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Abstract

The extension of mathematical morphology to color and
more generally to multivariate image data is still an open
problem. The definition of multivariate morphological op-
erators requires the introduction of a complete lattice struc-
ture on the image data, hence vectorial extrema computa-
tion methods are necessary. In this paper, we propose a
lexicographical approach with this end, based on the prin-
ciple ofα-trimming, that leads to flexible, but nevertheless
pseudo-morphological operators, in the sense that there is
no underlying binary ordering relation among the vectors.
Moreover a possible solution to this problem is presented
as well as a way of automatically computing the parameter
α based on statistical measures. The results of a series of
color noise reduction experiments are also included, illus-
trating the superior performance of the proposed approach
against uncorrelated Gaussian noise, with respect to state-
of-the-art vector ordering schemes.

1. Introduction

The extension of mathematical morphology to multivari-
ate image data, and specifically to color images is still an
open problem. Since the early 1990s, when the underlying
theory was formalized [4, 11, 12], and the complete lattice
theory was accepted as its appropriate algebraic basis, sev-
eral approaches were proposed to this end. The requirement
of this extension, consisting of a vector ordering that would
provide the vectorial extrema necessary for inducing a com-
plete lattice structure on the image data, has led to various
multivariate morphological frameworks, of which none has
yet been widely accepted. Besides the inherent difficulty of
ordering vectorial data, the nature of color has also proven
to be an additional obstacle in this regard. A comprehensive
survey on the different approaches can be found in [2].

One of the most popular vector ordering mechanisms
used in this area is the standard lexicographical approach,
which however suffers from the extreme prioritization of
the first dimension, hence ignoring largely the rest of the
vector components. In this paper, we address this problem,

and propose a modified version of lexicographical order-
ing based on the principle ofα-trimming, borrowed from
the area of noise reduction, where it has been long em-
ployed against impulsive noise in the form of theα-trimmed
mean filter and its variants [9]. Although the resultingα-
trimmed lexicographical extrema computation scheme pro-
vides a more flexible solution with interesting filtering capa-
bilities, we show that the morphological operators thus ob-
tained are theoretically unsound and present a workaround
for this problem. We further discuss the choice of theα ar-
gument and propose a computation method in this end based
on the standard deviation of image channels.

Additionally, the results of a series of tests are provided,
where the proposed approach is compared with state-of-the-
art vector orderings, in the context of colour noise reduc-
tion. Its superior performance against Gaussian noise illus-
trates its practical interest, in spite of its theoretical deficien-
cies.

The rest of the paper is organized as follows. Section 2
introduces briefly the theoretical aspects of extending mor-
phological operators to multivariate images and some of the
related methodologies. In section 3, the proposed approach
is presented and its theoretical properties are elaborated.
Then, in section 4, we discuss the results obtained from the
comparative tests. Finally section 5 is devoted to conclud-
ing remarks.

2. Multivariate Mathematical Morphology

In this section we review briefly the main issues concern-
ing the extension of mathematical morphology to multivari-
ate images. For an in-depth study of this topic the reader
can refer to the fundamental references [4, 12].

2.1. Definitions

Among the different methodologies that appeared with
the end of extending binary morphological operators to
greyscale images, the one based on complete lattices re-
ceived the widest acceptance and is now considered as the
right mathematical framework for morphology [11]. Ac-
cording to this approach, given an imagef : E → T with



E an arbitrary non empty set, a complete lattice structure
is imposed on the grey-level rangeT . In other words,T
must be a non empty set equipped with a partial ordering
such that every non empty subsetP ⊆ T has a greatest
lower bound

∧

P (infimum) and a least upper bound
∨

P
(supremum). Consequently, while the scalar order is suf-
ficient for verifying this condition in the case of greyscale
images, where usuallyT = Z orT = R, it becomes a much
more challenging task with multivariate images, where usu-
ally T = Z

n
or T = R

n
with n > 1, since there is no

natural ordering relation for multivariate data.
Indeed, given such a vectorial ranking scheme “<”, the

vectorial versions of the two fundamental morphological
operators, erosion (εb) and dilation (δb) of a multivalued
imagef by a flat structuring element (SE)b, can be imme-
diately derived by means of the vectorial extrema operators
supv andinfv based on the given ordering:

εb(f)(x) = infv
s∈ b

{f(x + s)} (1)

δb(f)(x) = supv
s∈ b

{f(x− s)} (2)

Therefore, the main obstacle preventing the extension of
morphological operators to multivalued images, consists in
defining a vector ordering relation that will induce a com-
plete lattice structure on the image data.

2.2. Vector orderings

Vector ordering methodologies have been studied rela-
tively thoroughly in the literature [3], and numerous solu-
tions have been proposed in this end. Some of the most pop-
ular of which include themarginal or M-ordering, which
is a partial ordering realized in a componentwise fashion,
hence neither exploiting the inter-channel relations nor pre-
serving the original vectors. This last property renders mar-
ginal ordering inadequate for color images as it introduces
false colors.Reducedor R-orderings on the other hand, first
reduce vectors into scalar values, and then order them ac-
cording to the natural scalar order. However, unless the
reduction transformation is injective, this approach results
in pre-orderings that do not lead necessarily to unique ex-
trema.

Conditionalor C-orderings, order vectors by means of
some of their marginal components, selected sequentially
according to different conditions, with the lexicographical
ordering “<L”being a widely known example of this group:

∀ v, v′ ∈ R
n, v <L v′ ⇔

∃ i ∈ {1, . . . , n} , (∀ j < i, vj = v′
j) ∧ (vi < v′

i)
(3)

From a theoretical point of view, lexicographical ordering
is a total ordering, thus preserving the input vectors and
producing unique extrema. That is why most efforts in the
area of multivariate morphology, and color in particular, are
based upon it [1, 7].

However, despite its theoretical advantages, most usu-
ally in practice the vast majority of lexicographical com-
parisons are determined by means of the first component

[5]. The remaining dimensions hardly participate in this
process, hence leading to an inefficient exploitation of the
inter-channel relations. In order to remedy this problem, a
first attempt was made by Ortiz et al. [8], that proposed the
α-lexicographical ordering:

∀ v, v′ ∈ R
n, v < v′ ⇔

{

v1 + α < v′
1, or

v1 + α ≥ v′
1 and [v2, . . . , vn]

T
<L [v′

2, . . . , v
′
n]

T

(4)

whereα ∈ R, and for high values ofα, comparisons reach
more frequently the second dimension. Nevertheless, ex-
pression (4) is not transitive, hence does not represent an
ordering from an algebraic point of view. A theoretically
more sound methodology was introduced by Angulo [1],
theα-modulus lexicographical ordering:

∀ v, v′ ∈ R
n, v < v′ ⇔

[⌈v1/α⌉, v2, . . . , vn]
T

<L [⌈v′
1/α⌉, v′

2, . . . , v
′
n]

T (5)

which by means of a division by a constantα followed by a
rounding off reduces the dynamic margin of the first compo-
nent (considered as integer values in[0, 255]), thus allowing
a greater number of comparisons to reach the second.

3. α-trimmed lexicographical extrema

Here, we propose an alternative measure, that can be em-
ployed in order to obtain a less “asymmetric” lexicographi-
cal ordering, based on theα-trimming principle used in fil-
ters such as theα-trimmed mean filter(αMF) [9]. Given a
vectorv ∈ R

n, containing the sorted scalar pixels under the
filtering window, the underlying idea ofα-trimming con-
sists in computing their mean by ignoring the2α extreme:

αMF(v) =
1

n− 2α

n−α
∑

i=α+1

vi (6)

whereα ∈ [0, n/2], andn is odd.

3.1. Proposed approach

Similarly, in the case of multidimensional vectors we
can apply the same principle to each dimension in an it-
erative fashion. Specifically, in the case of the maximum,
starting from the first dimension, we can sort all vectors
according to this dimension, and then keep theα greatest.
Consequently, at each step the initial set of vectors will get
smaller. Against the eventual situation, where more than
one vectors remain at the end of this procedure, we choose
to use the last dimension for tie-breaking purposes. A more
formal description for computing the maximum based on
this procedure, is given in table 1.

As to the minimum, it can be obtained in a likewise fash-
ion by simply sorting in a decreasing order. An illustration
of this approach on a three dimensional spaceD1×D2×D3
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Figure 1. A set of vectors in a three dimensional space D1 × D2 × D3, and the three iterations of
the α-trimmed lexicographical maximum computation with α = 0.5 (left to right). According to the
proposed approach, the maximum will be the greatest, with re spect to the third dimension, of the
remaining three vectors.

Table 1. The α-trimmed lexicographical maxi-
mum computation algorithm

Inputs:
a setV = {vi}1≤j≤k of k, n-dimensional vectors
α ∈ ]0, 1]

Output:
max V

begin
for i = 1 to n− 1

Sort in increasing order the vectors ofV
with respect to theirith dimension
k ← ⌈α× k⌉
V ← the greatestk vectors inV
as well as those equal to thekth vector
if (|V | = 1)

return v ∈ V
endif
i← i + 1

endfor
return the greatest vector withinV
with respect to thenth dimension

end

is given in figure 1. Of course the value ofα greatly influ-
ences the choice of extrema. As a matter of fact, with anα
approaching zero, from each dimensioni, only the extreme
(i.e. maximum or minimum) vector is kept along with those
equal to it with respect to dimensioni. In other words the
procedure becomes identical to the standard lexicographi-
cal ordering. On the other hand, whenα approaches one,
priority is shifted gradually to the last dimension. Addition-
ally, more complicated priority relations among the avail-
able channels can be established by means of differentα
values for each vector dimension.

As far as its computational complexity is concerned, as-

suming an optimal sorting procedure is used, in the worst
scenario, where alln dimensions would need to be sorted,
with k vectors the complexity would be in the order of
O(n× k× log k). Whereas for the same scenario, the com-
plexity of computing an extremum by means of a lexico-
graphical ordering would beO(n × k). Besides this addi-
tional computational cost, the flexibility of this approachis
coupled with an even more important drawback.

Specifically, according to section 2.1, in order to obtain
theoretically correct morphological operators, at least apar-
tial ordering needs to be induced on the image data. The
proposed extremum computation method however does not
have an underlying binary relation, let alone an ordering.
All the same, since unique extrema can be computed, the
erosion and dilation operators as well as those derived from
them can still be defined, however none of the standard
morphological properties can be guaranteed (e. g. idempo-
tence, increasingness, etc), hence they are called “pseudo-
morphological operators”. A further example of this type
of an approach consists of the extrema obtained by cumu-
lative distances, where the minimum is defined as the me-
dian vector and the maximum as the most distant. Given
V = {vi}1≤j≤k a set of vectors:

max V = arg max
i







∑

j 6=i

d(vi, vj)







(7)

min V = arg min
i







∑

j 6=i

d(vi, vj)







(8)

whered(·, ·) denotes a distance.
Although a serious handicap, the lack of an underly-

ing ordering relation does not hinder the practical use of
pseudo-morphological operators based on these extrema
computation schemes.

For instance Plaza et al. in [10] employ successfully
extended morphological profiles calculated using operators
based on equations (7) and (8) for the classification of mul-



Input:
a setV = {vi}1≤i≤k containing all the vectors of a discrete multi-dimensionalspace

Output:
the ordered setV ′ =

{

v′
j ∈ V | ∀m,n ∈ {1, . . . , k} ,m ≤ n, v′

m ≤ v′
n

}

containing the vectors ofV
begin

for j = 1 to k
v′

j = SetBasedMinimum {V \ {v′
i | i ∈ {1, . . . k} , i < j}}

j ← j + 1
endfor
return V ′ =

{

v′
j

}

1≤j≤k

end

Table 2. The ordering of a multi-dimensional space using a se t-based minimum computation method
(SetBasedMinimum)

tispectral remote sensing images. In fact, thanks to the “set-
based” computation of the extrema, conversely to binary re-
lations, these approaches can be presumed to better exploit
the distribution of the vectors within the multi-dimensional
space, thus often exhibiting interesting behaviors (section
4).

3.2. From set-based to binary relations

Furthermore, in situations where binary orderings are a
necessity, besides using one of the many available alterna-
tives one can also employ the set-based approaches in order
to derive a binary ordering. Specifically, given a discrete
multi-dimensional space, one can employ the set-based ex-
tremum computation method at hand, in order to calculate
the maximum or minimum of this space, and then repeat for
the remaining points, up until the entire space is ordered.
The formal procedure is described in table 2.

Consequently, given then any two vectors within this
space their order is known. Moreover, sinceα-trimmed
lexicographical extrema are unique, this type of an ap-
proach would lead to a total ordering. One cannot a pri-
ori guess the properties of a such ordering, which would
be radically different depending on the extremum computa-
tion method used (e. g. α-trimmed lexicographical, cumu-
lative distances, etc) as well as on the extremum employed
(i. e. minimum or maximum). Besides, applying this proce-
dure to the entire vector space would be extremely expen-
sive in terms of computational complexity, but then again
it needs to be done only once. Furthermore, one can also
limit the procedure described in table 2 to the points of the
multi-dimensional space occurring within the image to be
processed, thus obtaining an “image-specific” ordering. Of
course in this case the process needs to be repeated sepa-
rately for every image.

3.3 Settingα

As mentioned previously in section 3.1, the choice of
α directly controls the influence of each dimension on the

computed extrema. Besides, finer control can be of course
achieved by using different values ofα for each dimension.
In practice however, it is often necessary to set these argu-
ments in an unsupervised fashion. Here we propose a sim-
ple parameter setting model based on the standard deviation
(σ) of each dimension.

Specifically, if the data are relatively concentrated with
respect to theirith dimension, or in other words if this im-
age channel does not contain much of the total variational
information, we consider using a largeα to be more per-
tinent, thus decreasing the influence of this dimension by
carrying the majority of the input to the next dimension
with minor trimming. Conversely, if the data are highly dis-
persed with respect to the other dimensions, meaning that
this channel represents relatively important variationalin-
formation, a smallα would be used leading to major trim-
ming. Givenn dimensions, one way of obtaining the corre-
spondingαi value of dimensioni would be:

∀ i ∈ {1, . . . , n} , αi = 1−
σi

∑n

j=1
σj

(9)

whereσj denotes the standard deviation of dimensionj.

4. Application: Gaussian noise elimination

In this section, we present the results of comparative tests
carried out with the purpose of both illustrating the practical
advantages of the proposed extrema computation scheme
with respect to state-of-the-art methodologies, as well asas-
serting some of the remarks made in previous sections with
experimental results.

The comparison of ordering approaches in multivariate
mathematical morphology is relatively problematic since
their performance depends on several criteria (e. g. data
space, image data, employed operators, evaluation, etc).
That is why here it was chosen to employ an easily quan-
tifiable task, colour noise reduction, using four images with
varying color distributions (figure 2). Moreover, since lex-
icographical ordering in general is most adequate for data



Figure 2. From left to right, Lenna (Lenna) 512 × 512, the image of happiness (Happy) 552 × 421 (by
Abidin Dino), cat with umbrella (Cat) 576× 420 (by Gamze Aktan) and the curious (Curious) 502× 512
(by Gamze Aktan).

spaces where an inherent priority exists among the dimen-
sions, using the RGB color space, where all three dimen-
sion are equally important, was considered inappropriate.
Instead, an intuitive color space based on the notions of
hue, saturation and luminance was employed, the improved
HLS space based on the max-min norm [6], which remedies
important drawbacks of the standard cylindrical HLS space
(e. g. dependence between saturation and luminance, etc).

Since the human vision system is largely known to at-
tribute greater importance to luminance variations with re-
spect to chrominance, it was decided to set the lexicograph-
ical comparison order as L followed by S and finally H
where all components are in[0, 1]. As far as the period-
icity of hue is concerned, its ordering was realized in terms
of angular distances from a reference hueh0:

h÷ h0 =

{

|h− h0| if |h− h0| < 0.5
1− |h− h0| if |h− h0| ≥ 0.5

(10)

which for the sake of simplicity was set ash0 = 0.0. The
hue values were then ordered according to their distances
from h0:

∀ h, h′ ∈ [0, 1], h < h′ ⇔ h′ ÷ h0 < h÷ h0 (11)

where hues closer toh0 are considered greater.
The images were corrupted in RGB with uncorrelated

Gaussian noise(σ = 0.125, ρ = 0.0), and in order to quan-
tify the relative performances, the relative normalized mean
square error(RNMSE) was used, also in RGB:

RNMSE =

∑

x,y ‖f(x, y)− ff (x, y)‖
2

∑

x,y ‖f(x, y)− fn(x, y)‖
2

(12)

wheref(x, y), fn(x, y), ff (x, y) denote the vector pixels at
position (x,y) respectively of the original, the noisy and fil-
tered images, while‖·‖ represents the Euclidean norm. The
images were filtered using a SE of size(3×3) and the open-
close close-open filter(OCCO):

OCCO(f) =
1

2
φ(γ(f)) +

1

2
γ(φ(f)) (13)

whereφ andγ denote respectively the closing and opening
operators. The extrema computation approaches that were
tested are luminance only (Lum), saturation only (Sat), hue

only (Hue), lexicographical (Lex),α-lexicographical with
α = 0.01 (α-Lex), equation (4),α-modulus lexicograph-
ical with α = 10 (α-modLex), equation (5),α-trimmed
lexicographical withα = 0.45 (α-trimmed-Lex) or com-
puted according to equation (9) (α-trimmed-adaptive-Lex),
and finally the total ordering resulting from the use of algo-
rithm 2 with anα-trimmed lexicographical minimum where
α = 0.45 (α-trimmed-Lex-ordering). As to the fixed ar-
guments, they were all set empirically as the values maxi-
mizing their performance based on the Lenna image. As a
reference, the marginal ordering on RGB (MargRGB) was
also included.

The filtering results are shown in table 3. Judging from
the obtained values, the superiority of the marginal ap-
proach is obvious. By not being limited with the input vec-
tors it is capable of approximating much better the original
image, while the introduction of false colours is also un-
avoidable. Moreover, we can additionally observe the supe-
riority of luminance over the other two dimensions, hence
justifying our choice to set luminance at the first position
of the lexicographical comparisons. Furthermore, one can
also remark the priority attributed to the first dimension dur-
ing lexicographical ordering, since its performance is very
close to using only luminance. Of the first twoα based ap-
proaches onlyα-Lex leads to an improvement over Lum,
with their difference however not being sufficiently large to
draw sound conclusions.

The two trimming based extrema on the other hand,
clearly outperform their counterparts. Despite resulting
in pseudo-morphological operators, the set based extrema
computation is presumed to aid their performance. Fur-
thermore, although the empirically set constantα = 0.45
provides in average the best results, the adaptively set di-
mension specific arguments exhibit only slightly superior
error levels. The image specificα-trimmed lexicographical
ordering however has been disappointing, clearly showing
that further work is necessary on this option.

5. Conclusion

The extension of mathematical morphology to multi-
variate images is a challenging task, due to the ambigu-
ous ordering relations of multidimensional data. Among



Method Lenna Happy Cat Curious Average
MargRGB 14.07 14.57 18.44 24.38 17.87

Lum 43.12 43.31 48.43 53.75 47.15
Sat 53.10 61.62 57.03 70.91 60.67
Hue 49.83 53.57 59.01 69.48 57.97
Lex 43.20 43.31 48.50 53.72 47.18

α-Lex 43.11 43.28 48.35 53.53 47.07
α-modLex 43.51 43.92 48.74 53.79 47.49

α-trimmed-Lex 29.97 39.74 35.77 45.16 37.66
α-trimmed-adaptive-Lex 29.86 39.96 36.12 45.37 37.83
α-trimmed-Lex-ordering 79.67 87.69 81.83 95.26 86.11

Table 3. 100×RNMSE errors against uncorrelated Gaussian noise (σ = 0.125, ρ = 0.0)

the plethora of available ordering approaches, the lexico-
graphical option has been widely experimented with in this
regard, as it possesses desirable theoretical properties.In
this paper we proposed an alternative solution to its main
drawback, the highly asymmetric prioritization of data di-
mensions. Theα-trimming principle was used with this
purpose, leading to more flexible inter-channel priority re-
lations. Moreover, as with all set based extrema computa-
tion schemes lacking an underlying ordering relation, the
proposed approach led to pseudo morphological operators,
against which an iterative method was proposed in the end
of ordering the data space.

The proposed approach was tested against state-of-the-
art ordering mechanisms used in color morphology, in the
context of Gaussian noise reduction. Despite empirically
set arguments for all compared methodologies,α-trimming
lexicographical extrema outperformed their counterparts,
with the proposed adaptiveα calculation model also prov-
ing to be a robust and unsupervised solution for parameter
setting.

Future work will concentrate on the influence ofα on ap-
plications other than noise reduction (e. g. classification of
remote sensing imagery), as well as on more elaborate para-
metrization models. Moreover, given the relatively high er-
ror rates of theα-trimmed lexicographical minimum based
ordering, possible improvements to the preliminary version
of algorithm 2 will be studied.
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