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Abstract—The problem of controlling the displacement of a 
group of robots is very difficult. On one hand, it can be solved by 
planning but this becomes very complex if the number of robot 
increases; on the other hand it can be solved by a local approach 
where each robot follows its own behaviour. Here we give an 
analysis of this last approach and present a solution to solve one 
of emergent possible problems: deadlock.  

I. INTRODUCTION 
N this paper we address the problem of programming a 
team of robots. The goal here is to obtain a specific 

behaviour from the an entire team of robots by programming 
each of them individually.  

Various proposals are well known for this problem. Brooks 
[3] proposed a behaviour based approach and later Arkin [1] 
proposed the motor schema based approach. Furthermore, 
some high level approaches are proposed in Yoshida [7] in 
the field of reconfigurable robots. 

The particular point is that the emergent behaviour of the 
robot team is very difficult to predict because of the 
individual interaction of each robot with its environment. Due 
to this, the behaviour of the team is then sometimes 
impossible to anticipate.  

In this paper we study a set of problems linked to 
multi-robot displacement with distributed programming.  

First, we study the displacement of a group of robots 
moving alone and having an known target [16]. The problem 
is then to avoid other robots.  

Secondly, we address the problem of a set of 
reconfigurable robots having to move over obstacles and 
define their reconfiguration [11]. 

Finally, we look for a quite similar problem but instead the 
modular robot has to move without disconnecting the 
modules part of the robot. 

In each of these problems we show how we can find the 
same kind of problems and how we can propose a solution to 
them. 
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II. HYPOTHESIS 
In this paper, we will always suppose that the robots have 

very small sensing capabilities. This means that the robot can 
only detect the environment just around him.  

For instance in 2D, in an array the robot will perceive the 
value of the 8 positions around (6 positions in an hexagonal 
modelisation).  

The robot can make the difference between a free space, an 
obstacle or another robot. The robot can detect the direction 
of an attractor.  

In figure 1 the agent can perceive the presence of a 
neighbouring agent (position 2,3,4,5) and the value of the 
gradient of the attractor in each position 

 

 
Figure 1: Perception of the environment 

III. DISPLACEMENT IN A CROWD 
The problem addressed here is the displacement of robots 

in a crowd of robots. The problem is to study the intersection 
of the different paths. The hypotheses are respected and the 
robot can only look at the place around him and know the 
direction of his own goal. 

The behaviour of an agent is given by the following 
pseudo-code translated as if the agent was someone with his 
own goal: 

Pseudo-code of the Behaviour:  

 loop 
    if I have reached my goal 

    then if someone asks me to move 
     then I search for a place P where to go; (E1) 

        if P exists 
        then if P is free 

           then I move in P 
           else I ask one in P to move(E2)  
         else I do not move 
        else I do not move 
      else I search for a place Q where to go;(E3)  
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        if Q is free 
        then I move in Q 
        else I ask the one in Q to move (E4) 
  endloop 

 
It is clear that E1 and E3 are not the same. E1 is performed 

when a movement is asked of someone who is satisfied in the 
place where he is. E3 is performed when the agent wants to 
reach a goal and finds someone in his path. So even if it is the 
same action (asking someone to move) E1 and E3 can be seen 
with two different intensities, as can be imagined using 
potential field technique [15]. 

 
Figure 2: Displacement in a crowd 

A. Deadlock 1 
In this first case we can see that some deadlock can appear 

[14]. For instance, figure 3 is an example of the potential 
deadlock of all the robots having a destination that crosses the 
path of the other. No one will change its path to let the other 
move because there is no priority between robots. 

 
Figure 3: Deadlock 1 

In this example we can see that without any 
information about the global situation the deadlock will not 
be solved.  

B. Deadlock 2 
In this other example, deadlock can also appear but for 

other reasons. In this case only one robot wants to move (n°1) 
all the other are satisfied in their place. N°1 will ask the one in 
his line to move according to the previous behaviour. Then it 
can appear that a chain of asked displacement can be 
constructed (the ring on figure 4). 

 
Figure 4: Deadlock 2 

C. Solution to avoid deadlock : random move ? 
One solution to break the deadlock is usually to include 

some random moves in the behaviour of the robot. The basic 
idea is to add the following code: 
if I have not moved in a long time and I still want to go 
somewhere 
then move in any free position 

 
This solution is quite classical and already used in potential 

field approaches. But this cannot guaranty that the deadlock 
will be completely avoided. Due to the fact that the system is 
still “running” because there is always one robot moving, we 
can expect that (and it is usually the case) the system will 
finally auto-organize and find a solution. 

In fact, we can verify that some robots when trapped in a 
local minima cannot get out without a simple move in a free 
position. It seems that they make a move in a random 
direction then come back in the previous place and then begin 
an oscillation cycle. To avoid this, it is possible to increase 
the size of the memory to remember the n-th last 
displacement to move back far away before moving 
randomly. In this case, we can escape from a local minima. In 
the case of collective robotics, this technique does not seem 
realistic because the environment is dynamic and moving 
back in the previous displacement does not guaranty reaching 
an environment in which the situation would be identical to 
the one crossed in the past.  

This approach supposes that we include a memory of the 
recent past because the robot must remember the last time he 
made a move. When we program the robot application, the 
question is then to decide what “a long time” is . It depends on 
the dynamic of the application, and is not necessarily easy to 
adjust.  
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D. Solution to avoid deadlock: hierarchy ? 
A second way to solve the problem of deadlock is to define 

a fixed rule of priority that can be shared between all the 
robots. 

 
Figure 5: Hierarchy static priority 

For instance, we can make a rule based on the direction of 
the movement. We can decide, for instance, that priority 
directions are “East, North, West, South”. Then based on this 
rule, robot 1 would have the highest priority, followed by 3, 4 
and finally 2 would have the lowest priority. In this case, the 
robot having the lowest priority would search for a place to go 
(E1) and accept to move in a place even if it is in the opposite 
direction of its destination.  

This solution is the best one because it brakes the deadlock. 
A simple proof can be given:  

It is well known that there are four conditions that are 
required for a deadlock: 

1. Each resource can only be assigned to exactly one 
resource. 

2. Processes can hold a resource and request more. 
3. Resources cannot be forcibly removed from a 

process. 
4. There must be a circular chain of processes, each 

waiting for a resource held by the next member of 
the chain. 

 
Condition 4 can be avoided by using a static priority law 

because the robot having the lowest priority will be obliged to 
move and he will release (property 2) the resource which is 
the place occupied by the robot in the field.  

The limit of this approach is that the priority rule is not 
necessarily easy to find with a limited range of sensors in the 
robot. This priority rule must be computed locally in each 
robot without communication. In the previous example, 
suppose that the geographic direction of north can be detected 
locally in each robot.  

IV. DISPLACEMENT OF A COLLABORATIVE DISJOINT GROUP 

A. The problem and its solution 
In this section, the objective is to create collective 

movement through difficulties, thus permitting robotic 
modules to climb on a first bloc, to cross on a second bloc and 
to get off this second bloc and finally reach the target. 

In this study [17] we show that it is possible to organize 
local behaviour to obtain emergent behaviour satisfying the 
constraint.  

 

 
Figure 6: The collective displacement 

With this local behaviour (figure 7) we obtain a solution to 
the problem respecting the hypothesis. The tests: difficulty 
detected, module aligned, module in front ... are all obtained 
by a local sensor getting information from the surrounding 
environment.  

 
Figure 7: The local behaviour 

1644



 
 

 
Figure 8: The emergent behaviour 

Figure 8 gives some examples of the global emergent 
behaviour obtained with the local behaviour described in 
figure 7. Some full videos and explanations can be found in 
[9]. 

B. Why does it work ?: memory and scheduling 
In the previous problem we had a lot of deadlocks. Here, 

we can verify that we do not have this kind of problem.  
The reason is that here we use both methods described in 

section 3: a local memory and a hierarchy based on a total 
order.  

For instance, the memory counts the number of upward 
displacements to know what the level reached is (here limited 
at 3; see figure 8). And a total order is given because all the 
robots move one step in the same scheduling period. So this 
scheduling gives the whole system the property that no 
collisions between robots will appear until contact with an 
obstacle. This first collision will change definitively their 
behaviour by reaching a new state in the algorithm (figure 7). 

This conjunction between local memory and total order is 
the key point. 

V. DISPLACEMENT OF A COLLABORATIVE JOINT GROUP 
In this new problem we address the displacement of a 

group of robot modules which are part of a reconfigurable 
robot [1, 4, 5, 6 9]. Here the global displacement of the robot 
is obtained by the set of reconfiguration of all the modules. 
The constraint is that the robot must not loss any module 
during the global movement.  

This problem is a very complex problem, for instance if the 
robot is built with 10 modules having 8 potential elementary 
displacements (figure 9) then a 810 number of possible 
solutions must be explored to see what would happen after 
one displacement of all modules in the robot. 

 
Figure 9: The emergent behaviour 

Here, again, as in the problem described in section 4 we 
can use reactive programming using the following algorithm. 

A. Local behavior 

 
Figure 10: The local behavior 

With this local behaviour we can succeed in the collective 
displacement. But, as we will show, the emergent behaviour 
depends on the scheduling policy. 

B. Simulation 1: move all steps 

 
Figure 11: Moving all possible displacement 

In this simulation when it is the turn of a module to move 
then he makes all the possible moves before handing over 
control to the next one. This means that each time that it is his 
turn, the module will reach, as a final position, the one having 
the lower gradient, so the nearest one to the target. The 
emergent effect is to build a “line” of modules. 

In this case, the algorithm works well under a fixed or 
random scheduling between the modules' turns. The problem 
is that in a real robot this approach means that we impose a 
synchronisation between robots because we have to wait for 
the robot to finish its turn before giving control to another 
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one. However, we do not want to suppose that 
communication between modules is available. 

C. Simulation 2: move one step  

 
Figure 12: One displacement per module 

In this simulation each robot in control will run only one 
displacement with the same previous algorithm. The 
emergent behaviour is then that some local minima appears. 
The reason is given by the symmetry of the potential field that 
gives two ways to reach the way to the goal. Then, modules 
having only a partial view of the situation (and having no 
memory of previous moves) will finally be blocked in a 
deadlock situation because the last one in the chain cannot 
move because he would brake the chain of robots into two 
pieces and this is not acceptable.. 

D. Using memory to avoid deadlock? 
Even with a local memory in which the modules memorise 

the last moves made, thus the last values of the gradient, this 
kind of deadlock still appears. The solution is then to accept 
to make a move in a wrong direction as described in section 
3.C. Then, the deadlock is momentarily avoided but appears 
later as shown in the following figure 13. 

 

 
Figure 13: Various emerging deadlocks 

On this simulation the target is on the right side of the 
picture. The first blocking situation appears in the simulation 
on the right-hand side picture of figure 13 where the modules 
at the end and down have no reason to move anymore because 
they all have reached the highest value of the gradient. If we 
modify the rule and accept that the modules can move up on a 
same level of gradient then the 2 deadlocks on the 2 left-hand 
side pictures of figure 13 appear. The fact that the 2 
simulations do not give the same result is based on the 
difference of the scheduling policy over the running modules.  

E. How to avoid deadlock 
Again, the solution is to use two techniques together: 

memory and a total order of the problem.  
The idea is to introduce behaviour states as proposed in 

section 4.A. 
 

d : distance

 
Figure 14: Introducing a total order 

Based on the previous work we introduce in the behaviour 
of each robot the notion of distance “d” to the optimal line to 
reach the target (black line on figure 14). The d value is 
calculated during the module's movement. Each time that the 
module goes north or south the value of d is increased or 
decreased (we suppose that the module knows the direction of 
the target is east). This is quite realistic for real reconfigurable 
robots because during their displacement they are able to 
measure the evolution of the potential field. With this d data 
we link 3 different elementary behaviours: 

1. One will be specific to modules on the optimal line 
(in figure 14 they have the numbers 
0,6,12,18,24,30). Here the module will stay without 
moving except if he is the last one then he will 
accept to go on the second line to go in front. 

2. The second behaviour will be for those on the 
second line 1,7,13,... In this case modules will only 
accept to move along the first line to reach the head 
of this first line and take this place. 

3. For all the rest of the group, here their behaviour is 
to move east to find a place where they can decrease 
the d value. 

With this simple general algorithm, we obtain a very stable 
emergent global behaviour even with a random scheduling as 
shown in figure 15. 

 

 
Figure 15: 6 snapshots of the evolution of the simulation. 
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VI. CONCLUSION 
In this work, we show that without sharing any information 

on the global situation of the multi-robot system, we cannot 
avoid having deadlock by having all the robots unable to 
move or having a set of robots in oscillation.  

To avoid this problem, we propose to introduce a general 
order on the environment that guaranties to build a hierarchy 
of behaviors between the robots. We present here some 
samples of this general order: one based on some events 
(obstacle detection section 4) or a direction in space (section 
3) or a position in the space (section 5).  

The price of this total order is usually to introduce a new 
sensor in the robot module: contact sensor for an event, 
magnetic sensor for the direction of north or some kind of 
GPS to have the position in the space.  

With this approach the robot can decide locally, without 
any communication with the other robots, what is the best 
behaviour to run in a given situation. With this, the emergent 
behaviour of the group of robots is to reach the target.  
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