}{\left(1 + \frac{R_T}{50}\right)^2}\right), \quad f_1 = 1, \quad f_2 = 1 - 0.3\exp\left(-R_T^2\right), \quad R_T = \frac{\bar{P} \bar{k}^2}{\mu \bar{\varepsilon}^*},
\]

\[
c_{\varepsilon_1} = 1.44, \quad c_{\varepsilon_2} = 1.92, \quad c_\mu = 0.09, \quad \sigma_k = 1.0, \quad \sigma_\varepsilon = 1.3
\]

The dynamic viscosity \(\mu \) is considered to be temperature dependent following the

Sutherland’s law:
\[
\mu = \mu_0 \left(\frac{T}{T_0} \right)^{3/2} \left(\frac{T_0 + C}{T + C} \right), \text{ where the reference values are}
\]

\[
\mu_0 = 1.716 \cdot 10^{-5} \, Pa \cdot s, \quad T_0 = 273.15 \, K \quad \text{and} \quad C = 110.6.
\]

4.2 Porous medium modeling of the heat exchanger

In this approach, the presence of the heat exchanger was modelled as a porous medium with predefined pressure drop and heat transfer behaviour.

For the pressure drop the modified form of the Darcy-Forchheimer law, presented in Yakinthos et al. [22], was used. As presented in eq. 8:

\[
S_M = D'V + \frac{1}{2} F'V'V
\]

\[
S_M = \begin{pmatrix} \frac{\partial p}{\partial x} \\ \frac{\partial p}{\partial y} \\ \frac{\partial p}{\partial z} \end{pmatrix}, \quad V = \begin{pmatrix} u \\ v \\ w \end{pmatrix}, \quad D' = \begin{pmatrix} D'_{xx} & D'_{xy} & D'_{xz} \\ D'_{yx} & D'_{yy} & D'_{yz} \\ D'_{zx} & D'_{zy} & D'_{zz} \end{pmatrix}, \quad F' = \begin{pmatrix} F'_{xx} & F'_{xy} & F'_{xz} \\ F'_{yx} & F'_{yy} & F'_{yz} \\ F'_{zx} & F'_{zy} & F'_{zz} \end{pmatrix}
\]

The pressure drop terms have been adopted in the flow calculation as source terms in the momentum equations.

At the next step, in order to include the heat transfer effect, it was necessary to incorporate a heat transfer model. Towards this direction and based on the conclusions
of a literature survey of Zukauskas [23], it was decided to follow an approach based on the Nusselt number.

Thus, a correlation for the total Nusselt number of the heat exchanger was derived from the experimental data as a function of Prandtl and Reynolds numbers as presented in eq. 9:

\[Nu = a \text{Pr}^b \text{Re}^c \]

(9)

where \(\text{Re} = \frac{\rho \bar{u} D_h}{\mu} \)

\(\bar{u} \) the average axial velocity and the values of coefficients \(a, b \) and \(c \) were derived from the experimental measurements through a curve fitting process.

At the next step, the heat transfer coefficient \(h \) can be estimated using the definition of the Nusselt number, eq. 10:

\[Nu = \frac{hD_h}{\kappa} \]

(10)

where \(D_h \) is the equivalent diameter of the elliptic tube of the heat exchanger.

When a porous medium modeling is attempted it is necessary to compute a local heat transfer coefficient in the regions of the heat exchanger. For this reason, the
experimentally derived Nusselt-Prandtl-Reynolds correlation was applied in the computational model in the regions of the heat exchanger.

Hence, a local heat transfer coefficient h_{local} is estimated using a local Reynolds, as:

$$\text{Re} = \frac{\rho u D_h}{\mu}$$

where u is the local flow velocity.

At last, the heat source term, which is included in the energy equation, is calculated as presented in eq. 11:

$$\dot{q} = h_{local} A (T_f - T_w)$$

(11)

where

\dot{q} is the heat flux per unit volume

A is the heat exchange surface per unit of volume

T_f is the local fluid temperature

T_w is the water temperature during the experimental measurements

At the next stage, a computational grid of 17024 ($266 \times 1 \times 64$) computational cells was created as presented in Fig. 4. This time the computational domain includes the overall heat exchanger model mounted inside the wind tunnel. At the region occupied by the heat exchanger, the pressure drop and heat transfer laws were applied.
Fig. 4 Computational domain and grid used in the porous medium modeling (the region of the heat exchanger is indicated with red colour)

For the turbulence modeling the Launder-Sharma low Reynolds $k - \varepsilon$ model [21] was used.

The computational domain is presented in Fig. 4. As it can be seen the computational grid corresponds to the symmetry 2D plane of the wind tunnel setup.

Regarding the boundary conditions of the computations, at the inlet of the computational domain a uniform velocity profile and the static pressure is applied. The wind tunnel walls are considered as adiabatic. The CFD computations were performed with the use of the 3D in-house academic solver. Thus, since the selected computational domain corresponds to the wind tunnel symmetry plane, symmetry boundary conditions were used in the north - south direction, as presented in Fig. 4.

5. Results

For the evaluation of the thermal performance of the heat exchanger, the Nusselt number of the numerical investigation is compared to the one of the experimental measurements. Additionally, in the CFD modeling of the flow passage geometry, both the average and the local Nusselt number are calculated for further analysis of the heat transfer efficiency of the heat exchanger.
The Nusselt number is calculated as, eq. 12:

\[Nu = \frac{hD}{\kappa} \]

(12)

where \(\kappa \) is the thermal conductivity of air, with its value being a function of temperature based on the values of thermodynamic tables, eq 13.

\[\kappa = 2.7676 \cdot 10^{-11} T^3 - 6.7098 \cdot 10^{-8} T^2 + 1.0704 \cdot 10^{-4} T - 6.1922 \cdot 10^{-4} \]

(13)

For the local Nusselt number the heat transfer coefficient is, eq. 14:

\[h = \frac{\dot{q}_w}{A \cdot \Delta T} \]

(14)

where \(\dot{q}_w \) is the wall heat flux and \(A \) is the heat exchange surface.

The temperature difference \(\Delta T \) can be either \(\Delta T_m = T_m - T_w \), where \(T_m \) is the mean temperature of the heat exchanger, \(T_m = \frac{T_{in} + T_{out}}{2} \), used mainly in experimental work, Kurtbas [24], or \(\Delta T_b = T_b - T_w \), where \(T_b \) is the local bulk temperature, Jang and Yang [25]. The local Nusselt number was calculated by taking into account both definitions of the temperature difference \(\Delta T \). The first one for compatibility with the experimental data and the second one for a better understanding of the heat transfer mechanism.
Typical results are presented in Fig. 5, for the seven tubes t1 to t7 indicated in Fig. 3. The results of the Nusselt number distribution are presented in relation to a characteristic reference value, Nu_{ref}, corresponding to a typical operation condition of the heat exchanger. The distribution of the Nusselt number is presented as a function of non-dimensional arc length along the surface of the elliptical tube. It must be mentioned that for all cases under investigation similar Nusselt number distributions were computed. Thus, for space economy reasons, the results of only two cases are presented corresponding to $T_{\text{inlet}} = 333\text{K}$, $u=6.5\text{ m/s}$.

Fig. 5 Distribution of Nusselt for $T_{\text{in}}=333\text{K}$ calculated a) with T_m and b) with T_b.

As it can be seen, the Nusselt number distribution can be divided into five distinct regions. The first one is located near the leading edge of the elliptic tube and the second one at the elliptic tube side while the last three regions cover the remaining part of the elliptic tube up to its trailing edge. In all cases, the Nusselt number is taking its maximum values near the stagnation point of the elliptic tube and then decreases rapidly until point A, presented in **Fig. 6**, which is corresponding to the point of the maximum flow acceleration near the elliptic tube. From this point and until point B, the Nusselt number is having small variations and an almost constant value. From point B and to point C the Nusselt number begins increasing to a local maximum, which coincides with the point A of the upper tube where the flow is accelerating. Then, there is a small decrease of the Nusselt number due to the recirculation which develops near the trailing edge of the tube, point D, and just after that, another local maximum is presented at the second stagnation point at the trailing edge of the tube.
The maximum local Nusselt number appears at the stagnation point of each tube and the overall maximum is always on the second tube (t2), due to the acceleration of the flow that enters the heat exchanger.

Fig. 6 a) Velocity and b) Temperature field \((T_{in}=333K, u_{in}=6.5 \text{ m/s})\)

In **Fig. 6** typical velocity and temperature distributions between the tubes are shown. The points A and B, C and D are also indicated.

Regarding the flow field development inside the heat exchanger core, the wake of the tubes can be considered as stable since no signs of vortex shedding are presented, **Fig. 7**.

Fig. 7 Streamlines of flow velocity a) inside the heat exchanger core, b) last tube \(t=T/4\), c) last tube \(t=3T/4\)

On the other hand, the vortices behind the last tube are shedding.

In order to investigate the possible effect of the unsteady nature of the flow in the heat transfer performance of the heat exchanger, the local Nusselt number fluctuations with time were computed as presented in **Fig. 8**. As can be seen, the flow field unsteadiness
does not seem to affect the heat transfer, as the local Nusselt number presents no significant variations with time. More specifically, in the first six rows (t1-t6), where no vortex shedding is appearing behind the tubes, negligible variations are presented and the Nusselt number has a constant value with time. A small variation is noticed only on the last tube, in the area that is affected by the vortex shedding, as shown in Fig. 8.

The frequency of the separation is in the range of 1.02 – 1.35 kHz depending on the inlet flow velocity and it is almost a linear function of velocity.

As a result, the Strouhal number is almost constant $St = \frac{f \cdot \ell}{u}$. For the Strouhal number calculation, the small axis of the elliptic tube was chosen as the characteristic length and hence

$$St = \frac{f \cdot 2b}{u_m}$$

where u_m is the mean velocity of the flow.

For all cases under investigation the Strouhal number is equal to $St \approx 0.3$

Fig. 8 Nusselt fluctuation in time

In order to evaluate the heat transfer performance of each tube, the average Nusselt number for all test cases was computed as presented in Fig. 9. More specifically, in Fig. 9a the average Nusselt number is calculated using the mean inlet – outlet temperature for inlet temperature of 333K. Noticeably, in all cases the first and second tubes have the highest Nusselt number values, with the maximum being presented for the second
tube, while the Nusselt number values are significantly reduced for the rest of the tubes. Additionally, in all diagrams a higher velocity results in higher Nusselt number.

Fig. 9 Nusselt for each tube, $T_m=333K$ using a) T_m and b) T_b.

The same conclusions can be derived from the **Fig. 9b**, where the average Nusselt number for each tube is calculated, but this time based on the bulk temperature. The Nusselt number is higher for the first two tubes and it is almost constant after the third tube regardless the inlet flow velocity. This also indicates that the contribution of the two first tubes to total heat exchanger efficiency is significant.

Furthermore, even though the distribution of the average Nusselt number for each tube differs according to the calculation approach, mean or bulk, the total Nusselt number of the heat exchanger calculated for each case using both approaches is almost equal.

In **Fig. 10** there is a comparison of the measured and calculated total Nusselt number (mean) of the heat exchanger. The Nusselt number increases with the velocity in both experimental measurements and computational results. For the comparison, the experimental Nusselt number values were calculated using the same temperature difference definition as the computational results.

Fig. 10 Total Nusselt for $T_m=333K$
In the case of the porous medium approach, the same test cases as in the CFD modeling of the flow passage of the heat exchanger were computed and the results were compared to the experimental measurements.

The computed outlet temperature of the simulations is presented in Table 1. It must be mentioned that the experimental value of the outlet temperature is 304K for the case of $T_{in}=333K$. As it can be seen the CFD results of both approaches are in good agreement with the experimental measurements.

Table 1 Outlet temperature for $T_{in}=333K$

A comparison of the static pressure drop computed with both CFD approaches and the experimental measurements is shown in Fig. 11. The CFD results of the porous medium approach and the experimental measurement are in very good agreement. The results of the CFD modeling of the flow passage of the heat exchanger follow the same trend as the experimental measurements and the results of the porous medium approach, however a relatively constant deviation appears. This difference can be partially attributed to the fact that wind tunnel walls and their effect have not been taken into account in the case of the CFD flow passage modeling where periodic boundary conditions were used.

Fig. 11 Static pressure drop for $T_{in}=333K$
6. Conclusions

In the present work, the heat transfer performance of a heat exchanger designed for aero engine applications was investigated. The investigation was performed with the use of two CFD approaches, the first one with full modeling of a flow passage of the exact geometry of the heat exchanger and the second one considering the heat exchanger as a porous medium with predefined heat transfer and pressure drop behaviour. The numerical results of both approaches concerning the heat transfer and the temperature distribution were compared with experimental data and with each other and were found to be in good agreement. The thermal behaviour of the heat exchanger core was performed using an analysis based on the local Nusselt number. The thermal investigation of the heat exchanger revealed that the first and second tubes have a significant role in the total thermal efficiency of the heat exchanger as can be seen by the Nusselt number distribution. Moreover, the effect of the unsteady nature of the flow field in the last row of the heat exchanger tubes was examined and shown to have a limited effect on the total heat transfer performance of the heat exchanger.

Acknowledgements

This paper is part of the 03ED research project, implemented within the framework of the “Reinforcement Programme of Human Research Manpower” (PENED) and co-financed by National and Community Funds 25% from the Greek Ministry of Development-General Secretariat of Research and Technology and 75% from E.U. –
European Social Fund. A part of this project has been also funded by MTU Aero Engines GmbH.

References

[8] R. A. Ahmad, Steady-State Numerical Solution of the Navier-Stokes and Energy Equations around a Horizontal Cylinder at Moderate Reynolds Numbers from 100 to

Figure 1. The IRA aero engine
Figure 2. Flow inside a cylinder array
Figure 3. Heat exchanger cross section
Figure 4. Computational domain and grid used in the porous medium modeling (the region of the heat exchanger is indicated with red colour)
Figure 5. Distribution of Nusselt for $T_{in}=333K$ calculated a) with T_m and b) with T_b.
Figure 6. a) Velocity and b) Temperature field ($T_{in}=333K$, $u_{in}=6.5$ m/s)
Figure 7. Streamlines of flow velocity a) inside the heat exchanger core, b) last tube
t=T/4, c) last tube t=3T/4
Figure 8. Nusselt fluctuation in time
Figure 9. Average Nusselt for each tube, $T_{in}=333K$ using a) T_m and b) T_b.
Figure 10. Total Nusselt for $T_{in}=333K$
Figure 11. Static pressure drop for $T_{in}=333K$
Table 1. Outlet temperature for $T_{in}=333K$

<table>
<thead>
<tr>
<th>u_{in} (m/s)</th>
<th>Cfd porous</th>
<th>cfd 1:1</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.51</td>
<td>304.90</td>
<td>305.50</td>
</tr>
<tr>
<td>6.50</td>
<td>304.60</td>
<td>305.00</td>
</tr>
<tr>
<td>5.64</td>
<td>304.40</td>
<td>304.38</td>
</tr>
</tbody>
</table>