
HAL Id: hal-00515219
https://hal.science/hal-00515219

Submitted on 6 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Avoiding deadlock in multi-agent systems
Dominique Duhaut, Elian Carrillo, Sébastien Saint-Aimé

To cite this version:
Dominique Duhaut, Elian Carrillo, Sébastien Saint-Aimé. Avoiding deadlock in multi-agent systems.
International Conference on Systems, Man and Cybernetics, 2007. ISIC. IEEE, Oct 2007, Montreal,
Canada. pp.1642 -1647, �10.1109/ICSMC.2007.4414232�. �hal-00515219�

https://hal.science/hal-00515219
https://hal.archives-ouvertes.fr

Abstract—The problem of controlling the displacement of a
group of robots is very difficult. On one hand, it can be solved by
planning but this becomes very complex if the number of robot
increases; on the other hand it can be solved by a local approach
where each robot follows its own behaviour. Here we give an
analysis of this last approach and present a solution to solve one
of emergent possible problems: deadlock.

I. INTRODUCTION
N this paper we address the problem of programming a
team of robots. The goal here is to obtain a specific

behaviour from the an entire team of robots by programming
each of them individually.

Various proposals are well known for this problem. Brooks
[3] proposed a behaviour based approach and later Arkin [1]
proposed the motor schema based approach. Furthermore,
some high level approaches are proposed in Yoshida [7] in
the field of reconfigurable robots.

The particular point is that the emergent behaviour of the
robot team is very difficult to predict because of the
individual interaction of each robot with its environment. Due
to this, the behaviour of the team is then sometimes
impossible to anticipate.

In this paper we study a set of problems linked to
multi-robot displacement with distributed programming.

First, we study the displacement of a group of robots
moving alone and having an known target [16]. The problem
is then to avoid other robots.

Secondly, we address the problem of a set of
reconfigurable robots having to move over obstacles and
define their reconfiguration [11].

Finally, we look for a quite similar problem but instead the
modular robot has to move without disconnecting the
modules part of the robot.

In each of these problems we show how we can find the
same kind of problems and how we can propose a solution to
them.

Manuscript received March 16, 2007. This work has been supported by

the French program Robea from the CNRS.
Dominique Duhaut is with the Valoria laboratory of the University of

Bretagne Sud, Campus de Tohannic; Bât. Yves Coppens, BP 573, 56017
Vannes Cedex – FRANCE (phone: +33 (0)2 97 61 72 06; fax: +33 (0)2 97 01
72 79; e-mail: dominique.duhaut@univ-ubs.fr).

Elian Carillo is with the Valoria laboratory of the University of Bretagne
Sud, Campus de Tohannic; Bât. Yves Coppens, BP 573, 56017 Vannes
Cedex – FRANCE (phone: +33 (0)2 97 61 72 06; fax: +33 (0)2 97 01 72 79;
e-mail: elian.carillo@univ-ubs.fr).

Sébastien Saint-Aimé is with the Valoria laboratory of the University of
Bretagne Sud, Campus de Tohannic; Bât. Yves Coppens, BP 573, 56017
Vannes Cedex – FRANCE (phone: +33 (0)2 97 61 72 61; fax: +33 (0)2 97 01
72 79; e-mail: sebastien.saint-aime@univ-ubs.fr).

II. HYPOTHESIS
In this paper, we will always suppose that the robots have

very small sensing capabilities. This means that the robot can
only detect the environment just around him.

For instance in 2D, in an array the robot will perceive the
value of the 8 positions around (6 positions in an hexagonal
modelisation).

The robot can make the difference between a free space, an
obstacle or another robot. The robot can detect the direction
of an attractor.

In figure 1 the agent can perceive the presence of a
neighbouring agent (position 2,3,4,5) and the value of the
gradient of the attractor in each position

Figure 1: Perception of the environment

III. DISPLACEMENT IN A CROWD
The problem addressed here is the displacement of robots

in a crowd of robots. The problem is to study the intersection
of the different paths. The hypotheses are respected and the
robot can only look at the place around him and know the
direction of his own goal.

The behaviour of an agent is given by the following
pseudo-code translated as if the agent was someone with his
own goal:

Pseudo-code of the Behaviour:

 loop
 if I have reached my goal

 then if someone asks me to move
 then I search for a place P where to go; (E1)

 if P exists
 then if P is free

 then I move in P
 else I ask one in P to move(E2)
 else I do not move
 else I do not move
 else I search for a place Q where to go;(E3)

Avoiding deadlock in multi-agent systems

Dominique Duhaut, Elian Carrillo, Sébastien Saint-Aimé – Université de Bretagne Sud

I

16421-4244-0991-8/07/$25.00/©2007 IEEE

 if Q is free
 then I move in Q
 else I ask the one in Q to move (E4)
 endloop

It is clear that E1 and E3 are not the same. E1 is performed

when a movement is asked of someone who is satisfied in the
place where he is. E3 is performed when the agent wants to
reach a goal and finds someone in his path. So even if it is the
same action (asking someone to move) E1 and E3 can be seen
with two different intensities, as can be imagined using
potential field technique [15].

Figure 2: Displacement in a crowd

A. Deadlock 1
In this first case we can see that some deadlock can appear

[14]. For instance, figure 3 is an example of the potential
deadlock of all the robots having a destination that crosses the
path of the other. No one will change its path to let the other
move because there is no priority between robots.

Figure 3: Deadlock 1

In this example we can see that without any
information about the global situation the deadlock will not
be solved.

B. Deadlock 2
In this other example, deadlock can also appear but for

other reasons. In this case only one robot wants to move (n°1)
all the other are satisfied in their place. N°1 will ask the one in
his line to move according to the previous behaviour. Then it
can appear that a chain of asked displacement can be
constructed (the ring on figure 4).

Figure 4: Deadlock 2

C. Solution to avoid deadlock : random move ?
One solution to break the deadlock is usually to include

some random moves in the behaviour of the robot. The basic
idea is to add the following code:
if I have not moved in a long time and I still want to go
somewhere
then move in any free position

This solution is quite classical and already used in potential

field approaches. But this cannot guaranty that the deadlock
will be completely avoided. Due to the fact that the system is
still “running” because there is always one robot moving, we
can expect that (and it is usually the case) the system will
finally auto-organize and find a solution.

In fact, we can verify that some robots when trapped in a
local minima cannot get out without a simple move in a free
position. It seems that they make a move in a random
direction then come back in the previous place and then begin
an oscillation cycle. To avoid this, it is possible to increase
the size of the memory to remember the n-th last
displacement to move back far away before moving
randomly. In this case, we can escape from a local minima. In
the case of collective robotics, this technique does not seem
realistic because the environment is dynamic and moving
back in the previous displacement does not guaranty reaching
an environment in which the situation would be identical to
the one crossed in the past.

This approach supposes that we include a memory of the
recent past because the robot must remember the last time he
made a move. When we program the robot application, the
question is then to decide what “a long time” is . It depends on
the dynamic of the application, and is not necessarily easy to
adjust.

1643

D. Solution to avoid deadlock: hierarchy ?
A second way to solve the problem of deadlock is to define

a fixed rule of priority that can be shared between all the
robots.

Figure 5: Hierarchy static priority

For instance, we can make a rule based on the direction of
the movement. We can decide, for instance, that priority
directions are “East, North, West, South”. Then based on this
rule, robot 1 would have the highest priority, followed by 3, 4
and finally 2 would have the lowest priority. In this case, the
robot having the lowest priority would search for a place to go
(E1) and accept to move in a place even if it is in the opposite
direction of its destination.

This solution is the best one because it brakes the deadlock.
A simple proof can be given:

It is well known that there are four conditions that are
required for a deadlock:

1. Each resource can only be assigned to exactly one
resource.

2. Processes can hold a resource and request more.
3. Resources cannot be forcibly removed from a

process.
4. There must be a circular chain of processes, each

waiting for a resource held by the next member of
the chain.

Condition 4 can be avoided by using a static priority law

because the robot having the lowest priority will be obliged to
move and he will release (property 2) the resource which is
the place occupied by the robot in the field.

The limit of this approach is that the priority rule is not
necessarily easy to find with a limited range of sensors in the
robot. This priority rule must be computed locally in each
robot without communication. In the previous example,
suppose that the geographic direction of north can be detected
locally in each robot.

IV. DISPLACEMENT OF A COLLABORATIVE DISJOINT GROUP

A. The problem and its solution
In this section, the objective is to create collective

movement through difficulties, thus permitting robotic
modules to climb on a first bloc, to cross on a second bloc and
to get off this second bloc and finally reach the target.

In this study [17] we show that it is possible to organize
local behaviour to obtain emergent behaviour satisfying the
constraint.

Figure 6: The collective displacement

With this local behaviour (figure 7) we obtain a solution to
the problem respecting the hypothesis. The tests: difficulty
detected, module aligned, module in front ... are all obtained
by a local sensor getting information from the surrounding
environment.

Figure 7: The local behaviour

1644

Figure 8: The emergent behaviour

Figure 8 gives some examples of the global emergent
behaviour obtained with the local behaviour described in
figure 7. Some full videos and explanations can be found in
[9].

B. Why does it work ?: memory and scheduling
In the previous problem we had a lot of deadlocks. Here,

we can verify that we do not have this kind of problem.
The reason is that here we use both methods described in

section 3: a local memory and a hierarchy based on a total
order.

For instance, the memory counts the number of upward
displacements to know what the level reached is (here limited
at 3; see figure 8). And a total order is given because all the
robots move one step in the same scheduling period. So this
scheduling gives the whole system the property that no
collisions between robots will appear until contact with an
obstacle. This first collision will change definitively their
behaviour by reaching a new state in the algorithm (figure 7).

This conjunction between local memory and total order is
the key point.

V. DISPLACEMENT OF A COLLABORATIVE JOINT GROUP
In this new problem we address the displacement of a

group of robot modules which are part of a reconfigurable
robot [1, 4, 5, 6 9]. Here the global displacement of the robot
is obtained by the set of reconfiguration of all the modules.
The constraint is that the robot must not loss any module
during the global movement.

This problem is a very complex problem, for instance if the
robot is built with 10 modules having 8 potential elementary
displacements (figure 9) then a 810 number of possible
solutions must be explored to see what would happen after
one displacement of all modules in the robot.

Figure 9: The emergent behaviour

Here, again, as in the problem described in section 4 we
can use reactive programming using the following algorithm.

A. Local behavior

Figure 10: The local behavior

With this local behaviour we can succeed in the collective
displacement. But, as we will show, the emergent behaviour
depends on the scheduling policy.

B. Simulation 1: move all steps

Figure 11: Moving all possible displacement

In this simulation when it is the turn of a module to move
then he makes all the possible moves before handing over
control to the next one. This means that each time that it is his
turn, the module will reach, as a final position, the one having
the lower gradient, so the nearest one to the target. The
emergent effect is to build a “line” of modules.

In this case, the algorithm works well under a fixed or
random scheduling between the modules' turns. The problem
is that in a real robot this approach means that we impose a
synchronisation between robots because we have to wait for
the robot to finish its turn before giving control to another

1645

one. However, we do not want to suppose that
communication between modules is available.

C. Simulation 2: move one step

Figure 12: One displacement per module

In this simulation each robot in control will run only one
displacement with the same previous algorithm. The
emergent behaviour is then that some local minima appears.
The reason is given by the symmetry of the potential field that
gives two ways to reach the way to the goal. Then, modules
having only a partial view of the situation (and having no
memory of previous moves) will finally be blocked in a
deadlock situation because the last one in the chain cannot
move because he would brake the chain of robots into two
pieces and this is not acceptable..

D. Using memory to avoid deadlock?
Even with a local memory in which the modules memorise

the last moves made, thus the last values of the gradient, this
kind of deadlock still appears. The solution is then to accept
to make a move in a wrong direction as described in section
3.C. Then, the deadlock is momentarily avoided but appears
later as shown in the following figure 13.

Figure 13: Various emerging deadlocks

On this simulation the target is on the right side of the
picture. The first blocking situation appears in the simulation
on the right-hand side picture of figure 13 where the modules
at the end and down have no reason to move anymore because
they all have reached the highest value of the gradient. If we
modify the rule and accept that the modules can move up on a
same level of gradient then the 2 deadlocks on the 2 left-hand
side pictures of figure 13 appear. The fact that the 2
simulations do not give the same result is based on the
difference of the scheduling policy over the running modules.

E. How to avoid deadlock
Again, the solution is to use two techniques together:

memory and a total order of the problem.
The idea is to introduce behaviour states as proposed in

section 4.A.

d : distance

Figure 14: Introducing a total order

Based on the previous work we introduce in the behaviour
of each robot the notion of distance “d” to the optimal line to
reach the target (black line on figure 14). The d value is
calculated during the module's movement. Each time that the
module goes north or south the value of d is increased or
decreased (we suppose that the module knows the direction of
the target is east). This is quite realistic for real reconfigurable
robots because during their displacement they are able to
measure the evolution of the potential field. With this d data
we link 3 different elementary behaviours:

1. One will be specific to modules on the optimal line
(in figure 14 they have the numbers
0,6,12,18,24,30). Here the module will stay without
moving except if he is the last one then he will
accept to go on the second line to go in front.

2. The second behaviour will be for those on the
second line 1,7,13,... In this case modules will only
accept to move along the first line to reach the head
of this first line and take this place.

3. For all the rest of the group, here their behaviour is
to move east to find a place where they can decrease
the d value.

With this simple general algorithm, we obtain a very stable
emergent global behaviour even with a random scheduling as
shown in figure 15.

Figure 15: 6 snapshots of the evolution of the simulation.

1646

VI. CONCLUSION
In this work, we show that without sharing any information

on the global situation of the multi-robot system, we cannot
avoid having deadlock by having all the robots unable to
move or having a set of robots in oscillation.

To avoid this problem, we propose to introduce a general
order on the environment that guaranties to build a hierarchy
of behaviors between the robots. We present here some
samples of this general order: one based on some events
(obstacle detection section 4) or a direction in space (section
3) or a position in the space (section 5).

The price of this total order is usually to introduce a new
sensor in the robot module: contact sensor for an event,
magnetic sensor for the direction of north or some kind of
GPS to have the position in the space.

With this approach the robot can decide locally, without
any communication with the other robots, what is the best
behaviour to run in a given situation. With this, the emergent
behaviour of the group of robots is to reach the target.

ACKNOWLEDGMENT
This work has been supported by the French program

Robea from the CNRS.

REFERENCES
[1] H. Bojinov, A. Casal, T. Hogg, Multiagent control of

selfreconfigurable robots, Proceedings of the 4th
InternationalConference on MultiAgent Systems, Boston,
Massachusetts, USA, 2000.

[2] R. C. Arkin, Behaviour-Based Robotics. Cambridge, MA: MIT Press
1998.

[3] R. A. Brooks, A robust layered control system for a mobile robot.
Journal of Robotics and Automation. Vol. 2, pp. 14-23 1986.

[4] C. Jones, M.J. Mataric, From local to global behavior in intelligent
self-assembly, Proceedings of the 2003 IEEE International Conference
on Robotics and Automation (ICRA 2003), Taipei, Taiwan, September
2003.

[5] M. Yim, Y. Zhang, J. Lamping, E. Mao, Distributed control for 3D
TABLE II metamorphosis, Journal of Autonomous Robots 10, 2001.

[6] J. Kubica, A. Casal, T. Hogg, Complex behaviors from local rules in
modular self-reconfigurables robots, Proceedings of the 2001 IEEE
International Conference on Robotics and Automation (ICRA 2001),
Seoul, Korea, May 2001.

[7] E. Yoshida, S. Murata, H. Kurokawa, K. Tomita, S. Kokaji, A
distributed reconfiguration method for 3-D homogeneous structure,
Advanced Robotics, 13-4, pp. 363-380, 2000.

[8] H. Bojinov, A. Casal, T. Hogg, Emergent structures in modular
selfreconfigurable robots, Proceedings IEEE International Conference
on Robotics and Automation (ICRA 2000), San Francisco, pp. 1734-
1741.

[9] B. Ashfield, Distributed Deadlock Detection in Mobile Agent Systems,
Ashfield, B.: Distributed Deadlock Detection in Mobile Agent
Systems, M.C.S. Thesis, Carleton University, (2000).

[10] S. Murata, H. Kurokawa, E. Yoshida, K. Tomita, S. Kokaji, A 3-D
self-reconfigurable structure, Proceedings of the 1998 IEEE
International Conference on Robotics and Automation (ICRA 1998),
Leuven, Belgium, May 1998.

[11] www-valoria.univ-ubs.fr/Dominique.Duhaut/maam/, MAAM project
web site.

[12] www.swiss.ai.mit.edu/projects/amorphous/, Amorphous
computingweb site.

[13] L. Clement, R. Nagpal, Self-assembly and self-repairingtopologies,
Workshop on Adaptability in Multi-Agent Systems, Robocup Australian
Open, January 2003.

[14] J. Zucker, Self-healing structures in amorphous computing,
International Conference on Complex Systems, May 2000.

[15] K. Stoy, R. Nagpal, Self-Reconfiguration Using Directed Growth, 7th
International Symposium on Distributed Autonomous Robotic Systems
(DARS), France, June23-25, 2004.

[16] D. Duhaut, Study of communication in a multi-agent system,
IEEE/SMC'95 Conference, Vancouver, Canada, October 22-25, 1995

[17] V.Montreuil, D. Duhaut, A. Drogoul A collective moving algorithm in
modular robotics: contribution of communication capacities In 6th
IEEE International Symposium on Computational Intelligence in
Robotics and Automation june 27-30 2005 Espoo Finlande

1647

