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Detection boundary in sparse regression

Ingster, Yu. I. ∗, Tsybakov, A.B. †, and Verzelen, N. ‡

September 9, 2010

Abstract

We study the problem of detection of a p-dimensional sparse vector of
parameters in the linear regression model with Gaussian noise. We establish
the detection boundary, i.e., the necessary and sufficient conditions for the
possibility of successful detection as both the sample size n and the dimension
p tend to the infinity. Testing procedures that achieve this boundary are
also exhibited. Our results encompass the high-dimensional setting (p ≫ n).
The main message is that, under some conditions, the detection boundary
phenomenon that has been proved for the Gaussian sequence model, extends
to high-dimensional linear regression. Finally, we establish the detection
boundaries when the variance of the noise is unknown. Interestingly, the
detection boundaries sometimes depend on the knowledge of the variance in
a high-dimensional setting.

Mathematics Subject Classifications: Primary 62J05, Secondary 62G10,
62H20, 62G05, 62G08, 62C20, 62G20.
Key Words: High-dimensional regression, detection boundary, sparse vectors,
sparsity, minimax hypothesis testing.

1 Introduction

We consider the linear regression model with random design:

Yi =

p
∑

j=1

θjXij + ξi, i = 1, ..., n, (1.1)

where θj ∈ IR are unknown coefficients, ξi are i.i.d. N (0, σ2) random variables, Xij

are random variables, which are identically distributed, and (Xij , 1 ≤ i ≤ n) are
independent for any fixed j with EXij = 0, EX2

ij = 1. We study separately the
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settings with known σ > 0 (then assuming that σ = 1 without loss of generality)
and unknown σ > 0. We also assume that Xij , 1 ≤ j ≤ p, 1 ≤ i ≤ n, are
independent of ξi, 1 ≤ i ≤ n.

Based on the observations Z = (X, Y ) where X = (Xij, 1 ≤ j ≤ p, 1 ≤ i ≤ n),
and Y = (Yi, 1 ≤ i ≤ n), we consider the problem of detecting whether the signal
θ = (θ1, . . . , θp) is zero (i.e., we observe the pure noise) or θ is some sparse signal,
which is sufficiently well separated from 0. Specifically, we state this as a problem
of testing the hypothesis H0 : θ = 0 against the alternative

Hk,r : θ ∈ Θk(r) = {θ ∈ IRp
k : ‖θ‖ ≥ r},

where IRp
k denotes the ℓ0 ball in IRp of radius k, ‖ · ‖ is the Euclidean norm, and

r > 0 is a separation constant.
The smaller is r, the harder is to detect the signal. The question that we

study here is: What is the detection boundary, i.e., what is the smallest separation
constant r such that successful detection is still possible? The problem is formalized
in an asymptotic minimax sense, cf. Section 2 below. This question is closely
related to the previous work by several authors on detection and classification
boundaries for the Gaussian sequence model [4, 8, 9, 10, 11, 12, 13, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24]. These papers considered model (1.1) with p = n and
Xij = δij, where δij is the Kronecker delta, or replications of such a model (in
classification setting). The main message of the present work is that, under some
conditions, the detection boundary phenomenon similar to the one discussed in
those papers, extends to linear regression. Our results cover the high-dimensional
p≫ n setting.

We now give a brief summary of our findings under the simplifying assumption
that all the regressors Xij are i.i.d. standard Gaussian. We consider the asymptotic
setting where p → ∞, n → ∞ and k = p1−β for some β ∈ (0, 1). The results
are different for moderately sparse alternatives (0 < β < 1/2) and highly sparse
alternatives (1/2 < β < 1). We show that for moderately sparse alternatives the
detection boundary is of the order of magnitude

r ≍ p1/4√
n
∧ 1

n1/4
, (1.2)

whereas for highly sparse alternatives (1/2 < β < 1) it is of the order

r ≍
√

k log p

n
∧ 1

n1/4
. (1.3)

This solves the problem of optimal rate in detection boundary for all the range
of values (p, n). Furthermore, for highly sparse alternatives under the additional
assumption

p1−β log(p) = o(
√
n) (1.4)

we obtain the sharp detection boundary, i.e., not only the rate but also the exact
constant. This sharp boundary has the form

r = ϕ(β)

√

k log p

n
, (1.5)
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where

ϕ(β) =

{√
2β − 1, 1/2 < β ≤ 3/4,√
2(1−√

1− β), 3/4 < β < 1.
(1.6)

The function ϕ(·) here is the same as in the above mentioned detection and clas-
sification problems, as first introduced in [15]. We also provide optimal testing
procedures. In particular, the sharp boundary (1.5)-(1.6) is attained on the Higher
Criticism statistic.

One of the applications of this result is related to transmission of signals under
compressed sensing, cf. [7, 5]. Assume that a sparse high-dimensional signal θ
is coded using compressed sensing with i.i.d. Gaussian Xij and then transmitted
through a noisy channel. Observing the noisy outputs Yi, we would like to detect
whether the signal was indeed transmitted. For example, this is of interest if several
signals appear in consecutive time slots but some slots contain no signal. Then
the aim is to detect informative slots. Our detection boundary (1.5) specifies the
minimal energy of the signal sufficient for detectability. We note that ϕ(·) <

√
2,

so that successful detection is possible for rather weak signals whose energy is
under the threshold

√

2k log(p)/n. This can be compared with the asymptotically
optimal recovery of sparsity pattern (RSP) by the Lasso in the same Gaussian
model as ours [29, 30]. Observe that the RSP property is stronger than detection
(i.e., it implies correct detection) but [29] defines the alternative by {θ ∈ IRp

k :

|θj| ≥ c
√

log(p)/n, ∀j} for some constant c > 2, which is better separated from the
null than our alternative Θk(r). Thresholds that are larger in order of magnitude
are required if one would like to perform detection based on estimation of the values
of coefficients in the ℓ2 norm [3, 5].

In many applications, the variance of the noise ξ is unknown. Does the problem
of detection become more difficult in this case? In order to answer this question, we
investigate the detection boundaries in the unknown variance setting. Related work
[27, 28] develop minimax bounds for detection in model (1.1) under assumptions
different from ours and under unknown variance. However, [27] does not provide
a sharp boundary. Here, we prove that for β ∈ (1/2, 1) and k log(p) ≪ √

n, the
detection boundaries are the same for known and unknown variance. In contrast,
when k log(p) ≫ √

n, the detection boundary is much larger in the case of unknown
variance than for known variance. We also provide an optimal testing procedure
for unknown variance.

After we have obtained our results, we became aware of the interesting parallel
unpublished work of Arias-Castro et al. [2]. There the authors derive the detection
boundary in model (1.1) with known variance of the noise for both fixed and
random design. Their approach based on the analysis of the Higher Criticism
shares some similarities with our work. When the variables Xij are i.i.d. standard
normal and the variance is known, we can directly compare our results with [2].
In [2] the detection boundaries analogous to (1.2) and (1.3) do not contain the
minimum with the n−1/4 term, because they are proved in a smaller range of values
(p, n) where this term disappears. In particular, the conditions in [2] exclude
the high-dimensional case p ≫ n. We also note that, due to the constraints on
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the classes of matrices X , [2] obtains the sharp boundary (1.5)-(1.6) under the
condition p1−β(log(p))2 = o(

√
n) which is more restrictive than our condition (1.4).

The other difference is that [2] does not treat the case of unknown variance of the
noise.

Below we will use the following notation. We write Z = (X, Y ) where X =
(Xij, 1 ≤ j ≤ p, 1 ≤ i ≤ n), and Y = (Yi, 1 ≤ i ≤ n) are the observations satisfying
(1.1). Let Pθ be the probability measure that corresponds to observations Z, Pθ,i
be those corresponding to observations Zi = (Xi1, ..., Xip, Yi) with fixed i = 1, ..., n,
and PX , PX,i be the probability measures corresponding to observationsX orX(i) =
(Xi,j, 1 ≤ j ≤ p). We denote by PX

θ and PX
θ,i the conditional distributions of Y

given X and of Yi given X(i) respectively. The corresponding expectations are
denoted by EX

θ and EX
θ,i. Clearly,

Pθ(dZ) = PX
θ (dY )PX(dX), Pθ,i(dZi) = PX

θ,i(dY )PX,i(dX
(i)), (1.7)

and

Pθ(dZ) =

n
∏

i=1

Pθ,i(dZi).

We denote by Xj ∈ IRn the jth column of matrix X = (Xij), and set

(Xj , Xl) =

n
∑

i=1

XijXil, ‖Xj‖2 = (Xj, Xj).

2 Detection problem

For θ ∈ IRp, we denote byM(θ) =
∑p

j=1 1I{θj 6=0} the number of non-zero components
of θ, where 1I{A} is the indicator function. As above, let IRp

k, 1 ≤ k ≤ p, denote
the ℓ0 ball in IRp of radius k, i.e., the subset of IRp that consists of vectors θ with
M(θ) ≤ k, or equivalently, θ ∈ IRp

k contains no more than k nonzero coordinates.
In particular IRp

p = IRp. Recall the notation Θk(r) = {θ ∈ IRp
k : ‖θ‖ ≥ r}.

We consider the problem of testing the hypothesis H0 : θ = 0 against the
alternative Hk,r : θ ∈ Θk(r). In this paper we study the asymptotic setting where
p → ∞, n → ∞ and k = p1−β . The coefficient β ∈ [0, 1] is called the sparsity
index. We assume in this section that σ2 is known. Modifications for the case of
unknown variance are discussed in Section 4.2.1.

We call a test any measurable function ψ(Z) with values in [0, 1]. For a test ψ,
let α(ψ) = E0(ψ) be the type I error probability and β(ψ, θ) = Eθ(1 − ψ) be the
type II error probability for the alternative θ ∈ Θ ⊂ IRp. We set

β(ψ) = β(ψ,Θ) = sup
θ∈Θ

β(ψ, θ), γ(ψ) = γ(ψ,Θ) = α(ψ) + β(ψ,Θ) .

We denote by β(α) = βn,p,k(α, r) the minimax type II error probability for a given
level α ∈ (0, 1),

β(α) = inf
ψ:α(ψ)≤α

β(ψ,Θk(r)), 0 ≤ β(α) ≤ 1− α .
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Accordingly, we denote by γ = γn,p,k(r) the minimax total error probability in the
hypothesis testing problem:

γ = inf
ψ
γ(ψ,Θk(r)),

where the infimum is taken over all tests ψ. Clearly,

γ = inf
α∈(0,1)

(α + β(α)), 0 ≤ γ ≤ 1.

The aim of this paper is to establish the asymptotic detection boundary, i.e.,
the conditions on the separation constant r = rn,p,k, which delimit the zone where
γn,p,k(r) → 1 (indistinguishability) from that where γn,p,k(r) → 0 (distinguishabil-
ity). The distinguishability is equivalent to β(α) → 0, ∀ α ∈ (0, 1). We are inter-
ested in tests ψ = ψn,p or ψα = ψn,p,α such that either γ(ψ) → 0 or α(ψα) ≤ α+o(1),
and β(ψα) → 0. Here and later the limits are taken as p → ∞, n → ∞ unless
otherwise stated.

3 Assumptions on X

We will use at different instances some of the following conditions on the random
variables Xij .

A1. The random variables Xij are uncorrelated, i.e., EXijXil = 0 for all 1 ≤ j <
l ≤ p.
A2. The random variables Xij, 1 ≤ j ≤ p, 1 ≤ i ≤ n, are independent.
A3. The random variables Xij, 1 ≤ j ≤ p, 1 ≤ i ≤ n, are i.i.d. standard Gaussian:
Xij ∼ N (0, 1).

Let Uj , 1 ≤ j ≤ p be random variables such that we have equality in distribution
L(Uj, Ul) = L(Xij, Xil), 1 ≤ j < l ≤ p. We will need the following technical
assumptions.

B1. max
1≤j<l≤p

E((UjUl)
4) = O(1) . (3.1)

B2. There exists h0 > 0 such that max1≤j≤l≤pE(exp(hUjUl)) < ∞ for |h| < h0,
and

log3(p) = o(n). (3.2)

B3. There exists m ∈ IN such that max1≤j≤l≤pE(|UjUl|m) <∞, and

log2(p)p4/m = o(n). (3.3)

Assumption B1 implies that

max
1≤j<l≤p

E(|UjUl|m) = O(1), m = 2, 3, 4 . (3.4)
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In particular, Assumption B1 holds true under A2 if

max
1≤j≤p

E(U4
j ) = O(1). (3.5)

If (XijXil, i = 1, . . . , n) are independent zero-mean random variables, we have (cf.
[25], p. 79):

E|(Xj, Xl)|m ≤ C(m)nm/2−1

n
∑

i=1

E(|XijXil|m), m > 2 .

This and (3.4) yield

∑

1≤j<l≤p
E(|(Xj, Xl)|m) = O(nm/2p2), m = 2, 3, 4 . (3.6)

Finally, Assumptions B1 and B2 hold true under A3 and (3.2).

4 Main results

4.1 Detection boundary under known variance

For this case we suppose σ = 1 without loss of generality.

4.1.1 Lower bounds

We first present the lower bounds on the detection error, i.e., the indistinguishabil-
ity conditions. We assume that k = p1−β, β ∈ (0, 1). Indistinguishability conditions
consist of two joint conditions on the radius r = rnp. The first one is

r2np = o(n−1/2). (4.1)

The second condition differs according to whether β ≤ 1/2 or β > 1/2. If β ≤ 1/2
(i.e. p = O(k2)), which corresponds to moderate sparsity, we require that

r2np = o(
√
p/n) . (4.2)

The case β > 1/2 (i.e. k2 = o(p)) corresponds to high sparsity. We define xnp by

rnp = xn,p
√

k log(p)/n. Then, we require that

lim sup(xn,p − ϕ(β)) < 0, (4.3)

where ϕ(β) is defined in (1.6). Clearly, condition (4.3) implies r2np = O(k log(p)/n),
which is stronger than (4.2) when β > 1/2.

Theorem 4.1 Assume A1, B1, k = p1−β and either B2 or B3. We also require
that rnp satisfies (4.1) and either (4.2) (for β ∈ (0, 1/2]) or (4.3) (for β ∈ (1/2, 1)).
Then, asymptotic distinguishability is impossible, i.e., γn,p,k(rnp) → 1.
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Remark 4.1 This theorem can be extended to non-random design matrix X. In-
spection of the proof shows that, instead of B1, we only need the assumption: For
some Bn,p tending to ∞ slowly enough,

∑

1≤j<l≤p
|(Xj, Xl)|m < Bn,pn

m/2p2, m = 2, 3, 4. (4.4)

Indeed, B1 is used in the proofs only to assure that (4.4) holds true with PX-
probability tending to 1 (this is deduced from assumption B1 and (3.6)).

Also instead of B2 and B3, we can assume that there exists ηn,p → 0 such that

r2np max
1≤j<l≤p

|(Xj, Xl)| < ηn,pk, max
1≤j≤p

|‖Xj‖2 − n| < ηn,pn. (4.5)

Under B2, B3, relations (4.5) hold with PX-probability tending to 1, see Corollary
7.1.

The result of the theorem remains valid for non-random matrices X satisfying
(4.4) and (4.5).

4.1.2 Upper bounds

In order to construct a test procedure that achieves the detection boundary, we
combine several tests.

First, we study the widest non-sparse case k = p, i.e., we consider Θp(r) = {θ ∈
IRp : ‖θ‖ ≥ r}. Consider the statistic

t0 = (2n)−1/2

n
∑

i=1

(Y 2
i − 1), (4.6)

which is the H0-centered and normalized version of the classical χ2
n-statistic

∑n
i=1 Y

2
i . The corresponding tests ψ0

α and ψ0 are of the form:

ψ0
α = 1It0>uα, ψ0 = 1It0>Tnp

where α ∈ (0, 1), uα is the (1 − α)-quantile of the standard Gaussian distribution
and Tnp is any sequence satisfying Tnp → ∞.

Theorem 4.2 For all α ∈ (0, 1), we have:
(i) Type I errors satisfy α(ψ0

α) = α + o(1) and α(ψ0) = o(1).
(ii) Type II errors. Assume A2 and B1 and consider a radius rnp such that

nr4np → ∞. Then, we have β(ψ0
α,Θp(rnp)) → 0. If Tnp is chosen such that

lim supTnpn
−1/2r−2

np < 1, then β(ψ0,Θp(rnp)) → 0.

Recall that we can replace B1 by (3.5) under A2. If nr4np → ∞, then one can take
Tnp such that γn,p(ψ

0,Θp(rnp)) → 0 under A2, B1. This upper bound corresponds
to the part (4.1) of the detection boundary.
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We now introduce a test ψ1
α that achieves the second boundary (4.2). Consider

the following kernel

K(Zi, Zk) = p−1/2YiYk

p
∑

j=1

XijXkj.

The U -statistic t1 based on the kernel K is defined by

t1 = N−1/2
∑

1≤i<k≤n
K(Zi, Zk), N = n(n− 1)/2.

Note that the U -statistic t1 can be viewed as the H0-centered and normalized
version of the statistic χ2

p = n
∑p

j=1 θ̂
2
j based on the estimators θ̂j = n−1

∑n
i=1 YiXij :

χ2
p = 2n−1

p
∑

j=1

∑

1≤i<k≤n
YiYkXijXkj + n−1

p
∑

j=1

n
∑

i=1

Y 2
i X

2
ij .

Indeed, up to a normalization, the first sum is the U -statistic t1, and moving off
the second sum corresponds to centering.

Given α ∈ (0, 1), we consider the test ψ1
α = 1It1>uα.

Theorem 4.3 Assume A2 and B1. For all α ∈ (0, 1) we have:
(i) Type I error satisfies: α(ψ1

α) = α+ o(1).
(ii) Type II errors. Assume that p = o(n2) and consider a radius rnp such that

nr2np/
√
p→ ∞. Then, β(ψ1

α,Θp(rnp)) → 0.

Remark 4.2 Combining the tests ψ0
α/2 and ψ1

α/2 we obtain the test ψ∗
α =

max(ψ0
α/2, ψ

1
α/2) of asymptotic level not more than α. Moreover, it achieves

β(ψ1
α,Θp(rnp)) → 0 for any radius rnp satisfying

r2np ≫
√
p

n
∧ 1√

n
.

We can omit the condition p = o(n2) since the test ψ0
α/2 achieves the optimal

rate for p ≥ n. Combining this bound with Theorem 4.1, we conclude that ψ∗
α

simultaneously achieves the optimal detection rate for all β ∈ (0, 1/2].

We now turn to testing in the highly-sparse case β ∈ (1/2, 1). Here we use a
version of ”Higher Criticism Tests” (HC-tests, cf. [8]). Set

yi = (Y,Xi)/‖Y ‖, 1 ≤ i ≤ p.

Let qi = P (|N (0, 1)| > |yi|) be the p-value of the i-th component and let q(i) denote
these quantities sorted in increasing order. We define the HC-statistic by

tHC = max
i, q(i)≤1/2

√
p(i/p− q(i))

√

q(i)(1− q(i))
. (4.7)

Given a constant a > 0, the HC-test ψHC rejects H0 when the statistic tHC is larger
than (1 + a)

√
2 log log p.
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Remark 4.3 The cutoff 1/2 in the definition (4.7) of tHC can be replaced by any
c ∈ (0, 1).

Theorem 4.4 Assume A3 (Xij are i.i.d. standard Gaussian).
(i) Type I error satisfies α(ψHC) = o(1).
(ii) Type II error. Consider k = p1−β with β ∈ (1/2, 1) and assume that

k log(p) = o(n). Take a radius rnp = xnp
√

k log(p)/n such that lim inf(xnp −
ϕ(β)) > 0. Then, we have β(ψHC ,Θk(rnp)) → 0.

Remark 4.4 If k log(p) = o(n), the HC-test asymptotically detects any k-sparse
signal whose rescaled intensity rnp

√

n/(k log(p)) is above the detection boundary
ϕ(β).

Remark 4.5 Assume A3. Combining the tests ψ0
α and ψHC, we obtain the test

ψ∗,HC
α = max(ψ0

α, ψ
HC) of asymptotic level not more than α. Moreover, it achieves

β(ψ1
α,Θk(rnp)) → 0 for any radius rn,p satisfying

lim inf xn,p ≥ ϕ(β) or r2np ≫
1√
n
.

We can omit the condition k log(p) = o(n) since the test ψ0
α achieves the optimal

rate for k log(p) ≫ √
n. Combining this bound with Theorem 4.1, we conclude that

ψ∗,HC
α simultaneously achieves the optimal detection rate for all β ∈ (1/2, 1).

In conclusion, under Assumption A3, the test max(ψ0
α/2, ψ

1
α/2, ψ

HC) simultane-

ously achieves the optimal detection rate for all β ∈ (0, 1). The detection boundary
is of the order of magnitude

r ≍
√

k log p

n
∧ 1

n1/4
. (4.8)

Furthermore, we establish the sharp detection boundary (i.e., with exact asymp-
totic constant) of the form

r = ϕ(β)

√

k log p

n

for β > 1/2 and k log(p) = p1−β log(p) = o(
√
n).

4.2 Detection boundary under unknown variance

4.2.1 Detection problem

Since the variance of the noise is now assumed to be unknown, the tests ψ under
study should not require the knowledge of σ2. The type I error probability is now
taken uniformly over σ > 0:

αun(ψ) = sup
σ>0

E0,σ(ψ) .
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The type II error probability over an alternative Θ ⊂ R
p is

βun(ψ,Θ) = sup
θ∈Θ,σ>0

β(ψ, θσ, σ) = sup
θ∈Θ,σ>0

Eθσ,σ(1− ψ) . (4.9)

Similarly to the setting with known variance, we consider the sum of the two errors:

γun(ψ,Θ) = αun(ψ) + βun(ψ, θ).

Finally, the minimax total error probability in the hypothesis testing problem with
unknown variance is

γunn,p,k(r) = inf
ψ
γun(ψ,Θk(r))

4.2.2 Lower bounds

Take rnp = xn,p
√

k log(p)/n. As in the case of known variance, we consider the
condition

lim sup(xn,p − ϕ(β)) < 0 . (4.10)

Theorem 4.5 Fix some β > 1/2 and assume A3. If Condition (4.10) holds and
if k log(p) = o(n), then distinguishability is impossible, i.e., γunn,p,k(rnp) → 1 .

If k log(p)/n → ∞, then for any radius r > 0, distinguishability is impossible,
i.e. γunn,p,k(r) → 1.

The detection boundary stated in Theorem 4.5 does not depend on the unknown
σ2. This is due to the definition (4.9) of the type II error probability βun(ψ,Θk(r))
that considers alternatives of the form σθ with θ ∈ Θk(r).

4.2.3 Upper bounds

The HC-test ψHC defined in (4.7) still achieves the optimal detection rate when
the variance is unknown as shown by the next proposition.

Proposition 4.6 Assume A3 (Xij are i.i.d. standard Gaussian).
(i) Type I error satisfies αun(ψHC) = o(1).
(ii) Type II error. Consider k = p1−β with β ∈ (1/2, 1) and assume that

k log(p) = o(n). Take a radius rnp = xnp
√

k log(p)/n such that lim inf(xnp −
ϕ(β)) > 0. Then, we have βun(ψHC ,Θk(rnp)) → 0.

In conclusion, in the setting with unknown variance we prove that the sharp
detection boundary (i.e., with exact asymptotic constant) of the form

ϕ(β)

√

k log p

n

holds for β > 1/2 and k log(p) = p1−β log(p) = o(n), i.e., for a larger zone of values
(p, n) than for the case of known variance. However, this extension corresponds
to (p, n) for which the rate itself is strictly slower than under the known variance.
Indeed, if the variance σ2 is known, as shown in Section 4.1, the detection bound-
ary is of the order (4.8). Thus, there is an asymptotic difference in the order of
magnitude of the two detection boundaries for k log(p) ≫ √

n.
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5 Proofs of the lower bounds

5.1 The prior

Take c ∈ (0, 1), h = ck/p, b = rnp/c
√
k, a = b

√
n. Note that the condition

r2np = o(1/
√
n) is equivalent to b4k2n = o(1).

Let us consider a random vector θ = (θj) with coordinates

θj = bεj, where εj ∈ (0,+1,−1) iid,

such that

Prob(εj = 0) = 1− h, Prob(εj = +1) = Prob(εj = −1) = h/2.

This introduces a prior probability measure πj on θj and the product prior measure
π =

∏p
j=1 πj on θ. The corresponding expectation and variance operators will be

denoted by Eπ and Varπ.

Lemma 5.1 Let k → ∞. Then

π(θ ∈ IRp
k, ‖θ‖ ≥ r) → 1.

Proof. Observe that

‖θ‖2 = b2
p
∑

j=1

ε2j , m(θ) =

p
∑

j=1

|εj|.

We have
Eπ(‖θ‖2) = b2ph = r2/c, Eπ(m(θ)) = ph = ck,

and
Varπ(‖θ‖2) ≤ phb4 = r4/(kc3), Varπ(m(θ)) ≤ ph = ck.

Applying the Chebyshev inequality, we get with C = c−1 > 1,

π(‖θ‖2 < r2) = π(Eπ(‖θ‖2)− ‖θ‖2 > r2(C − 1)) ≤ Varπ(‖θ‖2)
r4(C − 1)2

→ 0,

and similarly, π(m(θ) > k) → 0. 2

Lemma 5.1 implies that, in order to obtain asymptotic lower bounds for the
minimax problem, we only have to study the Bayesian problem which corresponds
to the prior π, see for instance [18], Proposition 2.9. Consider the mixture

Pπ(dZ) = EπPθ(dZ) =

∫

IRp

Pθ(dZ)π(dθ)

and the likelihood ratio

Lπ(Z) =
dPπ
dP0

(Z).
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In order to prove the lower bounds we only need to check that

Lπ(Z) → 1 in P0 − probability. (5.1)

Consider x = lim sup xn,p. If β ≤ 1/2, then x = 0 since nb2 = O(1). For
β > 1/2, we take c ∈ (0, 1) such that xc = x/c < ϕ(β), which is possible as
x < ϕ(β). We will use the short notation x and a for xc and ac = b

√
n = a/c. We

set

aj = b‖Xj‖, y′j = (Xj, Y )/‖Xj‖, xj = aj/
√

log(p), Tj = aj/2 + log(h−1)/aj ,

which corresponds to he−a
2
j+ajT = 1.

5.2 Study of the likelihood ratio Lπ

First observe that by (1.7)

Pπ(dZ) = PX(dX)Eπ
(

PX
θ (dY )

)

, Lπ(Z) = Eπ

(

dPX
θ

dPX
0

(Y )

)

.

Note that conditional measure PX
θ corresponds to observation of the Gaussian

vector N (v, In) where v =
∑p

j=1 θjXj , In is the n × n identity matrix, and the
likelihood ratio under the expectation is

dPX
θ

dPX
0

(Y ) = exp(−‖v‖2/2 + (v, Y )) = gθ(Z)e
−∆(X,θ),

where

gθ(Z) =

p
∏

j=1

exp(−θ2j‖Xj‖2/2 + θj(Xj , Y )), ∆(X, θ) = 2
∑

1≤j<l≤p
θjθl(Xj , Xl).

(5.2)
Put

Λ(Z) = Eπ (gθ(Z)) =

p
∏

j=1

(1− h+ he−b
2‖Xj‖2/2 cosh(b(Xj , Y ))) .

We define ηj = e−b
2‖Xj‖2/2 cosh(b(Xj , Y )) − 1. Take now δ > 0 and introduce the

set
ΣX = {θ ∈ IRp : |∆(X, θ)| ≤ δ}.

We can write

Lπ(Z) =

∫

IRp

gθ(Z)e
−∆(X,θ)π(dθ) ≥ e−δ

∫

ΣX

gθ(Z)π(dθ) = e−δΛ(Z)πZ(ΣX),

where πZ =
∏p

j=1 πZ,j is the random probability measure on IRp with the density

dπZ
dπ

(θ) =
gθ(Z)

Λ(Z)
=

p
∏

j=1

dπZ,j
dπj

(θ);
dπZ,j
dπj

(θ) =
e−θ

2
j ‖Xj‖2/2+θj(Xj ,Y )

1 + hηj
, θj ∈ {0,±b},

12



i.e., the measure πZ,j is supported at the points {0, b,−b} and

πZ,j(0) =
1− h

1 + hηj
, πZ,j(±b) =

h±Z,j
2
, h±Z,j =

hedj
±

1 + hηj
,

where we set

d±j = −a2j/2± ajy
′
j , ηj =

ed
+
j

2
+
ed

−

j

2
− 1.

Proposition 5.1 In P0-probability,

πZ(ΣX) → 1. (5.3)

Proof of Proposition 5.1 is given in Section 5.3.

Proposition 5.2 In P0-probability,

Λ(Z) → 1. (5.4)

Proof of Proposition 5.2 is given in Section 5.4.

Propositions 5.1 and 5.2 imply that, for any δ > 0,

P0(Z : Lπ(Z) > 1− δ) → 1.

Since E0Lπ = 1 and Lπ(Z) ≥ 0, this yields Lπ → 1 in P0-probability. This yields
indistinguishability in the problem. 2

5.3 Proof of Proposition 5.1

5.3.1 Replacing the measure πZ by π̃Z

Let us consider the random measure π̃Z =
∏p

j=1 π̃Z,j, where π̃Z,j is supported at
the points {0, b,−b} and

π̃Z,j(0) = 1−
q+Z,j
2

−
q−Z,j
2
, π̃Z,j(±b) =

q±Z,j
2
,

where
q±Z,j = (h/2)edj

±

1IA±

j
, A±

j = {hedj± < 1} = {±y′j < Tj}

and observe that the event A±
j implies q±Z,j ≤ 1/2, i.e, the measures π̃Z,j are cor-

rectly defined. We define the event A = Anp = ∩pj=1(A+
j ∩ A−

j ).

Lemma 5.2

P0(An,p) → 1.

13



Proof. Denote Ac the complement of the event A. Since y′j ∼ N (0, 1) under P0,
we have

PX
0 ((An,p)

c) ≤
p
∑

j=1

PX
0 ((A+

j )
c) + PX

0 ((A−
j )

c) = 2

p
∑

j=1

Φ(−Tj).

By Corollary 7.1 we get aj = b‖Xj‖ ∼ b
√
n uniformly in 1 ≤ j ≤ p in PX-

probability. By (7.1) this implies
∑p

j=1Φ(−Tj) = o(1) in PX-probability. 2

We can replace the measure πZ by π̃Z in (5.3). This follows from the following
lemma

Lemma 5.3 In P0-probability,

Eπ̃Z |dπZ/dπ̃Z − 1| → 0. (5.5)

Proof. Applying the equality Eπ̃Z(dπZ/dπ̃Z) = 1 and the inequality 1 + x ≤ ex,
we get

(Eπ̃Z |dπZ/dπ̃Z − 1|)2 ≤ Eπ̃Z(dπZ/dπ̃Z − 1)2 = Eπ̃Z(dπZ/dπ̃Z)
2 − 1

=

p
∏

j=1

Eπ̃Z,j
(dπZ,j/dπ̃Z,j)

2 − 1

=

p
∏

j=1

(1 + Eπ̃Z,j
(dπZ,j/dπ̃Z,j − 1)2)− 1

≤ exp

(

p
∑

j=1

Eπ̃Z,j
(dπZ,j/dπ̃Z,j − 1)2

)

− 1.

Consequently, we only have to prove that in P0-probability,

H(Z) =

p
∑

j=1

Eπ̃Z,j
(dπZ,j/dπ̃Z,j − 1)2 → 0.

Since H(Z) ≥ 0, the last relation follows from

EX
0 (H) → 0, in PX-probability

by Markov inequality. Observe that

Eπ̃Z,j
(dπZ,j/dπ̃Z,j−1)2 =

(h+Z,j − q+Z,j)
2

2q+Z,j
+
(h−Z,j − q−Z,j)

2

2q−Z,j
+
(h+Z,j + h−Z,j − q+Z,j − q−Z,j)

2

2(2− q+Z,j − q−Z,j)
.

By Lemma 5.2, it is sufficient to study these terms under the event A which cor-
responds to max1≤j≤p q

±
Z,j ≤ 1/2. Under this event, we have h±Z,j = q±Z,j/λj, λj =

1 + q+Z,j + q−Z,j − h, and direct calculation gives

(h+Z,j − q+Z,j)
2

2q+Z,j
+

(h−Z,j − q−Z,j)
2

2q−Z,j
+

(h+Z,j + h−Z,j − q+Z,j − q−Z,j)
2

2(2− q+Z,j − q−Z,j)
=

(q+Z,j + q−Z,j)∆
2
j

λ2j(2− q+Z,j − q−Z,j)
,

14



where
∆j = q+Z,j + q−Z,j − h = h(ed

+
j 1IA+

j
+ ed

−

j 1IA−

j
− 2)/2.

Since max1≤j≤p q
±
Z,j ≤ 1/2, we only have to control the sum

∑p
j=1∆

2
j .

EX
0 1IA∆

2
j ≤ h2

2

(

ea
2
jΦ(Tj − 2aj) + e−a

2
j − 4Φ(Tj − aj) + 2

)

.

CASE 1: nb2 = O(1). By corollary 7.1, (aj/(
√
nb) − 1) = oPX

(1). Consequently,
Φ(Tj − 2aj) = 1− oPX

(p−2).

EX
0

[

1IA

p
∑

j=1

∆2
j

]

≤ ph2

2
sinh2(nb2(1+opX(1))/2)+oPX

(1) =
ph2nb2

2
+oPX

(1) = oPX
(1) ,

since r2n,p = o(
√
p/n).

CASE 2: lim sup nb2 = ∞. This implies that k2 = o(p) and therefore ph2 = o(1).

EX
0

[

1IA

p
∑

j=1

∆2
j

]

=
ph2

2
enb

2(1+oPX
(1)) + o(1) = p−(2β−1)+x2+oPX

(1) + o(1) .

Since x < ϕ(β) ≤ √
2β − 1 for β > 1/2, this allows to conclude. 2

5.3.2 Study of Eπ̃Z∆
2

By Lemma 5.2, the relation (5.3) follows from π̃(Σ) → 1, in P0-probability. Thus,
we only need to check that in P0-probability, Eπ̃Z∆

2 → 0 for ∆ = ∆(X, θ) defined
by (5.2). By Markov inequality, the last relation follows from

EX
0 (Eπ̃Z∆

2))) → 0, in PX -probability.

Let us introduce the events Xn,p. Taking a positive family η = ηn,p → 0, we set

X j = {(‖Xj‖2−n) < ηn}, X ij = {log(p)|(Xj, Xl)| < ηn}, Xn,p =
⋂

1≤j<l≤p

(

X j ∩ X ij
)

.

It follows from Corollary 7.1 that, under assumptions B2 or B3 we can take η =
ηn,p → 0 such that PX(Xn,p) → 1. We have

Eπ̃Z∆
2 = b4Eπ̃Z

(

p
∑

j1,j2,j3,j4=1

θj1θj2θj3θj4(Xj1, Xj2)(Xj3, Xj4)

)

= 2A2 + 6A3 + 24A4,

where

A2 = b4
∑

1≤j1<j2≤p
Eπ̃Z

(

ǫ2j1ǫ
2
j2

)

(Xj1 , Xj2)
2, (5.6)

A3 = b4
∑

1≤j1<j2<j3≤p
Eπ̃Z

(

ǫ2j1ǫj2ǫj3
)

(Xj1, Xj2)(Xj1, Xj3), (5.7)

A4 = b4
∑

1≤j1<j2<j3<j4≤p
Eπ̃Z (ǫj1ǫj2ǫj3ǫj4) (Xj1 , Xj2)(Xj3, Xj4). (5.8)
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5.3.3 Expectation over π̃Z and over EX
0

Let us define the variables ηk in {1,−1}. The expectations over π̃Z are of the form

Eπ̃Z
(

ǫ2j1ǫ
2
j2

)

=
(q+j1 + q−j1)(q

+
j2
+ q−j2)

4
=

1

4

∑

η1,η2

2
∏

k=1

qηkjk , (5.9)

Eπ̃Z
(

ε2j1εj2εj3
)

=
(q+j1 + q−j1)(q

+
j2
− q−j2)(q

+
j3
− q−j3)

8
=
∑

η1,η2,η3

η2η3
8

3
∏

k=1

qηkjk(5.10)

Eπ̃Z (εj1εj2εj3εj4) =
1

16

4
∏

k=1

(q+jk − q−jk) =
1

16

∑

η1,η2,η3,η4

η1η2η3η4

4
∏

k=1

qηkjk . (5.11)

Let us take the expectation EX
0 over Y of each of these expressions. We define

the vector V = b
∑m

k=1 ηkXjk . Here, EX
V refers to the expectation of Y over the

Gaussian measure N (V, In). We derive that

EX
0

(

m
∏

k=1

qηkjk

)

=
hm

2m
EX

0

(

e−
1
2

∑m
k=1 b

2‖Xjk
‖2+b(Y,∑m

k=1 ηkXjk
)
m
∏

k=1

1I{(Y,ηkXjk
)<Tjk ‖Xjk

‖}

)

=
hm

2m
exp

(

b2
∑

1≤r<s≤m
ηrηs(Xjr , Xjs)

)

EX
0

(

e−
1
2
‖V ‖2+(Y,V )

m
∏

k=1

1I{(Y,ηkXjk
)<Tjk‖Xjk

‖}

)

=
hm

2m
exp

(

b2
∑

1≤r<s≤m
ηrηs(Xjr , Xjs)

)

EX
V

(

m
∏

k=1

1I{(Y,ηkXjk
)<Tjk‖Xjk

‖}

)

=
hm

2m
exp

(

b2
∑

1≤r<s≤m
ηrηs(Xjr , Xjs)

)

Pj1,...,jm(η),

where

Pj1,...,jm(η) = EX
V

(

m
∏

k=1

1I{(Y,ηkXjk
)<Tjk‖Xjk

‖}

)

= EX
0

(

m
∏

k=1

1I{(Y +V,ηkXjk
)<Tjk ‖Xjk

‖}

)

= EX
0

(

m
∏

k=1

1I{(Y,ηkXjk
)<Tjk‖Xjk

‖−(V,ηkXjk
)}

)

= EX
0

(

m
∏

k=1

1I{ηky′jk<Tjk−(V,ηkXjk
)/‖Xjk

‖}

)

.

Let us define

mjk(η) = ηk

m
∑

s=1, s 6=k
ηs(Xjs, Xjk)/‖Xjk‖, zk = ηky

′
jk
.
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Then, Pj1,...,jm(η) writes as

Pj1,...,jm(η) = PX
0 (z1 < Tj1 − aj1 − bmj1(η) . . . , zm < Tjm − ajm − bmjm(η)) .

We have

EX
0

(

2
∏

k=1

qεkjk

)

=
h2

4
exp

(

η1η2b
2(Xj1, Xj2)

)

Pj1,j2(η), (5.12)

EX
0

(

3
∏

k=1

qεkjk

)

=
h3

8
exp

(

b2
∑

1≤s<r≤3

ηsηr(Xjs, Xjr)

)

Pj1,j2,j3(η), (5.13)

EX
0

(

4
∏

k=1

qεkjk

)

=
h4

16
exp

(

b2
∑

1≤s<r≤4

ηsηr(Xjs, Xjr)

)

Pj1,j2,j3,j4(η). (5.14)

5.3.4 Evaluation of probabilities Pj1,...,jm(η)

By definition of (z1, . . . , zm) we have

EX
0 zk = 0, EX

0 z
2
k = 1, EX

0 zkzs
∆
= rks(η) =

ηkηs(Xjk , Xjs)

‖Xjk‖‖Xjs‖
, 1 ≤ k < s ≤ m.

Denote T̃jk = Tjk − ajk . Observe that

Pj1,...,jm(η) = 1−
m
∑

k=1

Φ(−T̃jk − bmjk(η))

+ O

(

∑

1≤k<s≤m
Prks(η)

(

−T̃jk − bmjk(η),−T̃js − bmjs(η)
)

)

, (5.15)

where we set, for the Gaussian random vector (z1, z2) with Ezk = 0, Ez2k = 1, k =
1, 2, Ez1z2 = r,

Pr(t1, t2) = P (z1 < t1, z2 < t2) = P (z1 > −t1, z2 > −t2).

The control of Pj1,...,jm(η) then depends on the sequence xnp.

CASE 1: x = 0. Under the event Xn,p, we have maxj aj = o(
√

log(p)) and

T̃jk/
√

log(p) → ∞. Under the event Xnp, we have

b|mjk(η)| ≤ b
∑

s 6=k
|(Xjs, Xjk)|/‖Xjk‖ ≤ o(b

√
n/ log(p)) = o(1/

√

log(p)) .

It follows that

max
j

Φ(−T̃jk − bmjk(η)) = o(p−α), ∀ α > 0.
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We conclude

Pj1,...,jm(η) = 1− O

(

m
∑

k=1

Φ(−T̃jk − bmjk(η))

)

= 1− o(p−α), ∀ α > 0. (5.16)

CASE 2: x > 0. We have under the event Xn,p, b|mjk(η)| = o(b
√
n/ log(p)) = o(1)

and T̃jkb = O(log(p)/
√
n). Hence, T̃jkb|mjk(η)| = o(1). Applying Lemma 7.2, we

bound the first term in (5.15)
m
∑

k=1

Φ(−T̃jk − bmjk(η)) =

m
∑

k=1

Φ(−T̃jk)− b

m
∑

k=1

mjk(η)Φ(−T̃jk)

+ b2
m
∑

k=1

O
(

m2
jk
(η)T̃jkΦ(−T̃jk)

)

.

Let us define

Rm
∆
=

m
∑

k=1

Φ(−T̃jk) = o((ph)−1), (5.17)

by (7.1) and (7.2) since x < ϕ(β) ≤
√
2(1 − √

1− β). Applying again (7.1) and
(7.2), we get

b(Xjs , Xjk)Φ(−T̃jk)/‖Xjk‖ = O
[

Tjk(Xjs, Xjk)Φ(−T̃jk)n−1
]

= O
[

TjkΦ(−T̃jk)|rks|
]

= o(|rks|/(ph))
b2(Xjs, Xjk)

2T̃jkΦ(−T̃jk)n−1 = O(T 3
jk
)Φ(−T̃jk)r2ks = o(r2ks/(ph)).

It follows that
m
∑

k=1

Φ(−T̃jk − bmjk(η)) = Rm −
∑

1≤k<s≤m
o (|rks|/(ph)) +

∑

1≤k<s≤m
o
(

r2ks/(ph)
)

=
∑

1≤k<s≤m
o
(

(1 + |rks|+ r2ks)/(ph)
)

.

Let us turn to the second term in (5.15). If T̃jk ≥ log(p), then

Prks(η)

(

−T̃jk − bmjk(η),−T̃js − bmjs(η)
)

≤ Φ(−T̃jk − bmjk(η)) = o(
(

(ph)−2
)

If T̃jk ≤ log(p), we have T̃jkrks = o(1) under the event Xnp. By Lemma 7.3 and
previous evaluations, we get

Prks(η)

(

−T̃jk − bmjk(η),−T̃js − bmjs(η)
)

= Φ(−T̃jk − bmjk(η)) Φ(−T̃js − bmjs(η))O
(

1 + r2ks + |rks|
)

= o
(

(ph)−2
)

.

Finally, we obtain

Pj1,...,jm(η) = 1− Rm + o

(

∑

1≤k<s≤m
|rks|/ph

)

+ o((ph)−2) (5.18)

= 1 + o((ph)−1). (5.19)
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5.3.5 Evaluation of A2

We have b2 max1≤j1<j2≤p |(Xj1, Xj2)| = o(1) under the event Xn,p. Since Pj1,j2(η) =
O(1), we get from (5.12)

EX
0

(

2
∏

k=1

qεkjk

)

= O(h2).

By Assumption B1, we have

sup
j1 6=j2

EX(Xj1, Xj2)
2 = O(n) .

It then follows from (5.6) and (5.9) that A2 is of the order

b4h2
∑

1≤j1<j2≤p
(Xj1, Xj2)

2 ≍ p2h2b4n ≍ nk2b4 → 0 ,

in PX-probability.

5.3.6 Evaluation of A3

Let us turn to A3. Consider ηk as independent random variables taking values in
{−1, 1} with probabilities 1/2. By (5.10) and (5.13), we can write

Eπ̃Z
(

θ2j1θj2θj3
)

=
h3

8
Eη

(

η2η3 exp

(

b2
∑

1≤s<r≤3

ηsηr(Xjs, Xjr)

)

Pj1,j2,j3(η)

)

.

Under the event Xn,p it follows from (5.16), (5.19), and the definition of Xn,p that

Pj1,j2,j3(η) = 1 + o((ph)−1) and b2
∑

1≤s<r≤3

ηsηr(Xjs, Xjr) = o(1).

It follows that

Eπ̃Z
(

θ2j1θj2θj3
)

=
h3

8
Eη

(

η2η3 exp

(

b2
∑

1≤s<r≤3

ηsηr(Xjs, Xjr)

))

+ o
(

h2p−1
)

.

By Taylor expansion of the exponential function, the expectation over η is of the
form, for csr = b2(Xjs, Xjr),

Eη
(

η2η3
(

1 + η1η2c12 + η1η3c13 + η2η3c23 +O
(

c212 + c213 + c223
)))

= b2(Xj2, Xj3) +O

(

b4
∑

1≤s<r≤3

(Xjs, Xjr)
2

)

.

Under the event Xn,p, we derive from (5.7) that

A3 ≤ h3
(

b6O(H1) + b8O(H2)
)

+ b4o(H3h
2p−1),
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where

H1 =
∑

1≤j1<j2<j3≤p
|(Xj1, Xj2)||(Xj1, Xj3)||(Xj2, Xj3)|,

H2 =
∑

1≤j1<j2<j3≤p

∑

1≤s<r≤3

|(Xj1, Xj2)||(Xj1, Xj3)|(Xjs, Xjr)
2,

H3 =
∑

1≤j1<j2<j3≤p
|(Xj1, Xj2)||(Xj1, Xj3)|.

Since

|(Xj1, Xj2)||(Xj1, Xj3)||(Xjr , Xjs)| ≤ |(Xj1, Xj2)|3 + |(Xj1, Xj3)|3 + |(Xjr , Xjs)|3,
|(Xj1, Xj2)||(Xj1, Xj3)|(Xj2, Xj3)

2 ≤ (Xj1 , Xj2)
4 + (Xj1, Xj3)

4 + (Xj2, Xj3)
4,

|(Xj1, Xj2)||(Xj1, Xj3)| ≤ (Xj1 , Xj2)
2 + (Xj1, Xj3)

2,

we derive from (3.6)

EXH1 = O(p3n3/2), EXH2 = O(p3n2), EXH1 = O(p3n).

Applying Markov’s inequality yields

H1 = OPX
(p3n3/2), H2 = OPX

(p3n2), H1 = OPX
(p3n).

Combining these bounds, we obtain

A3 = OPX
((b6h3p3n3/2) +OPX

(b8h3p3n2) + b4oPX
(b4h2p2n).

Since b4k2n = o(1), hp ≍ k, b = o(1), we get A3 = oPX
(1).

5.3.7 Evaluation of A4

Let us evaluate the item A4. Similarly to A3, we can write

Eπ̃Z (θj1θj2θj3θj4) = h4Eη

(

η1η2η3η4 exp

(

b2
∑

1≤s<r≤4

ηsηr(Xjs, Xjr)

)

Pj1,j2,j3,j4(η)

)

.(5.20)

Under the event Xn,p we have

b2
∑

1≤s<r≤4

ηsηr(Xjs, Xjr) = o(1).

CASE 1: x > 0. By (5.18), we have

Pj1,j2,j3,j4(η) = 1−R4 + o

(

∑

1≤s<r≤4

|rsr|/hp
)

+ o((ph)−2).
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Applying a Taylor expansion of the exponential term in (5.20) yields

Eη

(

η1η2η3η4 exp

(

b2
∑

1≤s<r≤4

ηsηr(Xjs, Xjr)

)

Pj1,j2,j3,j4(η)

)

= Eη

(

η1η2η3η4

(

1 + b2
∑

1≤s<r≤4

ηsηr(Xjs, Xjr)

)

(1−R4)

)

+O(|δ1|) +O(|δ2|)

= O(|δ1|) +O(|δ2|),

where

δ1 = O

(

b4
∑

1≤s<r≤4

(Xjs, Xjr)
2

)

,

δ2 = o

(

∑

1≤k<s≤4

|rks|/ph
)

+ o((ph)−2) .

CASE 2: x = 0. By (5.16), Pj1,j2,j3,j4(η) = 1 − o(p−2). Arguing as in Case 1, we
get

Eη

(

η1η2η3η4 exp

(

b2
∑

1≤s<r≤4

ηsηr(Xjs, Xjr)

)

Pj1,j2,j3,j4(η)

)

= O

(

b4
∑

1≤s<r≤4

(Xjs, Xjr)
2

)

+ o(p−2).

All in all, we obtain that under the event Xn,p,

A4 ≤ h4b8O(H1) +

{

o(H2b
4h4/p2), x = 0,

o(H3b
4h3/np+H2b

4h2/p2), x > 0,

where

H1 =
∑

1≤j1<j2<j3<j4≤p
|(Xj1, Xj2)||(Xj3, Xj4)|

∑

1≤s<r≤4

(Xjs, Xjr)
2,

H2 =
∑

1≤j1<j2<j3<j4≤p
|(Xj1, Xj2)||(Xj3, Xj4)|,

H3 =
∑

1≤j1<j2<j3<j4≤p
|(Xj1, Xj2)||(Xj3, Xj4)|

∑

1≤s<r≤4

|(Xjs, Xjr)|.

We combine the classical upper bounds,

|(Xj1, Xj2)||(Xj3, Xj4)|(Xjs, Xjr)
2 ≤ (Xj1 , Xj2)

4 + (Xj3, Xj4)
4 + (Xjs, Xjr)

4,

|(Xj1, Xj2)||(Xj3, Xj4)| ≤ (Xj1 , Xj2)
2 + (Xj3, Xj4)

2,

|(Xj1, Xj2)||(Xj3, Xj4)||(Xjs, Xjr)| ≤ |(Xj1, Xj2)|3 + |(Xj3, Xj4)|3 + |(Xjs, Xjr)|3 .
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with (3.6) and obtain

EX(H1) = O(p4n2), EX(H2) = O(p4n), EX(H3) = O(p4n3/2).

Applying Markov’s inequality yields

H1 = OPX
(p4n2), H2 = OPX

(p4n), H3 = OPX
(p4n3/2).

Since b4k2n = o(1), hp ≍ k, we get

h4b8H1 = O(h4p4b8n2) = oPX
(1), H2b

4h2/p2 = OPX
(b4h2p2n) = oPX

(1).

If x > 0, we also have to upper bound the term H3. Since r2n,p = o(1/
√
n) (cf.

(4.1)) and since x > 0, we derive that k = o(
√
n). Then, we get

H3b
4h3/np = OPX

(b6p3h3n3/2/nb2) = oPX
(1),

Therefore we obtain A4 = oPX
(1). The proposition follows. 2

5.4 Proof of Proposition 5.2

We will prove that there exists a family of events Zn,p such that P0(Zn,p) → 1 and

log(Λ(Z)) =

p
∑

j=1

log
(

1 + (h/2)
(

ed
+
j + ed

−

j − 2
))

→ 0, Z ∈ Zn,p.

We take Zn,p = {(X, Y ) : |y′j| ≤ Tj , 1 ≤ j ≤ p, X ∈ Xn,p} where Xn,p was defined
in Section 5.3.2. It follows from Lemma 5.2 and Section 5.3.2 that P0(Zn,p) → 1.

Under the events Zn,p we can replace the quantities (h/2)ed
±

j /2 by q±j =

(h/2)ed
±

j 1I±y′j<Tj , cf. Section 5.3.1. Let us consider

L̃ =

p
∑

j=1

log(1 + ∆j), ∆j = (q+j + q−j − h).

Under the event A = An,p =
⋂p
j=1(A+

j + A−
j ) defined in Section 5.3.1, we have

uniformly in 1 ≤ j ≤ p,

q+j + q−j =
h

2
e−a

2
j/2 cosh(ajy

′
j) ≤ he−a

2
j/2 cosh(ajTj)

= (1 + e−2ajTj)/2 ∼ 1/2,

as h→ 0. Consequently, we have

L̃ =

p
∑

j=1

= A1 +O(A2), A1 =

p
∑

j=1

∆j, A2 =

p
∑

j=1

∆2
j .
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Thus, we need to show that A1 → 0 and that A2 → 0 in P0-probability. It was
stated in the proof of Lemma 5.3 that EX

0 A2 = oPX
(1). Markov’s inequality then

allows to derive that A2 = oPX
(1). In order to prove the first relation, we shall

show that EX
0 A1 → 0 and that VarX0 A1 → 0 in P0-probability. Observe that

EX
0 A1 = h

p
∑

j=1

(Φ(Tj − aj)− 1) = −h
p
∑

j=1

Φ(−Tj + aj).

By (7.1) and (7.2) we have

h

p
∑

j=1

Φ(−Tj + aj) ≍
p
∑

j=1

Φ(−Tj) = o(1).

We have VarX0 A1 ≤ B + A2 with B =
∑

1≤j<l≤p ∆̂j∆̂l and ∆̂j = ∆j − EX
0 ∆j. We

need to check that, in PX probability,

EX
0 (B) =

∑

1≤j<l≤p
EX

0 (∆̂j∆̂l) → 0.

Note that
EX

0 (∆̂j∆̂l) = Bjl − Cjl,

where

Bjl = EX
0

(

(q+j + q−j )(q
+
l + q−l )

)

, Cjl = h2Φ(Tj − aj)Φ(Tl − al) .

We consider independent random variables η1, η2 taking values −1 and 1 with
probabilities 1/2. We write (compare with (5.12))

Bjl = h2Eη
[

exp
(

η1η2b
2(Xj , Xl)

)

Pj,l(η)
]

, Cjl = h2P 0
j,l .

Here we set

P 0
j,l = Φ(T̃j)Φ(T̃l) = 1− Φ(−T̃j)− Φ(−T̃l) + Φ(−T̃j)Φ(−T̃l), T̃l = Tl − al.

We obtain the new decomposition

Bjl − Cjl = h2(Ujl + Vjl) , (5.21)

where

Ujl = Eη
[(

exp
(

(η1η2b
2(Xj , Xl)

)

− 1
)

Pj,l(η)
]

, Vjl = Eη
(

Pj,l(η)− P 0
j,l

)

.

Let us recall some notations introduced in Section 5.3.4. rjl(η) = η1η2rjl,

rjl =
(Xj, Xl)

‖Xj‖‖Xl‖
, mjl(η) =

η1η2(Xj, Xl)

‖Xj‖
, mlj(η) =

η1η2(Xj , Xl)

‖Xl‖
.
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Moreover, zj and zl stand for standard Gaussian variables with Cov(zj , zl) = rjl(η).
Then, Pj,l(η) is written as

Pj,l(η) = PX
0 (zj < T̃j − bmjl(η), zl < T̃l − bmlj(η))

= 1− Φ(−T̃j + bmjl(η))− Φ(−T̃l + bmlj(η))

+PX
0 (zj < −T̃j + bmjl(η), zl < −T̃l + bmlj(η)) .

CASE 1: x = 0. The evaluations of the terms Vjl in (5.21) are similar to the ones
in Section 5.3.4. We get

P 0
j,l = 1− o(p−2), Pj,l(η) = 1− o(p−2), |Pj,l(η)− P 0

j,l| = o(p−2).

We derive that h2
∑

1≤j<l≤p Vj,l = o(h2).

CASE 2: x > 0. We have (compare with (5.17) and (5.19))

Φ(−T̃j)Φ(−T̃l) = o((ph)−2),

PX
0 (zj < −T̃j + bmjl(η), zl < −T̃l + bmlj(η)) = o((ph)−2),

Φ(−T̃j + bmjl(η)) = Φ(−T̃j) + η1η2brjl + o(r2jl/(ph)) ,

Taking the expectation over η, we get

Eη (Pj,l(η))− P 0
j,l = o(r2jl/(hp)) + o((ph)−2).

in PX-probability. Therefore

h2
∑

1≤j<l≤p
Vjl = O(Hhp−1) + o(1), H =

∑

1≤j<l≤p
r2jl.

Under Xn,p we have r2jl ∼ n−2(Xj, Xl)
2. Since EX [(Xj, Xl)

2] = O(n) for j 6= l
(Assumption B1), we get

H ∼ n−2
∑

1≤j<l≤p
(Xj, Xl)

2 = OPX
(n−1p2) .

This leads to h2
∑

1≤j<l≤p Vjl = OPX
(ph/n) + o(1). Since r2n,p = o(1/

√
n) (Eq.

4.1) and since x > 0, we derive that k = o(
√
n). Consequently, we have

ph/n = O(k/n) = o(1).

Let us turn to the terms Ujl. They are handled as in Section 5.3.2. We have

Ujl = Eη
((

η1η2b
2(Xj, Xl) +O

(

b4(Xj , Xl)
2
) (

1 + o((ph)−1)
)

= O
(

b4(Xj, Xl)
2
)

+O
(

b2|(Xj, Xl)|/(ph)
)

.

Then, we get

h2
∑

1≤j<l≤p
Ujl = O

(

h2b4H1

)

+O
(

hb2H2/p
)

,
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where
H1 =

∑

1≤j<l≤p
(Xj, Xl)

2, H2 =
∑

1≤j<l≤p
|(Xj, Xl)| ≤ pH

1/2
1 .

Arguing as for H , we get

H1 = OPX
(p2n), H2 = OPX

(p2n1/2).

It follows that
∑

1≤j<l≤p
Bjl = OPX

(p2h2b4n) +OPX
(phb2n1/2) = oPX

(1),

since p2h2b4n ≍ k2b4n→ 0 by (4.1). The proposition follows. 2

5.5 Proof of Theorem 4.5

An in the proof of Theorem 4.1, we consider x = lim sup xn,p and we take c ∈ (0, 1)

such that xc = x/c < ϕ(β). We also define b = xc
√

log(p)/n. We first consider the
case where k log(p)/n→ 0.

We use a different prior π than for Theorem 4.1. Let us note M(k, p) the
collection of subsets of {1, . . . , p} of size k. We consider a random vector θ = (θj)
with coordinates θj = bǫj where ǫj ∈ (0, 1). The set of non-zero coefficient of ǫ is
drawn uniformly in M(k, p). This introduces a prior probability π on θ.

Consider the mixture

Pπ(dZ) = EπPθ,
√
1−bk2(dZ) =

∫

Rp

Pθ,
√
1−bk2(dZ)π(dθ)

and the likelihood ratio

Lπ(Z) =
dPπ
dP0,1

(Z) .

As in the proof of Theorem 4.1, we shall prove that Lπ(Z) converges to 1 in P0

probability. This will enforce that γunn,p,k[xc
√

k log(p)/
√
1− kb2] → 1. Since kb2

converges to 0, this will complete the proof.

The likelihood ratio has the form Lπ(Z) =
∑

m∈M(k,p) |M(k, p)|−1Lm(Z) and

Lm(Z) = (1− kb2)−n/2 exp

(

− kb2‖Y ‖2
2(1− kb2)

+
b(Y,

∑

i∈mXi)

1− kb2

)

× exp

[

−
∑

i,j∈m

b2

2(1− kb2)
(Xi, Xj)

]

. (5.22)

Definition 5.1 Consider δ ∈ (0, 1), a positive integer s and a n×p matrix A. We
say that A satisfies a δ-restricted isometry property of order s if for all θ ∈ R

p
s,

(1− δ)‖θ‖ ≤ ‖Aθ‖ ≤ (1 + δ)‖θ‖ .
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Let us define the events Ω1 and Ω2 by

Ω1 : ”X/
√
n satisfies a δ(1)n,p restricted isometry of order 2k”

Ω2 : ”For any 1 ≤ i ≤ p, (Y,Xi/‖Xi‖) ≤
√

2 log(p)(1 + δ(2)n,p)” ,

where δ
(1)
n,p = 16

√

k log(p)/n and δ
(2)
n,p = log−1/2(p). Applying a deviation inequality

due to Davidson and Szarek (Theorem 2.13 in [6]), we derive that PX(Ω
c
1) = o(1).

By the Gaussian concentration inequality, we have P0(Ω
c
2) = o(1). Then, we take

Ω = Ω1 ∩ Ω2.

Lemma 5.4 We have E0 [L
2
π(Z)1IΩ] ≤ 1 + o(1).

Lemma 5.5 We have E0 [Lπ(Z)1IΩc ] = o(1).

Since E0 [Lπ(Z)] = 1, we get the desired result by combining these two lemmas.

Let us turn to the case k log(p)/n→ ∞. We consider b > 0 defined by

kb2

1− kb2
= (2β − 1)

k log(p)

n
.

Lemma 5.6 We have
E0

[

L2
π(Z)

]

= 1 + o(1) .

This lemma implies that for r =
√

(2β − 1)k log(p)/n→ ∞, we have γunn,p,k(r) → 1.
2

In the proof of the following lemmas, o(1) stands for a positive quantity which
depends only on (k, p, n) and tends to 0 as (n, p) tend to infinity.

5.5.1 Proof of Lemma 5.4

In order to upper bound E0 [L
2
π(Z)1IΩ], we first upper bound E0 [Lm1(Z)Lm2(Z)1IΩ]

for any m1, m2 ∈ M(k, p). We define W1, W2, W3 by , W1 =
∑

i∈m1\m2
Xi,

W2 =
∑

i∈m2\m1
Xi, and W3 =

∑

i∈m1∩m2
Xi. We note S = |m1 ∩m2|.

Lm1(Z)Lm2(Z) = (1− kb2)−n exp

(

−kb
2‖Y ‖2

1− kb2
+
b(Y, 2W3 +W1 +W2)

1− kb2

)

× exp

[

− b2

2(1 − kb2)
(‖W1 +W3‖2 + ‖W2 +W3‖2)

]

.

Let us take the expectation of Lm1(Z)Lm2(Z) with respect to (W1,W2).

EY,W3
0 [Lm1(Z)Lm2(Z)] = (1− Sb2)−n exp

[

−‖Y ‖2Sb2
1− Sb2

+
2b(Y,W3)

1− Sb2
− b2‖W3‖2

1− Sb2

]

.

26



When S = 0, we have EY,W3

0 [Lm1(Z)Lm2(Z)] = 1. Let us now consider the case
S > 0. On the event Ω, we have

(Y,
W3

‖W3‖
) ≤

√

2 log(p)(1 + δ(2)n,p)

∑

i∈m1∩m2
‖Xi‖

‖∑i∈m1∩m2
Xi‖

≤
√

2S log(p)(1 + o(1)) ,

since X/
√
n satisfies a δ

(1)
n,p-restricted isometry of order 2k. Then, we can upper

bound the expectation with respect to Y .

EW3
0 [1IΩLm1(Z)Lm2(Z)] ≤ (1− S2b4)−n/2 exp

[

b2‖W3‖2
1 + Sb2

]

× Φ
[

√

2S log(p)(1 + o(1))− 2b‖W3‖(1− o(1))
]

.

Moreover on Ω, we have

√

1− δ
(1)
n,p ≤ ‖W3‖/

√
nS ≤

√

1 + δ
(1)
n,p. Since k log(p)/n

goes to 0, we get

E0[1IΩLm1(Z)Lm2(Z)] ≤ exp
[

x2cS log(p)(1 + o(1))
]

Φ
[

√

S log(p)
(√

2− 2xc + o(1))
)]

.

For any x < 0, we have Φ(x) ≤ e−x
2/2. Hence, we get Φ(x) ≤ e−x

2
−
/2 for any x ∈ R.

It follows that

E0[1IΩLm1(Z)Lm2(Z)] ≤ exp
[

S log(p)
{

x2c − (1−
√
2xc)

2
− + o(1)

}]

.(5.23)

Hence, we get

E0[1IΩL
2
π(Z)] ≤ ES

[

pS{x
2
c−(1−

√
2xc)2−+o(1)}

]

where S follows a hypergeometric distribution with parameters p, k and k/p. We
know from Aldous (p.173) [1] that S has the same distribution as the random
variable E(U |Bp) where U is binomial random variable of parameters k, k/p and
Bp some suitable σ-algebra. By a convexity argument, we then obtain

E0[1IΩL
2
π(Z)] ≤

[

1 +
k

p

(

px
2
c−(1−

√
2xc)2−+o(1) − 1

)

]k

≤ exp

[

k2

p
px

2
c−(1−

√
2xc)2−+o(1)

]

≤ exp
[

p1−2β+x2c−(1−
√
2xc)2−+o(1)

]

Since xc < ϕ(β), one can check that 1− 2β + x2c − (1−
√
2xc)

2
− is negative and we

conclude that E0[1IΩL
2
π(Z)] ≤ 1 + o(1). 2
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5.5.2 Proof of Lemma 5.5

By symmetry, it is sufficient to prove that E0(Lm(Z)1IΩc) = o(1). Let us decom-
pose E0(Lm(Z)1IΩc) = E0(Lm(Z)1IΩc

2
) +E0(Lm(Z)1IΩc

1∪Ω2). Since E
X
0 (Lm(Z)) = 1,

PX almost surely, we have E0(Lm(Z)1IΩc
2
) = PX(Ω

c
2) = o(1). Let us turn to

E0(Lm(Z)1IΩc
1∪Ω2). For any 1 ≤ i ≤ p, we define the event Ω(i) by (Y,Xi/‖Xi‖) ≥

√

2 log(p)(1 + δ
(2)
n,p).

E0(Lm(Z)1IΩc
1∪Ω2) ≤

p
∑

i=1

E0 [Lm(Z)1IΩ21IΩ(i) ]

The value of these expectations depends on i through the property ”i ∈ m” or
”i /∈ m”. Let us assume for instance that 1 ∈ m and 2 /∈ m. Then, we get

E0(Lm(Z)1IΩc
1∪Ω2) ≤ kE0 [Lm(Z)1IΩ21IΩ(1) ] + pE0 [Lm(Z)1IΩ21IΩ(2) ] . (5.24)

First, we upper bound E0[Lm(Z)1IΩ21IΩ(2) ]. Taking the expectation of Lm(Z) with
respect to (Xi)i∈m leads to EY,X2

0 [Lm(Z)] = 1. Hence, we get

E0[Lm(Z)1IΩ21IΩ(2)] ≤ P0(Ω
(2)) ≤ p−1e−

√
log(p) = o(p−1) . (5.25)

Let turn to E0[Lm(Z)1IΩ21IΩ(1) ]. We first take the expectation of Lm(Z) condition-
ally to X1 and Y :

EY,X1

0 [Lm(Z)] = (1− b2)−n/2 exp

[

− b2‖Y ‖2
2(1− b2)

− b2‖X1‖2
2(1− b2)

+
(Y,X1)b

1− b2

]

.

Then, we take the expectation with respect to Y

EX1
0 [Lm(Z)1IΩ(1)] ≤ 1− Φ

[

√

2 log(p)

1− b2
(1 + δ(2)n,p)−

‖X1‖b√
1− b2

]

.

Moreover, on Ω2 we have ‖X1‖ ≤ √
n(1 + o(1))

EX1
0 [Lm(Z)1IΩ(1)∪Ω2

] ≤ Φ
[

√

log(p)(xc −
√
2 + o(1))

]

≤ C exp
[

− log(p)(
√
2− xc − o(1))2/2

]

for (n, p) large enough, since xc < ϕ(β) <
√
2.

kEX1
0 [Lm(Z)1IΩ(1)∪Ω2

] ≤ p−(
√
2−xc)2/2+1−β+o(1) = o(1) , (5.26)

since xc <
√
2(1−√

1− β) ≤ ϕ(β). Combining (5.24), (5.25), and (5.26) completes
the proof. 2
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5.5.3 Proof of Lemma 5.6

Arguing as in the proof of Lemma 5.4, we get

EW3
0 [Lm1(Z)Lm2(Z)] = (1− S2b4)−n/2 exp

[

b2‖W3‖2
1 + Sb2

]

.

Taking the expectation with respect to W3 leads to

E0[Lm1(Z)Lm2(Z)] = (1− Sb2)−n/2 ≤ exp

[

nSb2

2(1− kb2)

]

As in the proof of Lemma 5.4, we upper bound the term E0[L
2
π(Z)] by Jensen’s

inequality.

E0[L
2
π(Z)] ≤

[

1 +
k

p

{

exp

(

nb2

2(1− kb2)

)

− 1

}]k

≤ exp

[

k2

p
exp

(

nb2

2(1− kb2)

)]

≤ exp
[

p1−2β exp {(β − 1/2) log(p)}
]

= 1 + o(1) ,

since b satisfies kb2/(1− kb2) = (2β − 1)k log(p)/n. 2

6 Proofs of the upper bounds

6.1 Tests based on the statistic t0

Recall that

t0 = (2n)−1/2
n
∑

i=1

(Y 2
i − 1).

Under H0, the statistics Yi = ξi ∼ N (0, 1) are i.i.d. This implies
E0(t0) = 1, Var0(t0) = 1. By the Central Limit Theorem, t0 → ξ ∼ N (0, 1) as
n→ ∞ in P0-probability. This yields Theorem 4.2 (i).

Let us consider the type II errors. We need to show that, if nr4 → ∞, then
supθ∈Θp(r) Pθ(t0 ≤ uα) → 0. We will prove that, uniformly over θ ∈ Θp(r),

Eθt0 → ∞, Varθt0 = o((Eθt0)
2). (6.1)

Indeed, if (6.1) is true, we derive that for n, p large enough,

Pθ(t0 ≤ uα) = Pθ(Eθt0 − t0 ≥ Eθt0 − uα) ≤ Pθ(|Eθt0 − t0| ≥ Eθt0 − uα)

≤ Varθ(t0)

(Eθt0 − uα)2
= o(1) , (6.2)

by Chebychev’s inequality. In order to check (6.1), we use the identities

Eθt0 = EX(E
X
θ t0), Varθt0 = VarX(E

X
θ t0) + EX(Var

X
θ t0).
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Under PX
θ , θ ∈ Θk(r), we have Y ∼ Nn(v, In), where

v = v(θ,X) =

p
∑

j=1

θjXj, ‖v‖2 =
p
∑

j=1

θ2j‖Xj‖2 + 2
∑

1<j<l≤p
θjθl(Xj, Xl).

It follows that

EX
θ (t0) = (2n)−1/2‖v‖2, VarXθ (t0) = 1 + 2n−1‖v‖2.

Since EX(‖Xj‖2) = n, EX((Xj , Xl)) = 0, j 6= l, we get the first convergence in
(6.1):

Eθt0 = (2n)−1/2EX(‖v‖2) = (n/2)1/2
p
∑

j=1

θ2j = (n/2)1/2‖θ‖2 ≥ (n/2)1/2r2 → ∞.

Let us turn to the variance term

EX(Var
X
θ t0) = 1 + 2n−1EX(‖v‖2) = 1 + 2‖θ‖2 = o(Eθt0),

VarX(E
X
θ (t0)) = (2n)−1VarX(‖v‖2).

By A2, the random variables Xij are independent in (i, j), i = 1, ..., n, j = 1, .., p.
Consequently, the random variables (Xj1, Xl1) with {j1, l1} 6= {j2, l2} are uncorre-
lated. Moreover, ‖Xj1‖2 and (Xj, Xl) are uncorrelated as long as (j, l) 6= (j1, j1).
We have

VarX‖Xj‖2 = VarX(X
2
ij)n, EX(Xj , Xl)

2 = n, j 6= l,

where VarX(X
2
ij) ≤ EX(X

4
ij) <∞ by B1. Then, we get

n−1VarX‖v‖2 = n−1

p
∑

j=1

θ4jVarX‖Xj‖2 + 4n−1
∑

1≤j<l≤p
θ2jθ

2
l EX(Xj, Xl)

2

≤ sup
i
[EX(X

4
i1)]

p
∑

j=1

θ4j + 4‖θ‖4 ≤ (O(1) + 4)‖θ‖4

= o(n‖θ‖4) = o
(

(Eθt0)
2
)

, as n‖θ‖4 ≥ nr4 → ∞.

Therefore we get the second relation (6.1).

Note that if nr4 → ∞, then in the inequality (6.2), we can replace uα by
a sequence Tnp → ∞ such that lim supTnpr

−2n−1/2 < 1, for instance by Tpn =
n1/2r2/2. Then, the corresponding test ψ0 satisfies γ(ψ0,Θp(r)) → 0. Theorem 4.2
follows. 2

6.2 Tests based on the statistic t1

First observe that under H0, the statistic t1 is a degenerate U -statistic of the second
order, i.e., for Zs = (X(s), Ys), s = 1, 2, 3 one has EZ1K(Z1, Z2) = 0, which yields
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E0t1 = 0. By Assumption A1,

E0t
2
1 = E0(K

2(Z1, Z2)) = p−1E0(Y
2
1 Y

2
2 )

p
∑

j=1

p
∑

l=1

EX (X1jX2jX1lX2l)

= p−1

p
∑

j=1

EX
(

X2
1jX

2
2j

)

= 1.

Set

G(Z1, Z2) = EZ3 (K(Z1, Z3)K(Z2, Z3)) , G2 = E0(G
2(Z1, Z2)), G4 = E0(K

4(Z1, Z2)),

where EZ3 denotes the expectation over Z3 under P0. In order to establish the
asymptotic normality of t1 we only need to check the two following conditions, see
[14] Lemma 3.4,

G2 = o(1), G4 = o(n2). (6.3)

We have by Assumption A1,

G(Z1, Z2) = p−1EZ3

(

Y1Y2Y
2
3

p
∑

j=1

p
∑

l=1

X1jX3jX2lX3l

)

= p−1Y1Y2

p
∑

j=1

p
∑

l=1

X1jX2lEX(X3jX3l)

= p−1Y1Y2

p
∑

j=1

X1jX2j = p−1/2K(Z1, Z2).

Since E0(K
2(Z1, Z2)) = 1, we get the first convergence in (6.3). Next by A2,

E0(K
4(Z1, Z2)) = p−2E0(Y

4
1 Y

4
2 )

p
∑

j=1

p
∑

l=1

p
∑

r=1

p
∑

s=1

EX(X1jX2jX1lX2lX1rX2rX1sX2s)

= 9p−2

p
∑

j=1

p
∑

l=1

p
∑

r=1

p
∑

s=1

H2
jlrs,

since E0(Y
4
1 Y

4
2 ) = E2

0(Y
4
1 ) = 9, where we set

Hjlrs
∆
=EX(X1jX1lX1rX1s) =











EX(X
4
1 ), j = l = r = s,

1, j = l 6= r = s or j = r 6= l = s or j = s 6= r = l,

0, otherwise.

As a consequence, we get

E0(K
4(Z1, Z2)) ≤ 9p−1b24 + 27 ,
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where b4
∆
= supiE(X

4
i1). By B1, the second convergence in (6.3) holds true. Thus,

Theorem 4.3 (i) follows.

Let us now evaluate the type II errors under Pθ. Recall that by (1.1),

Yi = ξi + vi, vi =

p
∑

j=1

θjXij , ξi ∼ N (0, 1) iid.

Observe that EθYiXij = θj and set

Kθ(Z1, Z2) = p−1/2

p
∑

j=1

(Y1X1j − θj)(Y2X2j − θj).

Consider the representation

K(Z1, Z2) = Kθ(Z1, Z2) + δ(Z1) + δ(Z2) + h(θ)

where

δ(Zi) = p−1/2

p
∑

j=1

(YiXij − θj)θj , h(θ) = p−1/2

p
∑

j=1

θ2j .

Observe that the kernel Kθ(Z1, Z2) is symmetric and degenerate under Pθ, i.e.,

EZ1
θ Kθ(Z1, Z2) = EZ2

θ Kθ(Z1, Z2) = 0.

The terms Kθ(Z1, Z2), δ(Z1), and δ(Z2) are centered and uncorrelated under Pθ.
As a consequence, we derive that

Eθ(K(Z1, Z2)) = p−1/2‖θ‖2, (6.4)

Varθ(K(Z1, Z2)) = Varθ(Kθ(Z1, Z2)) + Varθ(δ(Z1)) + Varθ(δ(Z2)) . (6.5)

Let us compute the variances. Let δij be the Kronecker function. Using the repre-
sentation

Kθ(Z1, Z2) = p−1/2

p
∑

j=1

(

ξ1X1j +

p
∑

r=1

θr(X1rX1j − δrj)

)

×
(

ξ2X2j +

p
∑

s=1

θs(X2sX2j − δsj)

)

,

we derive that

EX
θ (Kθ(Z1, Z2)) = p−1/2

p
∑

j=1

p
∑

r=1

p
∑

s=1

θrθs(X1rX1j − δrj)(X2sX2j − δsj),
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Denoting Hrsj = (X1rX1j − δrj)(X2sX2j − δsj) observe that

VarXE
X
θ (Kθ(Z1, Z2)) = p−1

p
∑

j=1

p
∑

r=1

p
∑

s=1

p
∑

l=1

p
∑

u=1

p
∑

v=1

θrθsθuθvEX(HrsjHuvl).

Note that
EX(HrsjHuvl) = DrujlDsvjl,

where (we omit the first index i = 1, 2 in Xij)

Drujl = EX ((XrXj − δrj)(XuXl − δul)) ,

Dsvjl = EX ((XsXj − δsj)(XvXl − δvl)) .

Observe that

Drujl =











1, r = l 6= u = j or r = u 6= j = l,

b4 − 1, r = u = j = l,

0, otherwise.

We obtain

VarXE
X
θ (Kθ(Z1, Z2)) = p−1

p
∑

j=1

p
∑

r=1

p
∑

s=1

p
∑

l=1

p
∑

u=1

p
∑

v=1

θrθsθuθvDrujlDsvjl

=
(b4 − 1)2

p

p
∑

r=1

θ4r +
2b4 − 1

p

∑

1≤r,s≤p, r 6=s
θ2rθ

2
s +

1

p

∑

1≤j,r,s≤p, j 6=r,j 6=s
θ2rθ

2
s

= O[

p
∑

j=1

θ4j ] +O[(

p
∑

j=1

θ2j )
2] = O(‖θ‖4).

We now compute EX [Var
X
θ (Kθ(Z1, Z2))].

VarXθ (Kθ(Z1, Z2)) = p−1
∑

1≤j,l≤p
X1jX2jX1lX2l

+ p−1

p
∑

j=1

p
∑

l=1

p
∑

r=1

p
∑

s=1

X1jX1lθrθs(X2rX2j − δjr)(X2sX2l − δsl)

+ p−1

p
∑

j=1

p
∑

l=1

p
∑

r=1

p
∑

s=1

X2jX2lθrθs(X1rX1j − δjr)(X1sX1l − δsl) .

Let us take the expectation with respect to X . By Assumption A2, we have

EX [Var
X
θ (Kθ(Z1, Z2))] = 1 + 2p−1

p
∑

j=1

p
∑

r=1

p
∑

s=1

θrθsEX [(X2rX2j − δjr)(X2sX2j − δsj)]

≤ 1 + 2

p
∑

r=1

b4θ
2
r = 1 +O(‖θ‖2) = O(1 + ‖θ‖4)

33



Since

Varθ(Kθ(Z1, Z2)) = EXVar
X
θ (Kθ(Z1, Z2)) + VarXE

X
θ (Kθ(Z1, Z2)),

we get

Varθ(Kθ(Z1, Z2)) = O(1 + ‖θ‖4). (6.6)

Similarly for i = 1, 2, we compute the variance of δ(Zi).

δ(Zi) = p−1/2

p
∑

j=1

θj

(

ξiXij +

p
∑

l=1

θl(XijXil − δjl)

)

,

and we have (we omit the index i = 1, 2)

EX
θ (δ(Z)) = p−1/2

p
∑

j=1

p
∑

l=1

θjθl(XjXl − δjl),

VarXθ (δ(Z)) = p−1

p
∑

j=1

p
∑

l=1

θjθlXjXl, EXVar
X
θ (δ(Z)) = p−1‖θ‖2,

VarXE
X
θ (δ(Z)) = p−1

p
∑

j=1

p
∑

l=1

p
∑

r=1

p
∑

s=1

θjθlθrθsDjrls ,

where Djrls was previously defined and upper bounded. This yields

VarXE
X
θ (δ(Z)) = p−1

(

(b4 − 1)

p
∑

j=1

θ4j + 2‖θ‖4
)

= O(‖θ‖4/p). (6.7)

Combining (6.4), (6.5), (6.6), and (6.7) we obtain, for r2np−1/2 → ∞ and
p = o(n2),

Eθ(t1) =
√
NEθ(K(Z1, Z2)) =

√
Nh(θ) ∼ n(2p)−1/2‖θ‖2 ≥ n√

2p
r2 → ∞,

Varθ(t1) = Varθ(Kθ(Z1, Z2)) +
n3

N
Varθ(δ(Z1)) = O(1 + ‖θ‖4) +O(n‖θ‖4/p)

= o
(

(Eθ(t1))
2) .

Applying Chebyshev’s inequality as in the proof of Theorem 4.2 allows to conclude.
2

6.3 Higher Criticism Tests

6.3.1 Type I errors

The variables X1, ..., Xp, Y are independent under P0 and (Xj, a)/‖a‖ ∼ N (0, 1)
for any a ∈ IRp, a 6= 0 under A3. Thus we have

P0(y1 < t1, ..., yp < tp) = EY (P
Y
0 ((X1, Y )/‖Y ‖ < t1, ..., (Xp, Y )/‖Y ‖ < tp)

= EY (Φ(t1)....Φ(tp)) = Φ(t1)....Φ(tp) = P0(y1 < t1)...P0(yp < tp).
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It follows that yj = (Xj , Y )/‖Y ‖ ∼ N (0, 1) and y1, . . . , yp are i.i.d. under P0. As
a consequence, the random variables qi are independent uniformly distributed on
(0, 1) under P0. We denote by Fp(t) the empirical distribution of (qi)1≤i≤p:

Fp(t) =
1

p

p
∑

i=1

1Iqi≤t .

Then, the normalized uniform empirical process is defined by

Wp(t) =
√
p
Fp(t)− t
√

t(1 − t)
.

Arguing as in Donoho and Jin [8], we observe that tHC = supt≤1/2Wp(t). It is
stated in [26], Chapter 16 that

sup0≤t≤1/2Wp(t)√
2 log log p

→P 1 , p→ ∞ .

This proves the result. 2

6.3.2 Type II errors

We define Hnp = (1 + a)
√
2 log log p. Consider some β ∈ (1/2, 1) and assume that

k log(p)/n → 0. It is sufficient to prove that for any δ0 > 0 arbitrarily small the
radius

rnp = (ϕ(β) + δ0)
√

k log(p)/n (6.8)

satisfies
β(ψHC ,Θk(rnp)) → 0 . (6.9)

For any θ ∈ Θk, we set ‖θ‖∞ ∆
= supi |θi|. In order to prove the convergence

(6.9), we consider a partition of Θk(rnp):

Θ̃
(1)
k (rnp)

∆
= Θk(rnp) ∩

{

θ ∈ Θk, ‖θ‖2 ≥
4k log(p)

n

}

Θ̃
(2)
k (rnp)

∆
= Θk(rnp) ∩ [Θ̃

(1)
k (rnp)]

c ∩
{

θ ∈ Θk , ‖θ‖2∞ ≥ 4 log(p)

n

}

Θ̃
(3)
k (rnp)

∆
= Θk(rnp) ∩ [Θ̃

(1)
k (rnp)]

c ∩ [Θ̃
(2)
k (rnp)]

c .

The sets Θ̃
(1)
k (rnp) and Θ̃

(2)
k (rnp) contain the parameters θ whose l2 or l∞ norms are

large, while the set Θ̃
(3)
k (rnp) contains the remaining parameters.

Proposition 6.1 Consider the set of parameters Θ̃
(4)
k defined by

Θ̃
(4)
k

∆
=

{

θ ∈ Θk,
‖θ‖2∞

1 + ‖θ‖2 ≥ 3 log(p)

n

}

.
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Let us introduce the statistic tmax and the corresponding test ψmax defined by

tmax
∆
=(pq(1))

−1/2 − (pq(1))
1/2 ≤ tHC , ψmax ∆

= 1Itmax>Hnp
.

We have β(ψmax, Θ̃
(4)
k ) → 0.

It follows that β(ψHC , Θ̃
(4)
k ) → 0. Observe that

Θ̃
(1)
k (rnp) ⊂

{

θ ∈ Θk ,
‖θ‖2

1 + ‖θ‖2 ≥ 4k log(p)/n

1 + 4k log(p)/n

}

.

Since k‖θ‖2∞ ≥ ‖θ‖2 and since k log(p)/n converges to 0, it follows that

Θ̃
(1)
k (rnp) ⊂ Θ̃

(4)
k for n large enough. Thus, we get β(ψHC , Θ̃

(1)
k (rnp)) → 0.

Let us turn to Θ̃
(2)
k (rnp). For any θ ∈ Θ̃

(2)
k (rnp), we have

‖θ‖2∞
1 + ‖θ‖2 ≥ 4 log(p)/n

1 + 4k log(p)/n
.

This quantity is larger than 3 log(p)/n for n large enough. We get

β(ψHC , Θ̃
(2)
k (rnp)) → 0.

Proposition 6.2 Let us set Tp =
√

log(p) and u > 0 such that

u =

{

2ϕ(β), β ∈ (1/2, 3/4] ,√
2, β ∈ (3/4, 1) .

(6.10)

We consider the statistic L(u) and the corresponding test ψL defined by

L(u)
∆
=

p
∑

j=1

1I|yj |>uTp − 2Φ(−uTp)
√

2pΦ(−uTp)
, ψL = 1IL(u)≥Hnp

.

Then, β(ψL, Θ̃
(3)
k (rnp)) → 0. Moreover, we have L(u) ≤ tHC, for p large enough.

It follows from Proposition 6.2 that β(ψHC, Θ̃
(3)
k (rnp)) → 0 converges to 0, which

completes the proof. 2

6.3.3 Proof of Proposition 6.1

It follows directly from the definition (4.7) that tmax ≤ tHC . Consider the test
ψ

′ max defined by

ψ
′ max = 1I‖y‖∞≥

√
2.5 log(p)

(6.11)

If ψ
′ max = 1, it follows that q(1) ≤ 2Φ(−

√

2.5 log(p)) ≤ 2p−5/4. Hence, we have

tmax ≥ p1/8/
√
2 −

√
2p−1/8. For p large enough, this implies that ψmax = 1.
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Consequently, we only have to prove that β(ψ
′ max, Θ̃

(4)
k ) → 0.

Consider θ ∈ Θ̃
(4)
k . By symmetry, we may assume that ‖θ‖∞ = |θ1|. We use the

following decomposition

‖Y ‖y1 = θ1‖X1‖2 + (Y − θ1X1, X1) .

The random variables ‖Y ‖2/(1 + ‖θ‖2) and ‖X1‖2 have a χ2 distribution with n
degrees of freedom. Since Y − θ1X1 is independent of X1, the random variable
(Y − θ1X1, X1/‖X1‖) is normal with mean 0 and variance
1 +

∑

i 6=1 θ
2
i .

With probability larger than 1−O(n−1 ∨ log−1(p)), we obtain

‖Y ‖2/n ≤ (1 + ‖θ‖2)[1 + o(n−1/4)]

(1− o(n−1/4)) ≤ ‖X1‖2/n ≤ (1 + o(n−1/4))

|(Y − θ1X1, X1)|/‖X1‖ ≤ (1 +
∑

i 6=1

θ2i )
1/2
√

2 log(log(p)) .

Thus, we get

|y1| ≥
√
n|θ1|

(1 + ‖θ‖2)1/2 [1− o(n−1/4)]−O(
√

log log(p)) ,

with probability larger than 1 − O(n−1 ∨ log−1(p)). Since θ ∈ Θ̃
(4)
k , we have

n|θ1|2/(1 + ‖θ‖2) ≥ 3 log(p) and the test ψ′
max rejects with probability going to

one. It follows that β(ψ
′ max, Θ̃

(4)
k ) → 0. 2

6.3.4 Proof of Proposition 6.2

Connection between tHC and L(u). Set ŝu
∆
=
∑p

i=1 1I|yj |>uTp. Observe that
q(ŝu) ≤ P (|N (0, 1)| > uTp) ≤ 1/2 for p large enough. If follows that

L(u) =

√
p[ŝu/p− 2Φ(−uTp)]
√

2Φ(−uTp)
≤

√
p[ŝu/p− q(ŝu)]√

q(ŝu)
≤ tHC .

Power of ψL. Under Pθ, ‖Y ‖2/(1 + ‖θ‖2) has a χ2 distribution with n degrees

of freedom. For any θ ∈ Θ̃
(3)
k (rnp), we have ‖θ‖2 ≤ 4k log(p)/n = o(1). As a

consequence, we have |‖Y ‖2−n| ≤ 4k log(p)+4
√

n log(n) = o(n) with probability

larger than 1−O(1/n) uniformly over all θ ∈ Θ̃
(3)
k (rnp). Consider the event Znp,1 =

{|‖Y ‖2 − n| ≤ Hn}, where Hn = 4k log(p) + 4
√

n log(n) = o(n). It is sufficient to
prove that

sup
θ∈Θ̃(3)

k
(rnp)

Pθ(Znp,1 ∩ {L(u) ≤ Hnp}) → 0. (6.12)

Consider θ ∈ Θ̃
(3)
k (rnp). We can assume that θk+1 = ... = θp = 0. Then

Y =
∑k

j=1 θjXj + ξ does not depend on Xk+1, ..., Xp. Arguing as for the type I
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error, we derive that yk+1, ..., yp are independent standard Gaussian variables and
do not depend on (y1, ..., yk). We can write L(u) = L1(u) + L2(u), where

L1(u) =

∑k
j=1

(

1I{|yj |>uTp} − 2Φ(−uTp)
)

√

2pΦ(−uTp)
,

L2(u) =

∑p
j=k+1

(

1I{|yj |>uTp} − 2Φ(−uTp)
)

√

2pΦ(−uTp)
.

We find

Eθ(L2(u)) = 0, Varθ(L2(u)) =
2pΦ(−uTp)(1− 2Φ(−uTp))

2pΦ(−uTp)
≤ 1 ,

which yields,
Pθ(|L2(u)| > Hnp) → 0 . (6.13)

In order to study the term L1(u), we will find a statistic L̃1(u) such that

Pθ[L̃1(u) < L1(u)] = 1 + o(1) uniformly over Θ
(3)
k (rnp). For such a L̃1(u), we

will have

Pθ[L(u) ≤ Hnp] ≤ Pθ[L1(u) ≤ 2Hnp] + o(1) ≤ Pθ[L̃1(u) ≤ 2Hnp] + o(1). (6.14)

Construction of L̃1(u). Observe that under Pθ,

yj = (ŷj‖ξ‖+ nθj +∆j) /‖Y ‖ ,

∆j =
k
∑

l 6=j
θl(Xj, Xl) +

(

‖Xj‖2 − n
)

θj , j = 1, ..., k,

where
ŷj = (Xj, ξ)/‖ξ‖.

We only need to consider Z ∈ Znp,2 = {‖ξ‖2 − n| < n2/3} since Pθ(Znp,2) → 1. Set
Znp,3 = Znp,1 ∩ Znp,2. Thus, for δ = δnp → 0 one has

{|yj| > uTp} ∩ Znp,3 ⊃ {|n−1/2ŷj‖ξ‖+ n−1/2∆j + n1/2θj)| > uTp(1 + δ)} ∩ Znp,3

⊃ {sgn(θj)ŷj(1− δ) > uTp(1 + δ)− n1/2|θj |+ |S̃j|)} ∩ Znp,3 ,

(6.15)

where S̃j = n−1/2∆j .

Lemma 6.1 For any T > 0 going to infinity and such that T = o(
√
n), we have

log(PX(|S̃j | > T‖θ‖)) ≤ −1

4
T 2(1 + o(1)) ,

uniformly over ∈ Θ̃
(3)
k (rnp).
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Taking T =
√

4 log(p), we obtain

PX(|S̃j| > T‖θ‖) = o(p−1).

We recall that ‖θ‖2 ≤ 4k log(p)/n = o(1) since θ ∈ Θ̃
(3)
k (rnp). Hence, we get

PX

[

max
1≤j≤k

|S̃j| > o(
√

log(p))

]

= o(1), uniformly over θ ∈ Θ̃
(3)
k (rnp).

Combining this bound with (6.15), we obtain that there exists an event Znp,4 of
probability tending to one and a sequence δ = δnp → 0 such that

{|yj| > uTp} ∩ Znp,4 ⊃ {sgn(θj)ŷj > uTp(1 + δ)− (1− δ)n1/2|θj|} ∩ Znp,4 . (6.16)

Observe that the random variables ŷj are independent standard normal.

Setting ũ = u(1 + δ), ρ̃j = (1− δ)n1/2|θj | we define

L̃1(u) =

(

∑k
j=1 1Iŷj>ũTp−ρ̃j − 2Φ(−uTp)

)

√

2pΦ(−uTp)
.

By (6.16), L̃1(u) satisfies Pθ[L̃1(u) ≤ L1(u)] = 1 − o(1) uniformly over Θ̃
(3)
k (rnp).

In view of (6.14), in order to complete the proof it suffices to show that

Pθ[L̃1(u) ≤ 2Hnp] = o(1) uniformly over Θ̃
(3)
k (rnp). (6.17)

Control of Pθ[L̃1(u) ≤ 2Hnp]. In order to evaluate this probability, recall that
ŷj ∼ N (0, 1) i.i.d. under Pθ. Thus,

Eθ(L̃1(u)) =

(

∑k
j=1Φ(−ũTp + ρ̃j)− 2Φ(−uTp)

)

√

2pΦ(−uTp)
,

Varθ(L̃1(u)) ≤
∑k

j=1Φ(−ũTp + ρ̃j)

2pΦ(−uTp)
.

By Chebyshev’s inequality, we get

Pθ(L̃1(u) ≤ 2Hnp) = Pθ(Eθ(L̃1(u))− L̃1(u) ≥ Eθ(L̃1(u))− 2Hnp)

≤ Varθ(L̃1(u))

(Eθ(L̃1(u))− 2Hnp)2
.

Lemma 6.2 There exists η > 0 such that, for n, p large enough,

inf
θ∈Θ̃(3)

k
(rnp)

∑k
j=1Φ(−ũTp + ρ̃j)
√

2pΦ(−uTp)
∼ inf

θ∈Θ̃(3)
k

(rnp)

Eθ(L̃1(u)) > pη. (6.18)

In the sequel, we denote by Ap a log-sequence, i.e., a sequence such that Ap =
(log(p))cp, |cp| = O(1) as p → ∞. Since u ∈ [0,

√
2], we have pΦ(−uTp) ≥ Ap.

Combining this bound with Lemma 6.2 yields

Varθ(L̃1(u)) = O
(

ApEθ(L̃1(u))
)

.

Since Hnp = o(pη), this implies (6.17) and then (6.12). 2
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6.3.5 Proof of Lemma 6.1

Let us bound the deviations of S̃j by computing the exponential moments of ∆j .
For any h such that h2‖θ‖2 ≤ 1/4, we have

EX(exp(h∆j)) = EXj
E
Xj

X (exp(h∆j))

= EXj

(

exp
(

hθj(‖Xj‖2 − n
)

E
Xj

X exp

(

h
∑

l 6=j
θl(Xj , Xl)

))

= EXj

(

exp

(

hθj(‖Xj‖2 − n) +
h2

2
‖Xj‖2

∑

l 6=j
θ2l

))

= exp

(

−nhθj −
n

2
log

(

1− 2hθj − h2
∑

l 6=j
θ2l

))

,

as 2hθj + h2
∑

l 6=j θ
2
l < 1. Taking h such that h2k log(p) = o(n) enforces h2‖θ‖2 =

o(1). Using the Taylor expansion of the logarithm

−hx − 1

2
log(1− 2hx− h2y2) =

1

2
h2(2x2 + y2)(1 + o(1)), h2(2x2 + y2) = o(1),

we get

EX(exp(h∆j)) = EX(exp(
√
nhS̃j)) = exp

(

n

2
h2(2θ2j +

∑

l 6=j
θ2l )(1 + o(1))

)

≤ exp
[

nh2‖θ‖2(1 + o(1))
]

(6.19)

as h2‖θ‖2 = o(1). Take some T > 0. Applying a standard technique based on
Markov’s inequality yields

PX(S̃j > T‖θ‖) ≤ EX

[

exp

(

T S̃j
2‖θ‖ − T 2

2

)]

,

PX(−S̃j > T‖θ‖) ≤ EX

[

exp

(

− T S̃j
2‖θ‖ +

T 2

2

)]

.

We get from (6.19) that

log(PX(|S̃j| > T‖θ‖)) ≤ −1

4
T 2(1 + o(1)) if T 2 = o(n) and T → ∞.

2

6.3.6 Proof of Lemma 6.2

Recall that we consider rnp = (ϕ(β)+ δ0)
√

k log(p)/n with arbitrarily small δ0 > 0

(see (6.8)). Recalling that Tp =
√

log(p), we apply the results of Section 7.5 for
δ = δnp > 0, δnp = o(1), and

T = ũTp, ũ = (1 + δ)u, v = (1− δ)(ϕ(β) + δ0) < ũ, t0 = vTp, R = 2Tp,
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since for tj = ρ̃j one has

k
∑

j=1

t2j = (1− δ)2n

k
∑

j=1

θ2j ≥ (1− δ)2nr2np = kt20.

By the choice of u, and v, the relations (7.4) hold true for p large enough (see
Remark 7.1). Applying Lemmas 7.4 and 7.5, we get

inf
θ∈Θ̃k(rnp)

k
∑

j=1

Φ(−ũTp + ρ̃j) = kΦ(−ũTp + t0).

We recall that Ap denotes any log-sequence. Since Φ(−tTp) = App
−t2/2 for t > 0,

we have

inf
θ∈Θ̃k(rnp)

Eθ(L̃1(u)) =
k (Φ(−ũTp + t0)− 2Φ(−uTp))

√

2pΦ(−uTp)
∼ kΦ(−ũTp + t0)
√

2pΦ(−uTp)

=
kΦ(−(ũ − v)Tp)
√

2pΦ(−uTp)
= App

1/2−β−(ũ−v)2+/2+u2/4.

In order to obtain (6.18), we have to check that there exists η > 0 such that, for
n, p large enough,

G
∆
=

1

2
− β − (ũ− v)2+

2
+
u2

4
≥ η.

Let β ∈ (1/2, 3/4]. Recalling that ϕ2(β) = 2β − 1 > 0 and (6.10) we see, that
for δ = δnp = o(1) and δ0 ∈ (0, ϕ(β)), one can find η = η(β, δ0) > 0 such that

G = −ϕ
2(β)

2
− (ϕ(β)− δ0)

2

2
+ ϕ2(β) + o(1)

= ϕ(β)δ0 −
δ20
2

+ o(1) ≥ η + o(1).

Let us now consider β ∈ (3/4, 1]. Recalling that ϕ(β) =
√
2(1 − √

1− β)
and (6.10), we see that for δ = δnp = 0(1) and δ0 ∈ (0,

√
2− 2β), one can find

η = η(β, δ0) > 0 such that

G =
1

2
− β −

(√
2−

√
2
(

1−√
1− β

)

− δ0
)2

2
+

1

2
+ o(1)

= 1− β −
(

√

1− β − δ0/
√
2
)2

+ o(1)

=
√

2− 2β δ0 −
δ20
2

+ o(1) ≥ η + o(1).

The relation (6.18) follows. 2
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6.4 Proof of Proposition 4.6

Under H0, the distributions of the variables (yi)i=1,...,p do not depend on σ2. As a
consequence, E0,σ(ψ

HC) = E0,1. This last quantity has been shown to converge to
0 in Theorem 4.4. Hence, we get αun(ψHC) = o(1).

Let us turn to the type II error probability. We consider the model Yi =
∑p

j=1 θjXij + ξi where Var(ξi) = σ2. Dividing this equation by σ, we obtain the
model:

Y ′
i =

p
∑

j=1

(θj/σ)Xij + ξ′i ,

where Var(ξ′i) = 1. The statistic tHC is exactly the same for the data Z = (Y,X)
and Z ′ = (Y ′, X). Consequently, we obtain Eθσ,σ(1 − ψHC) = Eθ,1(1 − ψHC). It
remains to use the bound on Eθ,1(1− ψHC) from Theorem 4.4. 2

7 Appendix: Technical results

7.1 Thresholds

Take the thresholds T = Tj satisfying

Tj =
aj
2

+
log(h−1)

aj
.

Define aj = xj
√

log(p), τj = Tj/
√

log(p), and h = p−β. Then, we have
τj = xj/2 + β/xj.

If for some δ0 > 0, xj+ δ0 < ϕ2(β)
∆
=
√
2(1−√

1− β) ≤ ϕ(β) , then there exists
δ1 > 0 such that τj >

√
2 + δ1. For such a xj, we derive that

pT rj Φ(−Tj) = o(1), ∀ r > 0 . (7.1)

In particular, if xj = o(1), then τj → ∞ and (7.1) holds.

For any δ > 0, we have

Φ(−Tj) ≍ hΦ(−Tj + aj) for τj > xj + δ . (7.2)

This holds if xj < ϕ2(β) ≤
√
2.

7.2 Norms ‖Xj‖ and scalar products (Xj, Xl)

Clearly,
E(‖Xj‖2) = n, E(Xj , Xl) = 0 , Var(Xj, Xl) = n.

By Assumption B1, there exists D > 0 such that supj 6=lVar(Xj , Xl) ≤ nD and
supj Var(‖Xj‖2) ≤ nD.
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Lemma 7.1 Let Uj be a random variable distributed as Xij.
(1) Assume that there exists h0 > 0 such that sup1≤j≤l≤pE(e

hUjUl) <∞ for any
|h| < h0. Then, for any sequence t = tn such that t = o(

√
n) and t

√
n→ ∞,

P (|‖Xj‖2 − n| > t
√
n) ≤ exp[−t2/(2D)(1 + o(1))],

and

P (|(Xj, Xl)|| > t
√
n) ≤ exp[−t2/(2D)(1 + o(1))],

(2) Assume that E(|X|m) < ∞, for some m > 2. Then there exists Cm < ∞
such that

P (|‖Xj‖2 − n| > t
√
n) ≤ Cmt

−m/2, P (|(Xj, Xl)| > t
√
n) ≤ Cmt

−m.

Proof follows from the standard arguments based on the moment inequalities and
exponential inequalities. If EZ = 0, Var(Z) = 1, E(eh0Z) <∞, then log(EehZ) =
h2/2(1 + o(1)) as h → 0. Hence, we take h = t/

√
n = o(1) for the study of the

exponential moments of Sn =
∑n

i=1 Zi.

Corollary 7.1

(1) Let log(p) = o(n) and the assumptions Lemma 7.1 (1) hold true. Then, for any
B > 2, one has

PX(max
1≤j≤p

|‖Xj‖2 − n| >
√

BDn log(p) ) = o(1),

PX( max
1≤j<l≤p

|(Xj, Xl)| >
√

2BDn log(p) ) = o(1).

(2) Let p = o(nm/4) and the assumptions Lemma 7.1 (2) hold true. Then, for any
sequence vn going to infinity, one has

PX(max
1≤j≤p

|‖Xj‖2 − n| > √
np2/mvn) = o(1),

PX( max
1≤j<l≤p

|(Xj, Xl)| >
√
np2/mvn) = o(1).

(3) Under assumptions (1) or (2) uniformly in 1 ≤ j < l ≤ p in PX-probability,
one has aj ∼ a = b

√
n, xj ∼ x, i.e., for any δ > 0,

PX(max
1≤j≤p

|(aj/b
√
n)− 1| > δ) → 0, PX(max

1≤j≤p
|(xj/x)− 1| > δ) → 0.

7.3 Expansion of Φ(t)

Let Φ(t) be the standard Gaussian cdf and φ(t) be the standard Gaussian pdf.

Lemma 7.2 Let δ → 0, tδ = O(1). Then

Φ(t + δ) = Φ(t) + δφ(t) +O
(

δ2(|t|+ 1)φ(t)
)

.

Proof follows from the Taylor expansion and the properties of φ(t). 2

Observe that for any b ∈ IR there exists C = C(b) > 0 such that (|t|+1)φ(−t) ≤
C(b)Φ(−t) as t ≤ b. It follows from Lemma 7.2 that as δ → 0, tδ = O(1), t ≤ B
for some B ∈ IR, then

Φ(−t + δ) = Φ(−t)(1 +O(δ2)) + δφ(t).
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7.4 Tails of correlated vectors

Lemma 7.3 Let (X, Y ) be the Gaussian random two-dimensional vector,

EX = EY = 0, Var(X) = Var(Y ) = 1, Cov(X, Y ) = r.

Let t1 ≍ t2 → ∞, rt1 = o(1). Then

P (X > t1, Y > t2) = Φ(−t1)Φ(−t2)
(

1 +O(r2)
)

+ rφ(t1)φ(t2).

Proof. Observe that the conditional distribution L(Y |X = x) is Gaussian
N (m(x), σ2(x)) with m(x) = rx, σ2(x) = 1− r2. Therefore

P (X > t1, Y > t2) =

∫ ∞

t1

P (Y > t2|X = x)dΦ(x) =

∫ ∞

t1

Φ

(−t2 + rx√
1− r2

)

dΦ(x).

Setting h = |r|−1, observe that

∫ ∞

h

Φ

(−t2 + rx√
1− r2

)

dΦ(x) ≤ Φ(−h) = o
(

r2Φ(−t1)Φ(−t2)
)

.

It is sufficient to study the integral over the interval ∆ = [t1, h]. For x ∈ ∆, we
have −t2 + rx√

1− r2
= −t2 + δ(x), δ(x) = rx+O(r2t2 + |r3x|)) = O(1).

Applying Lemma 7.2, we have

∫

∆

Φ

(−t2 + rx√
1− r2

)

dΦ(x)

= Φ(−t2) (Φ(−t1)− Φ(−h))
(

1 +O(r2)
)

+ rφ(t2)

∫

∆

xdΦ(x)

= Φ(−t1)Φ(−t2)
(

1 +O(r2)
)

+ rφ(t1)φ(t2),

since
∫

∆
xdΦ(x) = φ(t1)− φ(h) = φ(t1) + o(r2Φ(−t1)). 2

7.5 A minimization problem

Let f(t) be a function defined on the interval t ∈ [0, R]. Consider the minimization
problem

Fk(t0) = inf

k
∑

j=1

f(tj) subject to

k
∑

j=1

t2j ≥ kt20, tj ∈ [0, R]. (7.3)

Lemma 7.4 Assume that there exists λ > 0 such that

inf
t∈[0,R]

(f(t)− λt2) = f(t0)− λt20.

Then Fk(t0) = kf(t0).
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Proof. We have, for any (t1, ..., tk) such that tj ∈ [0, R],
∑k

j=1 t
2
j ≥ kt20,

k
∑

j=1

f(tj) ≥
k
∑

j=1

f(tj)− λ

(

k
∑

j=1

t2j − kt20

)

=

k
∑

j=1

(

f(tj)− λt2j
)

+ kλt20

≥ k
(

f(t0)− λt20
)

+ kλt20 = kf(t0). 2

We apply Lemma 7.4 to the function f(x) = Φ(−T + x). Let φ(x) = Φ′(x)
stand for the standard Gaussian pdf.

Lemma 7.5 Let f(t) = Φ(−T + t). Suppose

t0 > 0, T > t0 +
2

t0
, T < R ≤

(

t0
φ(−T + t0)

)1/2

. (7.4)

Take λ = φ(−T + t0)/2t0. Then the assumptions of Lemma 7.4 are fulfilled, i.e.,

inf
0≤t≤R

(f(t)− λt2) = f(t0)− λt20.

Proof. Denote g(t) = Φ(−T + t)− λt2. By the choice of λ we have g′(t0) = 0. Let
us consider the second derivative,

g′′(t) = (T − t)φ(−T + t)− 2λ = (T − t)φ(−T + t)− φ(−T + t0)/t0.

Observe that the function −xφ(x) is positive for x < 0, increases for x ∈ (−∞,−1)
and decreases for x ∈ (−1, 1); limx→−∞ φ(x) = 0 = 0φ(0),

g′′(t0) = (T − t0 − t−1
0 )φ(−T + t0) > 0.

Consequently, there exist two points t1, t2 such that t1 < t0 < t2 < T ,

g′′(t1) = g′′(t2) = 0, g′′(t) < 0 as t < t1 and t > t2.

The function g(t) is therefore convex on [t1, t2], concave on (−∞, t1] and on [t2,∞),
and t0 is the point of a local minimum of g(t). By the concavity, this yields that the
global minimum of g(t) at t ∈ [0, R] is achieved either at t = t0 or at the ends of the
interval [0, R]. Therefore we only need to show that g(0) > g(t0) and g(R) > g(t0).

In order to verify the first inequality, observe that g(0) > 0. Recalling the well
known inequality:

Φ(−y) < 1

y
φ(−y), ∀y > 0 ,

we get

g(t0) = Φ(−T + t0)− t0φ(−T + t0)/2 < φ(−T + t0)

(

1

T − t0)
− t0

2

)

< 0 ,

because T > t0 + 2t−1
0 .

The second inequality follows from the relation

g(R) = Φ(−T +R)− R2φ(−T + t0)

2t0
>
t0 − R2φ(−T + t0)

2t0
> 0,

in view of the assumption on R. 2
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Remark 7.1 Observe that if 0 < v < u < b and

T = uTp, t0 = vTp, R = bTp ,

where Tp is large enough, then assumptions (7.4) hold.
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