
HAL Id: hal-00515491
https://hal.science/hal-00515491

Submitted on 7 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MMSA: Metamodel Multimedia Software Architecture
Makhlouf Derdour, Philippe Roose, Marc Dalmau, Nacira Ghoualmi-Zine,

Adel Alti

To cite this version:
Makhlouf Derdour, Philippe Roose, Marc Dalmau, Nacira Ghoualmi-Zine, Adel Alti. MMSA: Meta-
model Multimedia Software Architecture. Advances in Multimedia, 2010, pp.1-17. �hal-00515491�

https://hal.science/hal-00515491
https://hal.archives-ouvertes.fr


Hindawi Publishing Corporation
Advances in Multimedia
Volume 2010, Article ID 386035, 17 pages
doi:10.1155/2010/386035

Research Article

MMSA: Metamodel Multimedia Software Architecture

Makhlouf Derdour,1 Philippe Roose,2 Marc Dalmau,2 Nacéra Ghoualmi Zine,1 and Adel Alti3

1 Computing Department, University of Annaba, 19000 Annaba, Algeria
2 Computing Department, LIUPPA—IUT of Bayonne, Bayonne, 64600 Anglet, France
3 Computing Department, University of Setif, 19000 Setif, Algeria

Correspondence should be addressed to Makhlouf Derdour, m.derdour@yahoo.fr

Received 1 February 2010; Revised 28 May 2010; Accepted 2 July 2010

Academic Editor: Martin Reisslein

Copyright © 2010 Makhlouf Derdour et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Interoperability explains how two or more systems or components exchange and process information. The heterogeneity
communication mechanisms of the components (GPRS, WIFI, Bluetooth, ZigBee, etc.), transmission speed, as well as the variety
of the media (sound, video, text, and image) they manage have a strong influence on the interoperability. That requires the
management of the adaptation to an abstract level in order to avoid ad hoc nonreusable, and/or generalizable solutions. In this
paper we propose a metamodel for architectures with heterogeneous multimedia components. It enables the description of the
software architectures as a collection of components manipulating various types and formats of data, and interacting between
them via specific adaptation connectors.

1. Introduction

With recent progress in software and material technologies,
multimedia systems become increasingly sophisticated and
complex. Today, companies require multimedia applications
that combine a variety of data sources, such as audio,
video, text and image, and of the multiparty interactive
communications. The multimedia communication needs
services able to face with heterogeneity on several levels: the
context, the access devices, the communication network, the
user, and so forth. It is necessary to integrate solutions to deal
with the data heterogeneity problem, and to answer to the
changes of the context caused by the user, the application,
the network, or the access device. The future multimedia
ubiquitous systems must have adaptation capabilities, and
be able to modify the system configuration and/or the
multimedia contents at any time. This requires taking into
account the data flows and the components interactions in
the early development phases of application.

Among the software architecture for pervasive applica-
tions, it exists component-based architectures that allow the
reasoning about complex software systems at an abstract
level, that is, ignoring the details of design and of implan-
tation. Architecture is an abstract and modular description

of a system. At this level, the architecture is perceived as a
collection of components (in the sense of software entities),
a collection of connectors (to describe interactions between
components), and of configurations (assemblies of components
and connectors). The separation of concerns (functional/non-
functional) can deal with the components as well as the
assemblies themselves. They cover the structural and the
dynamic aspects of applications. The adaptation is one of
the concerns that we consider non-functional and serves to
ensure the interoperability of heterogeneous components.

Multimedia technology is increasingly being used to
create reliable and effective communication environments.
However, the design of multimedia applications is currently
driven more by intuition than by empirically or theoretically
derived design guidelines. In a multimedia application, the
software architecture is defined as a set of components
manipulating various multimedia data types with specific
constraints that we must take into consideration at the
architectural design. For instance, the problem of hetero-
geneity if based or the exchange of multimedia data flows.
In this paper, we propose Meta-model Multimedia Software
Architecture (MMSA), an approach for multimedia software,
which enables the description of software architectures
expressing a multimedia software system as a collection of



2 Advances in Multimedia

components which handle various types and formats of
multimedia data, and interacts with them via adaptation
connectors.

The remainder of this article is organized as follows. After
exposing our objectives and our motivations, in Section 3 we
present the model MMSA. Section 4 presents models of mul-
timedia data and adaptation techniques. Section 5 presents
the adaptation in MMSA and its architectural concepts.
Section 7 summarizes the related work. Finally, Section 8
concludes this article and presents some perspectives.

2. Motivations

Our main motivation is to propose a meta-model for
maintaining data consistency in configurations constituted
of various components exchanging heterogeneous data. We
propose new types of graphic interfaces and connectors with
a richer semantic.

The use of these graphics interfaces allows the automatic
detection of heterogeneity points between components,
while the use of adaptation connectors allows the resolution
of these heterogeneities. The systems are built by assembling
(functional) components and (non-functional) connectors,
where each element is correctly placed in the architecture
configuration. In most of the ADL (Architecture Description
Language) we find the following.

(i) The choice of the available connectors in the envi-
ronment is limited to the primitive connectors, no
compounds connectors.

(ii) The management of the non-functional concerns of
the components is ensured after the definition of
architecture and configuration of the components.

(iii) The management of assembly does not take into
account the behavioral heterogeneity (semantic) of
the components of software architecture.

(iv) Few models are able to define new connectors with
different treatments that ensure the non-functional
concerns of the components (security, communica-
tion, conversion, etc.).

(v) There is no direct and automatic correspondence
between architectures (models) and the applications
conceived following these architectures (instances).

In order to solve these problems, we propose MMSA
to describe multimedia components-based software archi-
tectures. Based on the definition of four types of interfaces
according to existing data flow (image, sound, text, and video)
and to strategies to make multimedia flows (type, format,
property) to three levels, we propose a model to solve the
problem of components data exchange heterogeneity. It is
developed in order to reach the following objectives.

(i) Ensure a high level of abstraction for the connectors
in order to make them more generic and more
reusable, and therefore reconfigurable.

(ii) Take into account the semantics of communication
links between components in order to detect points

of heterogeneity and insert the adaptation connectors
in those points.

(iii) Favor the maintenance and the management of the
adaptation QoS and of the communication ensured
by the connectors by providing the following pos-
sibilities: adding, suppression and substitution of
adaptation services.

The contributions of this paper are different from the
previous related works. Firstly, the paper gives the connec-
tor a central role in dynamic architectures (i.e., dynamic
adaptation service for managing QoS). Secondly, it solves
the problem of heterogeneity in the conceptual level. Finally,
it allows taking into account the capabilities of hardware
components, by moving the adaptations processes in other
machines.

3. Data Multimedia and Adaptation Techniques

The multimedia environments are increasingly heteroge-
neous. The interoperability of component-based multimedia
applications and automatic deployment of such components
are very difficult. Indeed, the diversity of languages, proto-
cols, platforms, and media (images, text, sound, and video)
induces important incompatibility. Moreover, the instan-
tiation and the configuration of multimedia applications
guided by user’s preferences, requirements of the context,
and characteristics of multimedia components is not an easy
task to achieve.

The development of multimedia applications requires
two complementary models: a multimedia data flow model
allowing the representation of various types of media
exchanged between components and their relationships,
and an architecture model based on the concepts of ADLs
extended to multimedia and integrating adaptation con-
nectors. The main idea of this proposal is to take into
consideration the standard concepts of multimedia data
as well as the nonfunctional concerns (data adaptation,
communication protocol, security, etc.) of the components by
connectors at the software architecture level. The objective is
to propose a generic, clear, and complete description. In the
following parts we present different concepts for multimedia
represented by models. For each model we detail the relations
between its concepts.

3.1. Data Flow Model. In pervasive environments (mostly
heterogeneous and mobile), the devices can require for any
contents type, going from textual contents to the complex
and rich multimedia documents. Ensuring the delivery of
the adapted data to each peripheral requires adaptation
techniques which take into consideration the media and the
flows structuring. Therefore, their modeling is necessary. It
facilitates the adaptation work between media of the same
type (e.g., image to image) or between different media types
(e.g., text to sound).

The hierarchic structure of media is expressed in UML
using a class diagram (cf. Figure 1). The media are classified
in two categories: continuous media, such as video or sound,
which are characterized by temporal dependencies, and



Advances in Multimedia 3

Table 1: Adaptations of media.

(a)

Category Video Sound

Transcoding Format conversion Format conversion

Transforming

(i) frame rate (i) change sampling

(ii) spatial resolution

(iii) temporal resolution

(iv) color depth

Transmoding

(i) video to image (i) audio to text

(ii) video to text

(iii) video to audio

(b)

Category Text Image

Transcoding Format conversion Format conversion

Transforming

(i) font size (i) data size

(ii) police, color, etc. (ii) dimension

(iii) color depth

(iv) color to grayscale

Transmoding
(i) text to Audio (i) image to Text

(ii) text to Image

discrete media such as image or text. Each type of media has
a set of encoding formats and some specific properties like
the resolution (in the case of image or video), the frequency
(in the case of the sound), and so forth. we distinguish
three types of structural links between media: temporal (to
describe the temporal dependences between units), logic (to
describe the logical organization of a flow in hierarchy form
of media), and spatial (to describe the disposition of the
multimedia-flow elements).

Currently, the multimedia data flows must be executed
on many platforms (Smartphones, PDA, Laptop or Desktop
PC, etc.). These various peripherals and uses require the
adaptation of flows according to their execution context,
which are sometimes unforeseeable at the time of prepara-
tion and design of data.

3.2. Adaptation of Data Flow. Each media can undergo three
types of adaptation. The first one is known as the format
conversion (Transcoding). It allows conversion in the same
type according to a different encoding format (e.g., BMP
to JPEG). The second one allows a handling of the media
characteristics (e.g., modification of image resolution). This
type of adaptation (Transforming) depends on the media
format, since each format authorizes the change of some
characteristics in the form of parameters. The third and
more complex transformation is called conversion of types
(Transmoding). It allows passing from a media type towards
another (e.g., text to sound for blind people). This conversion
of the type can also act on media structures by removing
the temporal dependences (e.g., the video to the images).
Each adaptation has an impact on the data quality. Thus,
the conversion of an image from a JPEG format towards
a GIF one implies a reduction in the number of colors to

256, the opposite implies the suppression of component
“transparency,” which according to the use context can be
problematic, even crippling.

The adaptation is a process (cf. Table 1) allowing a
modification the type of media (transmoding), the format
of encoding (transcoding,) and/or the media content (trans-
forming) in order to adapt it to the component recipient.
The class diagram (Figure 2) shows the various classes of
association allowing the passage of a media type to another,
or of a media format to another format.

We classify media adaptation processes into three cate-
gories.

(i) Transmoding consists in changing the modality of a
media. As an example, consider the transformation
of a sequence of text to an image if the client terminal
does not provide with the required police.

(ii) Transcoding means changing the encoding format of
a given media. For example, video may be transcoded
from the MOV video format to the AVI video format.

(iii) Transforming a given media does not change the
modality neither the format. This process transforms
the content by, for example, reducing the size.

The relation between association classes of transmoding
with the association class of transcoding explains that the
transcoding class can be called upon by the transmoding class
to participate in achieving the task of the latter. Although the
relation between transcoding class and the transforming is
a relationship of dependence, this relationship explains that
each format has a set of parameters to manage the various
qualities of media. The transforming is a particular type of
transcoding which keeps the same format of media with
changes of characteristics (e.g., conversion of a color JPEG
picture to a black and white one).

4. The MMSA Meta-Model

The adaptation problem covers (but not limited to) the het-
erogeneity of content information. Many new features have
been integrated with new advanced encoding techniques. It
exists now content in the form of images, vector graphics,
animations and videos, and so forth. Designers must respond
to the problem of heterogeneity caused by the evolution of
information content. They need an abstract level in order
to offer generic and reusable solutions allowing a good
architecture design of multimedia application.

MMSA meta-model describes the software architecture
of the system as a collection of components interacting
with connectors. Components and connectors have the same
abstract level and are defined explicitly by the separation of
their interfaces and their internal configurations (Figure 3).

Architecture Description Language (ADL) can be clas-
sified in three different categories [1]: ADL without con-
nectors, ADL with a preset set of connectors, and ADL
with explicit types of connectors. In the last case, the ADL
provides connectors as first-order elements of the language
such as: Wright [2, 3], ACME C2 [4], xADL [5], AADL
[6], and so forth. All these languages seek to improve



4 Advances in Multimedia

Structural link

Under
Right
Left
Center

Temporal link

Reference:
After time:

Spatial link

Axis X :
Axis Y :

Logic link

Destination:

Media

Continue

Speed
Duration

Discrete

Weight

Flow

Parameter = {input,
output} {input, output}

Image

Size
Resolution
Color number

Text

Color
Alignement
Font

Video

Resolution
Color
Title

Sound

Frequency
Loudness

≪ Enumeration≫

+BMP
+JPEG
+PNG
+GIF

≪ Enumeration≫

+RTF
+DOC
+ODT
+TXT

≪ Enumeration≫

+AVI
+MPEG
+MP4
+3GP

≪ Enumeration≫

+WAVE
+MIDI
+MP3
+PCM

0..∗

0..∗ 0..∗

∗

1..∗

0..1

Format: ImageFormat Format: TextFormatFormat: VideoFormat Format: SoundFormat

ImageFormat TextFormatVideoFormat SoundFormat

Parameter=

Figure 1: Multimedia flow model for MMSA.

the reusability of the components and the connectors by
separating the calculation and the coordination. In our
approach, we choose the explicit category of connector. Thus,
in MMSA meta-model, we present a generic and explicit type
of connector that the system can specialize according to the
architecture and the components needs.

An MMSA component is a computation unit having
a state. A component may have several implementations
(business parts) (Figure 4). A component can be primitive
or composite. Each component may have an interface
with multiple ports and multiple multimedia services. The
interface consists in a set of interactions points between the
component and the external world that allow the invoca-
tion of the services. We distinguish between an “Output”
interface exporting data of components, and the “Input” one
importing data to components. Each interaction point of a
component is called a port. Ports are named and typed. Each
port can be used by one or more services.

Most of existing ADLs do not support multimedia ports;
however describing architectures without multimedia typed
ports may clutter the outcome design and makes it hard to
understand its overall structure. So, we have typed each port
with a type of media (sound, image, video and text), so we

have distinguished each MMSA port type. This distinction
of the ports by data type can simulate the behavior of
a component, in order to detect the heterogeneity points
between components and to treat them at this level. This
gives a better verification of the consistency and validity of
the configurations of software architectures.

In MMSA, a connector is a configuration of three
components (communication, adaptation and QoS) ensur-
ing connection between the components. It ensures the
nonfunctional concerns of components (quality of service,
data transformation, communication). This allows a pos-
sible change of the adaptation services during the exe-
cution of the application (dynamic and real time adap-
tation), and preserves the abstract specification of the
component.

A MMSA connector is defined by two interfaces “Input”
and “Output” and a glue unit represented by three managers:
communication, adaptation and QoS (cf. Figure 5). They
manage the data transfer between components and allow
adaptations to be made. A required/provided interface of
connector is composed of a set of roles. Each role serves as
a point through which the connector is connected to the
component.



Advances in Multimedia 5

-Name
-Format
-Size
-Resolution

Image

-Name
-Format
-Color
-Font

Text

Transmoding I-T

Transcoding I Transcoding T

Transmoding S-TTransmoding V-I

-Image Parameters

Transforming I

-Text Parameters

Transforming T

-Video Parameters

Transforming V

-Name
-Format
-Resolution
-Duration

-Name
-Format
-Frenquency
-Speed

SoundVideo

Transmoding V-S

-Sound Parameters

Transforming S

-Input Format
-Output Format

Transcoding S

-Input Format
-Output Format

Transcoding V

≪uses≫≪uses≫

≪uses≫

≪uses≫

≪uses≫

≪uses≫ ≪uses≫

≪uses≫

≪uses≫

≪uses≫

≪uses≫

≪uses≫

≪uses≫

≪uses≫

≪uses≫

≪uses≫

1..∗

1..∗

1..∗

0..∗

0..∗

0..∗0..∗

0..∗

-Input Type

-Output Type

-Input Type

-Output Type
-Input Type

-Output Type

-Input Type

-Output Type-Input Format

-Output Format

-Input Format

-Output Format

Figure 2: The transformation relationship between different media.

Examples 1 and 2. In the first example, the components
exchange the same type and format of data (Figure 6). They
need a communication connector, but not adaptation is
why the adaptation manager and the QoS manager are
deactivated (gray). While the second example shows the
possibility to connect two heterogeneous components (one
component provides a JPEG image, the other requires a PNG
image) (Figure 7). This requires an adaptation ensured by
one or more connectors depending on the complexity of
adaptation. In this example, it is ensured by two connectors
(JpegToBmp and BmpToPng).

To improve the specification of connection points, we
have enriched the notion of role according to their data
flows into a connector. We have also extended the glue
by an adaptation manager which cooperates with a QoS
manager to ensure the adaptation task. An adaptation
manager is a set of adaptation services that cooperate to
realize adaptations. Two types of adaptation can be realized

in software architectures. The semantics adaptation (conver-
sion of type) related to the constraints of the data handled
by components and the technical adaptation (conversion
of format and adjustment of media characteristics) related
to the capacity of components (memory, display, etc.). The
QoS manager controls the adaptation manager in order to
change the parameters of adaptation services to provide
the adequate quality to the correspondent at runtime. The
QoS manager participates both in selecting parameters of
technical adaptation services of data flows (e.g., reduction of
resolution, reducing the number of images per second) and even
the adaptation services of type or format at runtime (e.g.,
choice of compression ratio in the transformation from BMP
to JPEG).

Configuration is a connected graph of components
and connectors that describe architectural structure. This
information is needed to determine whether appropriate
components are connected, their interfaces mach, connectors



6 Advances in Multimedia

Service quality

Action

Parameter

Possesses

Media

Use
Video-port

Image-port

Image-role

Sound-port

Text-port

Text-role

Sound-role

Video-role

Semantic adaptation

Technical adaptation

AttachmentConfiguration

Role
Connector

PortComponent

Component-interface

Service

Application

Adaptation-service

Connector-interface

QoS-manager

Adaptation-manager Communication-manager

Adaptation-glue

Input

Input

Output

Output

Xor

Xor

1

1

1

11

1

0..1

0..∗

0..∗

0..∗

0..∗

0..∗

0..∗

0..∗

0..∗

1..∗

1..∗

1
1

..∗

1..∗

1..∗ 1..∗

1..∗

1..∗

1..∗

1..∗

2

1..2

To use To use

Figure 3: Class diagram of software architecture MMSA.

Data flowData flow

Component

Service1 Service2

Service3

Input port

Output port Service

Parameter of service

Figure 4: MMSA component.

≪MMSAGlu≫

Adaptation Glu

≪ AdptMng≫

MngAdpt 1

Cs Manager

≪ Communication Mng≫

≪ QosMng≫

MngQ 1

≪Uses≫

≪Uses≫

Figure 5: Internal structure glue.

enables proper communication, and their combined seman-
tics results in desired behavior.

The key role of configurations in MMSA is to abstract the
details of different components and connectors. They depict

the system at a high level that can be potentially understood
by actors with various levels of technical expertise and
familiarity with the problem at hand.

An architecture configuration has a name and is defined
by interfaces (ports and services), which are the visible
parts of the configuration and support the interactions
among configurations and between a configuration and its
components.

In MMSA model, each component or connector is
perceived and handled as a primitive element. But they
can be primitive, or composite with a configuration which
encapsulates all the internal elements of this composite.
These configurations are first-class entities. A configuration
may have ports similar to components ports, and each port
is perceived like a bridge (binding) between the internal
environment of the configuration and the external one. In
MMSA, this binding is realized using connectors. Generally
configurations can be hierarchical where the internal compo-
nents and connectors can represent subconfigurations with
their proper internal architectures.

In Figure 8, the configuration contains two components,
which can be connected by one or more connectors, that is,
a component needs at least one connector to communicate
with another one. It can use several connectors depending
on the complexity of the adaption task.

The configuration of Figure 8 contains a video acquisi-
tion component and another one providing video restitu-
tion. The need for adaptation is explained by one handicap
(deaf) of the user of the restitution component. There, we
need to transform sound to text and integrate it with the
video, through three adaptation connectors (Video to Sound
+ Image (A), Sound To Text (B) and Text + Image to Video
(C)).



Advances in Multimedia 7

Component 2Component 1

≪MMSA Glue≫

Communication

Figure 6: Communication connector.

Component 2Component 1

≪MMSA Glue≫

Communication

≪MMSA Glue≫

Communication

AdM QoSM AdM QoSM

Figure 7: Two connectors of image transcoding JPEG to BMP to PNG.

Table 2: Port of multimedia interface.

Type Input Output Format

Text DOC Docx ODT

Image JPEG BMP PNG

Sound WAVE RM MP3

Video MPEG AVI MP4

5. The Adaptation in MMSA

During the creation process of architecture, in order to
solve the heterogeneity problem of architectural elements
(component, connector, and configuration), the adaptation is
made in three successive stages: (I) adaptation of the types,
(II) adaptation of the formats, and (III) adaptation of the
properties (Figure 9).

The data flow is a main constituent of the functional
components, it is often specified as a constraint to associate
with a functionality of communication involving several
components.

The constraints of data flows such as the type, the format,
and the media parameters must be specified at the architec-
tural level. For that, we consider a new type of component
intended to ensure a non-functional concern that of the
adaptation, which one calls the adaptation connector related
to the component which provides and/or requires the data
multimedia. We propose a graphical notation of the ports
of multimedia interfaces allowing to visually identify the
heterogeneity points per media type and to highlight the
need for the search of adaptation connectors (Table 2).

The detection of heterogeneity is done automatically by
the checking of the constraints of forms and colors.

Adaptation of Type (Transmoding). The heterogeneity of
components that manipulate the media of different types
is detected by the use of different forms to represent
the components ports (step 1, Figure 9). Therefore, two
components which have different ports (e.g., text port and
sound port) (Figure 10) can be connected only by the use
of one or several adaptation connectors of media type. This

problem will be solved by the integration of the transmoding
connectors at the architectural level.

Adaptation of Format (Transcoding). The heterogeneity of
the components that manipulate the same type of media
but with two different encoding format (step 2, Figure 9)
can be detected by the presence of color differences between
the formats of the same type. Therefore, two components
which have different colors for the same port (e.g., red port
for MPEG video and blue port for 3GP video) (Figure 11)
can be connected only with the use of one or several
connectors of format adaptation. This problem will be solved
by the integration of the connectors of transcoding at the
architectural level.

Adaptation of Media Properties (Transformation). The het-
erogeneity of components that manipulate the same media
type with the same format (step 3, Figure 9) but with differ-
ent properties (e.g., resolution and color for image, sampling
and speed for video, etc.) cannot be expressed visually in our
architecture, due to the parameters that depend on the media
and on the adaptation service (parameters of the service).
Therefore, two components which have the same color for
the same port (e.g., image port) can be connected with a
simple communication connector, and during the execution,
the adaptation manager and the QoS manager both manage
together the adaptation if necessary. At this level the problem
of heterogeneity is resolved at runtime, by the manipulation
of the parameters of the adaptation service; if this service is
configurable, regarding the parameters of flow.

The adaptation service is configured (Figure 12), in order
to allow an adaptation in various situations; it is applied in
several contexts, for example, with image resolution adapta-
tion.

6. The Architectural Concepts of MMSA

It is largely accepted that the component can be accessed
only via well-defined interfaces [7]. Interfaces link the
components with the environment. The component-based



8 Advances in Multimedia

Component 2Component 1

≪MMSA Glue≫

Communication

AdM QoSM

≪MMSA Glue≫

Communication

AdM QoSM

≪MMSA Glue≫

Communication

AdM QoSM

A B
C

Figure 8: A configuration with multiple connections working in parallel and in sequence.

Text

Video

Image

Sound

Video

Image

Component1

Component3

Component5

Component2

Component4

Component6

MPEG 3GP

JPEG Resolution 800× 600Resolution 1280× 768

Step 1

Step 2

Step 3

Figure 9: Heterogeneity between components.

Component 1
Connector of

adaptation
text to sound

Component 2

Figure 10: Transmoding connector of text toward sound.

Component 1 Component 2
Connector of

adaptation
video to video

Figure 11: Transcoding connector of MPEG to 3GP.

languages offer different concepts to describe elements inter-
faces, such as services, ports, interfaces, protocols, and so
forth. sometimes with different meanings. For example, in
Fractal [8] or Enterprise JavaBeans [9], the concept of port
and interface are mixed, so we only speak of interfaces. In
UML components diagram [10] the two concepts of ports
and interface exist, as in ArchJava [11], where the interface is
called port of interface. That is why we have chosen to explain
clearly the choices we have made for MMSA. In MMSA,
a component provides or requires services from the ports
described in the interface provided/required. Thus, MMSA
offers typing ports to differentiate them by type of media
manipulated (text, sound, video, and image).

6.1. MMSA Component. The components are atomic ele-
ments from which an MMSA application is created. Like
atoms, components MMSA behave in a coherent way,
and they can be assembled in different configurations.
MMSA understanding begins with understanding its basic
components of application.

A component is an instance of an application that has
been properly configured. The implementation is the code
that envisages indeed the functions of the component, as a
Java class or a BPEL process. MMSA components provide
functionalities called services (Figure 13). Basically, a service
is a subprogram defined in a program, as a method in object-
oriented model.

6.1.1. Interfaces. Generally, the interfaces are a support of
description of component to specify how they can be
assembled or used within architecture. The interfaces are
located both at a local level (associated with a port) and at
a global level (associated with a component). The interfaces
of MMSA components are seen as the connection points
of components and a support of services invocations. The
concept of port is used to represent the exchange of data via
component interfaces.

6.1.2. Ports. “A component is a static abstraction with
plug-in” [12]. The ports represent these plug-in which are



Advances in Multimedia 9

Component 1 Component 2

≪MMSA Glue≫

Communication

AdM QoSM

Image parameters:

-Resolution

-Number of colors.

Parameters of adaptation service:

-Compression ratio

-Etc.

Content

adaptation

Figure 12: Adaptation connector of image content.

In
p

u
t

in
te

rf
ac

e

Service Service

Service

Output
ports

Input
ports

Business component

Supervisor

Container
O

u
tp

u
t

in
te

rf
ac

e

Constraints
flow

Multimedia
flow

Multimedia
flow

Figure 13: Multimedia component model.

the points of components interaction. This means that
everything goes through these ports, like the invocation
of services, for example. The port is presented in almost
all models of components but with different semantic. In
component models where the ports are supported, they
are unidirectional or bidirectional. For unidirectional ports
like ComponentJ [13] or Fractal [8], a component provides
or requires all services via its ports. In ArchJava [11] or
UML 2.0 [10], the ports are bidirectional and a component
requires and provides services through the same port. In
MMSA the ports are unidirectional, because a port can
provide/require data via/from the connectors. The latter can
apply adaptations to the data, and generally the adaptation
services are not bidirectional (e.g., the adaptation service
of text to sound is not the same service to adapt sound to
text). The definition of specific ports, each one oriented to
support a specific data’s flow will produce more organized
architecture specifications where each data flow is considered
in an independent manner.

6.1.3. Service. A service is ensured by the component. It has a
set of parameters that allows controlling their outputs and set
parameters of call. All these parameters describe the service
interface. It communicates with the outside via the ports
provided/required of a component.

We can say that a service is a function defined inside
a component and offered to components. The service
parameters and arguments passing when invoking service
raises many questions: What is a parameter? Does one really
need parameters? What is the difference between argument
and parameter?

Domain

Machine

Component
Execute

1

1

1..∗

1..∗

1..∗
0..∗

Process

Figure 14: Modeling of domain concept.

In MMSA, the arguments are the necessary elements to
the execution of service (the variable, term, or expression to
which a service operates), while the parameters are the control
elements of QoS (e.g., a service that allows the transcoding of
an image BMP into JPEG, this service receives in argument the
path of BMP image, and parameter like the compression ratio).

6.1.4. Domain. Domains are an important concept; it defines
the provision and distribution of components on different
machines. A domain can contain one or more composite,
of which each one has components implemented in one or
more processes running on one or more machines [14].

The concept of domain such as presented in SCA
[15] is used in MMSA. This concept allows taking into
account constraints on the execution environment, in order
to provide a good service to the machine running the
component (e.g., a component displaying video needs to know
the physical characteristics of the host about which it will run to
adapt the resolution or speed).

Figure 15 show a domain with three machines and
eight components. At the top, on the left, we find three
components that run in one process, on the right one finds
two components that run in two different processes but on
the same machine. Below, we find three components in two
processes running on the same machine.

A domain is composed of several machines, each
machine is responsible for execution of several processes
and each process can contain one or more components
(Figure 14).

The concept of domain brought much for MMSA, espe-
cially for the choice of connectors and adaptation services
that allow the consideration of environmental constraints
when designing the application architecture.



10 Advances in Multimedia

Processes

Domain

Machine

Figure 15: Example of the domain notion.

Output
roles

Input

roles
Glue

Constraint

flow

Qos
manager

Communication
manager

Adaptation
manager

In
p

u
t

in
te

rf
ac

e

Multimedia
flow

Multimedia
flow

Supervisor

O
u

tp
u

t
in

te
rf

ac
e

Figure 16: Model of multimedia connector.

6.2. MMSA Connector. Compared with those of the lan-
guages of description of architectures [16, 17], the con-
nectors that we propose can be simple or composite and
can ensure services. These connectors do not only ensure
the communications links but also the adaptation of the
data exchanged (functional part of connectors) between
components.

The connector constitutes the entity of communication
and adaptation in our approach (Figure 16), that is, it is
able to transfer the multimedia data between the various
components while ensuring the adaptation of the latter.

Allowing heterogeneous components to interact with
each other is a significant task. The adaptation is considered
as a nonfunctional concern of component. This task must
be ensured by another element. The connector provides
the nonfunctional concerns (communication, adaptation,
security, etc.) which the component needs. The role of an
adaptation connector is to receive the data, to adapt them
according to the QoS manager directives, and to forward
them the following component or to connector.

Component

1 Connector text to sound Component

2

Fournisseur
de service

Sound
Text

Figure 17: Relation connecteur-fournisseur.

6.2.1. Adaptation Service. The connector ensures the com-
munication between two components (even heterogeneous)
from the services provided by component or service
providers that provide services according to the quality
required by the QoS manager (Figure 17).

The adaptation services take part in realization of adap-
tation of exchanged data by components. The representation
of a component by a set of services enables the use of its
services to the adaptation task (Figure 18), the mechanism



Advances in Multimedia 11

Component

1 1
Component

2

Service1
Sound to text

Library of

adaptation

connectors

Library of component

Description of
services

Connector

Figure 18: Use services of components in the adaptation task.

of such a use is the same of Web Service use, by considering
components as service providers.

Two mechanisms can be exploited here: the composition
of services defined by Kmelia [18] and the concept of library
components defined in Fractal [19].

(i) The composition defines a hierarchical relationship
(inclusion) which allows defining new services from
existing services. The availability of mechanisms for
service composition facilitates the definition of new
abstractions of services without necessarily passing
by the introduction of new components.For this
composition of services, the concept of inclusion
“Include” is defined by the use case diagram that can
be used.

(ii) Fractal proposes the concepts of component library
for developing components-based applications such
as the Dream library [20], which is a library of com-
ponents dedicated to the construction of message-
oriented middleware dynamically configurable more
or less complex. The same concept can be used by
MMSA to propose libraries of adaptation connectors
and adaptation services provided by the components
(cf. Figure 18).

6.2.2. Shared Component. A shared component is a compo-
nent that is included in several composites. Paradoxically, the
shared components are useful to preserve encapsulation [19].
This concept allows the MMSA to share the same adaptation
connectors to solve the problems of heterogeneity between
components.

Unlike the components that are instantiated on demand
and can have several instances, a service is single. But it has
the advantage that it is connected to other components and
services through standards of connection. These standards
ensure decoupling, that is, the reduction of the dependences,
these standards is XML documents as in web services.

Component
1

Component
2

Component
4

Component
3

(a1)

(a2)

Web service

Sound/sound

Figure 19: Example of a shared connector.

MMS

Adaptation
manager QoS manager

Context manager

Figure 20: Design adapted MMS.

As shown in Figure 19, the notion of shared connector
is very interesting. Especially, if the adaptation service is a
Web Service. The aim is to benefit from the mechanism
of instantiation of components and interoperability of Web
Services; this allows better use of adaptive connectors.

6.3. Configuration. An MMSA configuration is described
in an associated file of composition, whose name ends by
configuration. This file uses a format based on XML called
Configuration Description Language (CDL) to describe the
components of this configuration. For the three components
of Figure 19(a1), the basic structure of its configuration CDL
is shown in Algorithm 1.

The configuration, expressed in CDL defines how this
element interacts with the outside world. MMSA component
could be implemented using almost any technology. What-
ever the technology used, each component is based on a set of
abstractions, including services, service parameters, the flow
of data, and attachments. A composite descriptor does not
contain the descriptors of its subcomponents, but it refers.
The configuration of components is a central mechanism
that relies on different types of links between ports (or
interfaces for models without ports).



12 Advances in Multimedia

<Configuration name="Example"...>
<component name="Component1">... </component>
<component name="Component2">... </component>
<connector name ="Connector1">... </connector>
<webservice name = "WebService1"> . . . <webservice>
<liaison name= "Liaison1", Comp1="Connector1", Comp2="WebService1"> . . . </ liaison >

<attachment name="Attachment 1", Comp1="Component1”, Comp2="Connector1"> . . . </attachment>
<attachment name="Attachment 2", Comp1="Connector1", Comp2="Component2"> . . . </attachment>

</Configuration>

Algorithm 1

In
p

u
t

in
te

rf
ac

e

Service Service

Service

Output
ports

Input
ports

Output
ports

Input
ports

Business component

Supervisor

Container
O

u
tp

u
t

in
te

rf
ac

e

In
p

u
t

in
te

rf
ac

e

O
u

tp
u

t
in

te
rf

ac
e

In
p

u
t

in
te

rf
ac

e

O
u

tp
u

t
in

te
rf

ac
e

O
ri

gi
n

al
co

n
te

n
t

A
d

ap
te

d
co

n
te

n
t

Roles of
output

Roles of
input

Connecteur d’adaptation

MMS

Communication
manager

Adaptation
manager

Context manager

Qos
manager

Constraints
of flow

M
u

lt
im

ed
ia

fl
o

w

M
u

lt
im

ed
ia

fl
o

w

Service Service

Service

Business component

Supervisor

Container

Constraints
of flow

M
u

lt
im

ed
ia

fl
o

w

M
u

lt
im

ed
ia

fl
o

w

M
u

lt
im

ed
ia

fl
o

w

M
u

lt
im

ed
ia

fl
o

w

Figure 21: MMSA architecture for multimedia messaging service.

7. Case Study: Modeling and
Implementation of Adaptation System for
Wireless Networks Phone

Multimedia Messaging Service (MMS) is a standard in
mobile messaging. Like SMS (Short Messaging Service), MMS
is a way to send a message from one mobile to another. The

difference is that MMS can include not only the text but also,
sound, images, and video. It is also possible to send MMS
messages from a mobile phone to an email address.

While mobile phone users can create and send their
own MMS messages, perhaps the biggest use of MMS is
likely to be companies sending MMS messages to subscribers,
enquirers, or customers. For example, a company could send



Advances in Multimedia 13

visitors an MMS map to help them finding their office. Other
possible applications include weather reports, news and sport
bulletins, and so forth.

To clarify our proposition, we use the example of a
telephone network, and especially the MMS. This service is
responsible for managing all multimedia messages sent from
one device to another. However, the message received by the
receiver is not compatible with the formats that it accepts, an
“incompatible message” is displayed, so the receiver cannot
read this message.

There are some interesting challenges with MMS that do
not exist with SMS: Content adaptation (multimedia content
created by one brand of MMS phone may not be entirely
compatible with the capabilities of the recipients’ MMS phone),
distribution lists, bulk messaging, handset configuration,
and so forth.

MMS is considered as a connector. To make it adequate
with adaptation needs, the MMS must be enriched with
other components in order to be adapted to the needs of
multimedia device.

The best way is to have independent services providing
the adaptation and to return the adapted message to the
MMS to assure the sending of the message to the receiver (see
Figure 20).

The architecture of an MMS application on the MMSA
approach is as shown in Figure 21.

In this architecture, MMS is considered as a commu-
nication component that cooperates with an adaptation
sub-component and a QoS subcomponent to build the
adaptation connector between two devices.

7.1. Modeling System by UML. To describe the context in
which the MMS will be used, we use UML models providing
the context independent model (CIM). The architectural
elements identified of our system are as follows (Figure 22).

(i) Sender and receiver components: it sends or receives
messages adapted to its characteristics.

(ii) Adaptation connector: it provides communication
between components and adapting messages.

(iii) Context manager: it is responsible to make any
necessary updates in the profiles database (adding
new profiles, modifying existing profiles).

UML sequence diagrams models the exchanged flows
within our system in a visual manner, enabling us both
to document and validate our logic. Sequence diagram
focuses on identifying the behavior of the system. In
addition to sender device and receiver device, sequence
diagram (Figure 23) contains the MMS server, the adaptation
manager, and the context manager.

7.2. Implementation. Every day, billions of images are trans-
ferred over networks, from a camera to a computer or
from a mobile phone to another. Therefore, we will propose
an application that ensures the adaptation of image flow
exchanged between the different devices. Adaptation applies

Check for recipient

Identify the sender

and its state

Include Include

Send an MMS/SMS

Receiving an MMS/SMS

Adapt MMS

Add new profiles

Negotiate profiles

Extend

Extend

Extend

Retrieve and send the constraints

The transmission of messages

Include

Check the network status

Adapt the message

Component

Context
manager

Adaptation
manager

Edit profiles

Figure 22: Use case diagram.

the conversion on digital image, which turns an image into
another image, according to the context, in order to modify
or completely change some properties of an image.

The adaptation platform is an instance of the MMSA
architecture (Figure 21), it is created in Java; the platform
(Figure 24) contains all the functions involved in the process.

The platform provides the following services:

Resize. In case of the size of the screen is a different recipient
than the sender, there is a call to the resizing, which exists
in the class image (package adaptation) in our program.
This function, queries the database for the screen size of the
recipient to apply on the selected image. Figure 25 illustrates
this.

Grayscale. If the image is sent in color and the recipient
device does not support colors, the image must be changed
according to the characteristics of the recipient. Figure 26
illustrates the application of this function.

Transcoding. If the recipient does not support image format,
for example, if the image is of BMP and the mobile recipient
accepts JPEG (Figure 27), it is necessary to implement the
algorithm format conversion to JPEG.



14 Advances in Multimedia

Server
MMS

Sender
component

Recipient does not

exist

Context
manager

Adaptation
manager

Send MMS

Receiver
component

Impossible
send

Profile recipient

Message and
profile recipient

Check

profiles

No

Deciding the

need to adapt

Send message initial

Ask adaptation

Executes
adaptation

Adapted content

Figure 23: Sequence diagram.

Figure 24: Adaptation Platform.

8. Discussion

Software components are reusable software entities which
goals are cost reduction in development, maintenance,
and in software evolution. Many propositions claim the
development mode based on the assembly of software com-
ponents. Despite the common vocabulary (component, port,
interface, service, configuration, connector), these propositions
are varied regarding their origins, their objectives, their
concepts, and also their mechanisms.

Although they have much in common, the goals sought
by the ADL are not always the same. For example, some are
particularly interested in the semantics of components and
connectors while others are mostly concentrated on defining
the interconnections between components and connectors.
Each ADL has its strengths. The choice of a language rather
than another is guided by needs and expectations of the
system designer.

Component 1 Component 2
Transforming

Connector

Figure 25: Image resizing.

Approaches like [16, 18, 21, 22] allow the separation of
the functional concerns. They were proposed in order to cap-
italize the functional needs in modular entities. Several ideas
were proposed within this perspective. We mainly distin-
guish two categories of approach for software architectures:
those inspired on Component-Based Software Engineering
(CBSE) and Service-Oriented Architecture (SOA). In the first
case [16, 21, 23], the focus is on the static structure of the
system; the software elements are components assembled
by connectors in configurations. In the second case [18,
22, 24, 25], the focus is on the functional structure of
the system; software elements are functionalities (services)
linked by relations of collaboration or combination. The
model proposed in this paper could be described as hybrid
as it includes components and proposes services by these
components.

Modern applications are more and more developed
according to ADL-based development processes [26]. The



Advances in Multimedia 15

Component 1 Component 2
Transforming

Connector

Figure 26: Image of color (grayscale).

Component 1 Component 2
Transforming

Connector

Figure 27: Adaptation of format (JPEG to BMP).

ADLs allow analysis and verification of properties early in the
development cycle that the future system will have to satisfy,
in particular the homogeneity and compatibility properties
of components handling various media. Indeed, the current
applications (multimedia, embedded systems, communication
systems, etc.) consider the media notion as an important
characteristic of their behavior [27, 28]. Most of existing
ADLs such as SPT-UML [29], MARTE [30], and AADL [31]
do not take into account the adaptation and the properties
related to multimedia flow during the software construction
phase. Some of them, treat the problem of heterogeneity
by modification of the configuration parameters (addition,
withdrawal, or replacement of components) [32] or by a
meta-model which verifies the adequacy of service regarding
its context and research of the adaptation strategy [33].

A simple component language [34] proposes a compar-
ison of the principal characteristics of the components lan-
guages: component, interface, port, service and connector.
The main objective of this work is to take into consideration
the unforeseen connection of the developed components
in an independent way. As a solution, it proposes the
production of reusable and configurable connectors through
the association of a particular service to the provided ports
which will be used in the absence of the requested service
at port level. A drawback of this work is the absence of the
integration mechanisms of the new communication services
which ensures the evolution of architecture towards new
needs; it also lacks techniques for checking the quality of
architectures and the provided services.

Component Connector Configuration (C3) [1] is an
approach based on software architectures. It makes it
possible to describe a view of logical architecture in order

to automatically generate physical architecture for all the
application instances. The idea is based on the refinement
and the traceability of the architectural elements. The
software architecture is described in accordance with the
first three levels of modeling defined by the OMG [35,
36]. Consequently, to describe logical architecture, three
types of connectors are defined: the connection connector
(CC), the composition/decomposition connector (CDC),
and expansion/compression connector (ECC). The con-
nectors proposed do not ensure the connection of the
heterogeneous components and do not take into account the
semantics of configurations and that of the links between
components.

MMSA tries to propose a generic solution to the
problem of incompatibility of components, in order to
ensure the interoperability of components in real time.
It proposes a presentation of architecture starting from a
set of components, connectors and services. A component
provides a set of service through its interface “provided”
and asked a set of service through its interface “required”.
It holds a manifest that describes all information needed
for their composition. Then, a connector is responsible
to ensure the communication between the components
connected. A connector can be used to provide multiple
connections; it is composed of three main components:
a communication component, a QoS component, and an
adaptation component. The adaptation component can be
a web service, if there is no component that can perform the
requested adaptation. A service is a significant task (a set of
actions with an interface that clearly describes the parameters
and the function realized by this service) and is provided by a
component or by another provider such as Web service.

9. Conclusion

We proposed a generic meta-model for the description of
software architectures. This meta-model integrates multime-
dia and QoS concepts. This enables to present separately data
flow parameters and media which present a very important
aspect of component configurations and assemblies. The
contribution of this work is situated in a context of
abstraction level-based description integrating functional
and nonfunctional concerns of the components. This ensures
a quality of the components assembly by inserting the
adaptation connectors, as well as management of adaptation
service quality. The main advantages of MMSA are the
consideration of the multimedia aspect and the separation
between the functional and nonfunctional concerns of the
components.

Our proposition can be used as a support to develop the
management applications of the numerical resources (DAM:
Digital Asset Management), for example. Such applications
handle a wide variety of media, and communicate with
the users through various platforms (Cellphones, PDA, PC,
portables, etc.). MMSA can bring an effective solution to the
development of DAM. It offers the possibility to take into
consideration the factors generating the incompatibilities
between components in the DAM architecture. It gives a
solution at the architectural level by injecting the adaptation



16 Advances in Multimedia

connectors at the execution level by the management of QoS
and the reconfiguration of these connectors.

As we have seen, the world is very wide in terms of the
diversity of image. We tried to implement the essentials in the
field of image treatment to better understand the problem of
heterogeneous components and data flows.

As a perspective, we propose to develop a modeling tool
for our approach and to investigate other nonfunctional
concerns. The development of the service quality aspect must
be also taken into account.

References

[1] A. Amirat and M. Oussalah, “First-class connectors to support
systematic construction of hierarchical software architecture,”
Journal of Object Technology, vol. 8, no. 7, pp. 107–130, 2009.

[2] R. J. Allen, A formal approach to software architecture, Ph.D.
thesis, School of CompScien, Carnegie Mellon University,
1997.

[3] N. Medvidovic, D. S. Rosenblum, and R. N. Taylor, “Language
and environment for architecture-based software develop-
ment and evolution,” in Proceedings of the International
Conference on Software Engineering (ICSE ’99), pp. 44–53, Los
Angeles, Calif, USA, May 1999.

[4] D. Garlan, R.-T. Monroe, and D. Wile, “Acme: architectural
description component-based systems,” in Foundations of
Component-Based Systems, pp. 47–68, Cambridge University
Press, Cambridge, UK, 2000.

[5] E. Dashofy, A. V. D. Hoek, and R. N. Taylor, “A comprehensive
approach for the development of XML-based software archi-
tecture description languages,” ACM Transactions on Software
Engineering and Methodology, vol. 14, no. 2, pp. 199–245,
2005.

[6] R. Allen, S. Vestal, D. Cornhill, and B. Lewis, “Using an
architecture description language for quantitative analysis of
real-time systems,” in Proceedings of the 3rd International
Workshop on Software and Performance (WOSP ’02), pp. 203–
210, ACM, Rome, Italy, 2002.

[7] C. Szyperski, Component Software: Beyond Object-Oriented
Programming, Addison-Wesley, Reading, Mass, USA, 2002.

[8] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-
B. Stefani, “An open component model and its support in
java,” in Component-Based Software Engineering, vol. 3054 of
Lecture Notes in Computer Science, pp. 7–22, Springer, Berlin,
Germany, 2000.

[9] R. Monson-Haefel, Enterprise JavaBeans, O’Reilly & Asso-
ciates, Sebastopol, Calif, USA, 1999.

[10] J. Cheesman and J. Daniels, UML Components: A Simple
Process for Specifying Component-Based Software, Addison-
Wesley, Reading, Mass, USA, 2000.

[11] J. Aldrich, C. Chambers, and D. Notkin, “ArchJava: connecting
software architecture to implementation,” in Proceedings of the
24th International Conference on Software Engineering (ICSE
’02), pp. 187–197, ACM, Orlando, Fla, USA, May 2002.

[12] O. Nierstrasz and L. Dami, “Component-oriented software
technology,” in Object-Oriented Software Composition, pp. 3–
28, Prentice-Hall, Englewood Cliffs, NJ, USA, 1995.

[13] J. C. Seco and L. Caires, “A basic model of typed components,”
in Proceedings of the 14th European Conference on Object-
Oriented Programming, vol. 1850 of Lecture Notes in Computer
Science, pp. 108–129, 2000.

[14] D. Chappell, Introducing SCA, 2007, http://www.davidchap-
pell.com/.

[15] L. Seinturier, P. Merle, D. Fournier, N. Dolet, V. Schiavoni,
and J.-B. Stefani, “Reconfigurable SCA applications with the
FraSCAti platform,” in Proceedings of the IEEE International
Conference on Services Computing, Bangalore, India, Septem-
ber 2009.

[16] R. Allen and D. Garlan, “A formal basis for architectural
connection,” ACM Transactions on Software Engineering and
Methodology, vol. 6, no. 3, pp. 213–249, 1997.

[17] N. R. Mehta, N. Medvidovic, and S. Phadke, “Towards
a taxonomy of software connectors,” in Proceedings of the
International Conference on Software Engineering (ICSE ’00),
pp. 178–187, ACM, June 2000.

[18] C. Attiogbé, P. André, and M. Messabihi, “Correction d’assem-
blages de composants impliquant des interfaces paramétrées,”
in Proceedings of the 3sd Francophone Conference in Software
Architectures, Hermès, Lavoisier, 2009.

[19] T. Coupaye and J.-B. Stefani, “Fractal component-based
software engineering,” in Proceedings of the Conference on
Object-Oriented Technology (ECOOP ’06), M. Südholt and C.
Consel, Eds., vol. 4379 of Lecture Notes in Computer Scienc, pp.
117–129, Springer, 2006.

[20] V. Quéma, An approach to building configurable software
infrastructures dramatically, Ph.D. thesis, National Institute
polytechnic of Grenoble, 2005.

[21] K. Bergner, A. Rausch, M. Sihling, A. Vilbig, and M. Broy,
“A formal model for component ware,” in Foundations of
Component-Based Systems, pp. 189–210, Cambridge Univer-
sity Press, New York, NY, USA, 2000.

[22] E. M. Maximilien and M. P. Singh, “Self-adjusting trust
and selection for web services,” in Proceedings of the 2nd
International Conference on Autonomic Computing (ICAC ’05),
pp. 385–386, June 2005.

[23] C. Szyperski, Component Software: Beyond Object-Oriented
Programming, Addison-Wesley, Reading, Mass, USA, 1997.

[24] M.-P. Papazoglou, “Service-oriented computing: concepts,
characteristics and directions,” in Proceedings of the 4th Inter-
national Conference on Web Information Systems Engineering
(WISE ’03), pp. 3–12, IEEE Computer Society, Roma, Italy,
2003.

[25] B. El Asri, A. Kenzi, M. Nassar, and A. Kriouile, “Towards
an MVSOA architecture for the implementation of multiview
components,” in Proceedings of the 3sd Francophone Conference
in Software Architectures, pp. 1–17, 2009.

[26] P. Avgeriou and U. Zdun, “Modeling architectural patterns
using architectural primitives,” in Proceedings of the 20th
Annual ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA ’05), pp. 133–
146, ACM, October 2005.

[27] A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic
concepts and taxonomy of dependable and secure computing,”
IEEE Transactions on Dependable and Secure Computing, vol. 1,
no. 1, pp. 11–33, 2004.

[28] S. Balsamo, M. Bernado, and M. Simeoni, “Performance
evaluation at the architecture leveL,” in Formal Methods for
Software Architectures, vol. 2804 of Lecture Notes in Computer
Science, pp. 207–258, Springer, Berlin, Germany, 2003.

[29] S. Graf and I. Ober, “How useful is the UML realtime profile
SPT without semantics?” in Proceedings of the Specification,
Implementation and Validation of Object-oriented Embedded
Systems Associated with Real-Time and Embedded Technology
and Applications Symposium, Toronto, Canada, 2004.



Advances in Multimedia 17

[30] Object Management Group, “UMLTM Profile for Modeling
and Analysis of Real-Time and Embedded systems (MARTE),”
http://www.omg.org/cgi-bin/doc?realtime/2005-02-06.

[31] Society of Automotive Engineers, “Architecture Analysis &
Design Language (AADL),” SAE Standards no. AS5506,
November 2008.

[32] C. Marcel, R. Michel, M. Christian, L. Calin, and M. Costin,
“Dynamic adaptation of services,” in Proceedings of the
Déploiement et (Re) Configuration de Logiciels (DECOR ’04),
Grenoble, France, 2004.

[33] M. Cremene, M. Riveill, and C. Martel, “Autonomic adapta-
tion solution based on service-context adequacy determina-
tion,” Electronic Notes in Theoretical Computer Science, vol.
189, pp. 35–50, 2007.

[34] L. Fabresse, C. Dony, and M. Huchard, “Foundations of a
simple and unified component-oriented language,” Computer
Languages, Systems & Structures, vol. 34, no. 2-3, pp. 130–149,
2008.

[35] OMG, “Unified Modeling Superstructure,” 2007, http://www
.omg.org/spec/UML/2.1.2/Superstructure/PDF.

[36] OMG, “Unified Modeling Language: Infrastructure,” 2007,
http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF.


