
HAL Id: hal-00515026
https://hal.science/hal-00515026

Submitted on 4 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Molecular Dynamics in Arbitrary Geometries: Parallel
Evaluation of Pair Forces
Graham Macpherson, Jason Reese

To cite this version:
Graham Macpherson, Jason Reese. Molecular Dynamics in Arbitrary Geometries: Parallel Evaluation
of Pair Forces. Molecular Simulation, 2008, 34 (01), pp.97-115. �10.1080/08927020801930554�. �hal-
00515026�

https://hal.science/hal-00515026
https://hal.archives-ouvertes.fr

For Peer Review
 O

nly

Molecular Dynamics in Arbitrary Geometries: Parallel

Evaluation of Pair Forces

Journal: Molecular Simulation/Journal of Experimental Nanoscience

Manuscript ID: GMOS-2007-0121.R1

Journal: Molecular Simulation

Date Submitted by the
Author:

04-Jan-2008

Complete List of Authors: Macpherson, Graham; University of Strathclyde, Mechanical
Engineering
Reese, Jason; University of Strathclyde, Mechanical Engineering

Keywords:
molecular dynamics, nano fluidics, hybrid simulation, intermolecular
force calculation, parallel computing

http://mc.manuscriptcentral.com/tandf/jenmol

For Peer Review
 O

nly

January 4, 2008 12:43 Molecular Simulation molSim˙AICA

Molecular Simulation, Vol. 00, No. 00, DD Month 200x, 1–30

Molecular Dynamics in Arbitrary Geometries: Parallel Evaluation of Pair Forces

Graham B. Macpherson∗ and Jason M. Reese

Department of Mechanical Engineering, University of Strathclyde,

Glasgow G1 1XJ, UK
(draft January 4, 2008)

A new algorithm for calculating intermolecular pair forces in Molecular Dynamics (MD) simulations on a distributed parallel computer
is presented. The Arbitrary Interacting Cells Algorithm (AICA) is designed to operate on geometrical domains defined by an unstructured,
arbitrary polyhedral mesh that has been spatially decomposed into irregular portions for parallelisation. It is intended for nano scale
fluid mechanics simulation by MD in complex geometries, and to provide the MD component of a hybrid MD/continuum simulation.
The spatial relationship of the cells of the mesh is calculated at the start of the simulation and only the molecules contained in cells
that have part of their surface closer than the cut-off radius of the intermolecular pair potential are required to interact. AICA has been
implemented in the open source C++ code OpenFOAM, and its accuracy has been indirectly verified against a published MD code. The
same system simulated in serial and in parallel on 12 and 32 processors gives the same results. Performance tests show that there is an
optimal number of cells in a mesh for maximum speed of calculating intermolecular forces, and that having a large number of empty
cells in the mesh does not add a significant computational overhead.

Keywords: molecular dynamics, nano fluidics, hybrid simulation, intermolecular force calculation, parallel computing
PACS: 31.15.Qg, 47.11.Mn

1 Introduction and Motivation

1.1 MD Simulation in Arbitrary Geometries

Simulations of nano scale liquid systems can provide insight into many naturally-occurring phenomena,
such as the action of proteins that mediate water transport across biological cell membranes [1]. They
may also facilitate the design of future nano devices and materials (e.g. high-throughput, highly selective
filters or lab-on-a-chip components). The dynamics of these very small systems are dominated by surface
interactions, due to their large surface area to volume ratios. However, these surface effects are often too
complex and material-dependent to be treated by simple phenomenological parameters [2] or by adding
‘equivalent’ fluxes at the boundary [3]. Direct simulation of the fluid using molecular dynamics (MD)
presents an opportunity to model these phenomena with minimal simplifying assumptions.

MD fluid dynamics simulations have been reported [4, 5, 6, 7, 8], but MD is prohibitively computationally
costly for simulations of systems beyond a few tens of nanometers in size. Fortunately, the molecular detail
of the full flow-field that MD simulations provide is often unnecessary; in liquids, beyond 5–10 molecular
diameters (. 3nm for water) from a solid surface the continuum-fluid approximation is valid and the
Navier-Stokes equations with bulk fluid properties may be used [2, 9, 10]. Hybrid simulations have been
proposed [11, 12, 13, 14] to simultaneously take advantage of the accuracy and detail provided by MD in
the regions that require it, and the computational speed of continuum mechanics in the regions where it is
applicable. An example application of this technique is shown schematically in figure 1, where a complex
molecule is being electrokinetically transported into a nanochannel for separation and identification [15].
Only the complex molecule, its immediately surrounding solvent molecules, and selected near-wall regions
require an MD treatment; the remainder of the fluid (comprising the vast majority of the volume) may
be simulated by continuum mechanics. A hybrid simulation would allow the effect of different complex
molecules, solvent electrolyte composition, channel geometry, surface coatings and electric field strengths
to be analysed at a realistic computational cost.

∗Corresponding author: graham.macpherson@strath.ac.uk

Molecular Simulation
ISSN print/ISSN online c© 200x Taylor & Francis

http://www.tandf.co.uk/journals
DOI:

Page 1 of 30

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

January 4, 2008 12:43 Molecular Simulation molSim˙AICA

2 MD in Arbitrary Geometries: Pair Forces

Solid

molecule
Complex

Flow

MD Region

Nanochannel

Figure 1. Schematic of an application of a hybrid MD/continuum simulation: complex molecules being transported into a nano
channel. Only the complex molecules, regions near them and regions near solid surfaces need an MD treatment; the remaining volume

can be simulated with continuum mechanics.

An alternative approach would be use one of several ‘mesoscopic’ simulation methods such as dissipative
particle dynamics [16], lattice Boltzmann [17] or dynamic density functional theory [18]. These methods
all require to be supplied with fluid-solid interaction boundary conditions and constitutive models, which
it may not possible to accurately deduce in advance, and to which the behaviour of a nanoscale system is
very sensitive. Providing that the intermolecular potentials used are accurate, MD avoids this problem by
direct simulation.

In order to produce a useful, general simulation tool for hybrid simulations, the MD component must
be able to model complex geometrical domains, for example see figure 2. This capability does not exist in
currently available MD codes: domains are simple shapes, usually with periodic boundaries. MD simulations
are often performed to sample a system in a particular ensemble: a molecule’s dynamics are not Newtonian
and momentum is not necessarily conserved. For fluid mechanics the state of the molecules may only be
altered at inlets, outlets and regions of solid walls not in contact with the fluid to impose the required
boundary conditions. The dynamics of the fluid will be purely Newtonian in the regions where results are
gathered. The most important, computationally demanding, and difficult aspect of any MD simulation is
the calculation of intermolecular forces. This paper describes an algorithm that is capable of calculating
pair force interactions in arbitrary, unstructured mesh geometries that have been parallelised for distributed
computing by spatial decomposition. This work has been implemented in OpenFOAM [19], an open source
C++ toolbox designed for Computational Fluid Dynamics (CFD), and makes use of its particle tracking
algorithm [20] for molecule dynamics and to efficiently maintain information about which mesh cell a
molecule occupies.

1.2 Neighbour List Limitations

The conventional method of MD force evaluation in distributed parallel computation is to use the cells
algorithm to build neighbour lists for interacting pairs [22, 23]. The replicated molecule method provides
interactions across periodic boundaries and interprocessor boundaries, where the system has been spatially
partitioned [24, 25].

The spatial location of molecules in MD is dynamic, and hence not deducible from the data structure
that contains them. A neighbour list defines which pairs of molecules are within a certain distance of each
other and so need to interact via intermolecular forces. When considering systems where the geometry is
defined by a mesh of unstructured, arbitrary polyhedral cells, that may have been divided into irregular
and complex mesh segments for parallelisation, neighbour lists have two limitations:

(i) Interprocessor molecule transfers: A molecule may cross an interprocessor boundary at any point
in time (even part of the way through a timestep), at which point it should be deleted from the

Page 2 of 30

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

January 4, 2008 12:43 Molecular Simulation molSim˙AICA

G. B. Macpherson and J. M. Reese 3

Figure 2. Left: A complex geometry test case. A three-inlet fluid mixing channel with a wall volume for explicit crystalline molecular
walls. The overall height is 82nm. The geometry was generated using Pro/ENGINEERR© CAD software, exported to and meshed using
GAMBITR©, then imported into OpenFOAM, filled with 2167110 molecules using the methods described in reference [21], and the MD
simulation run using gnemdFOAM (see section 3). Right: The mesh has been decomposed into 52 portions for parallel processing. The
48148 molecules contained in one portion are shown. Two different types of molecule are used: wall molecules (light) are tethered in an

FCC crystal and liquid molecules (dark) which are free to move.

processor it was on and an equivalent molecule created on the processor on the other side of the
boundary. Given that neighbour lists are constructed as lists of array indices, references or pointers to
the molecule’s location in a data structure, deleting a molecule would invalidate this location and require
searching to remove all mentions of it. Likewise, creating a molecule would require the appropriate new
pair interactions to be identified. Neither is practical due to the computational cost involved. It is
conventional to allow molecules to stray outside of the domain controlled by a processor and carry
out interprocessor transfers (deletions and creations) during the next neighbour list rebuild. This is
straightforward when the spatial region associated with a processor can be simply defined by a function
relating a position in space to a particular cell on a particular processor (i.e. a uniform, structured mesh,
representing a simple domain). In a geometry where the space in question is defined by a collection
of individual cells of arbitrary shape, this is more difficult. For example, the location the molecule
has strayed to may be on the other side of a solid wall on the neighbour processor, or across another
interprocessor boundary.

(ii) Spatially resolved flow properties: MD simulations used for flow studies must be able to spatially
resolve fluid mechanical and thermodynamical fields. This is achieved by accumulating and averaging
measurements of the properties of molecules in individual cells of the same mesh that defines the
geometry. If a molecule is allowed to stray outside of the domain controlled by a processor, as above, then
it would not be unambiguous and automatic which cell’s measurement the molecule should contribute
to.

Both of these problems could be mitigated by communicating with the neighbouring processor to deter-
mine which cell a molecule outside the domain should be in and sending its information, or alternatively
maintaining a local copy of the appropriate thickness layer of geometry of the neighbouring processors. In
this work, however, it has been deemed that either of these options would result in an inflexible arrange-
ment, with each additional simulation feature requiring special treatment; so neighbour lists have not been
used.

Neighbour lists have some unfavourable features that limit their computational speed in large and non-
equilibrium simulations. If one region of the fluid has a high temperature or high velocity, then the high

Page 3 of 30

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

January 4, 2008 12:43 Molecular Simulation molSim˙AICA

4 MD in Arbitrary Geometries: Pair Forces

molecular velocities will cause the neighbour list to be invalidated and rebuilt often, limiting the calculation
speed in the whole domain. Increasing the size and temperature of a system will also reduce the number
of timesteps a neighbour list is valid for, thereby increasing the computational cost. This relationship can
be predicted, see appendix A.

We have developed a new algorithm which is designed to either replace the neighbour list technique
outright, or be used to construct the neighbour list, for simulations operating on meshes of unstructured
arbitrary polyhedral cells.

2 Arbitrary Interacting Cells Algorithm (AICA)

2.1 Interacting Cell Identification

The new Arbitrary Interacting Cells Algorithm (AICA) we propose here is a generalisation of the Con-
ventional Cells Algorithm (CCA) [22, 23]. In the CCA, a simple (usually cuboid) simulation domain is
subdivided into equally sized cells. The minimum dimension of the CCA cells must be greater than rcut,
the cut-off radius of the intermolecular pair potential, so that all molecules in a particular cell interact with
all other molecules in their own cell and with those in their nearest neighbour cells (i.e. those they share a
face, edge or vertex with — 26 in 3D). Extensions to this that permit the use of smaller cells [26, 27, 28]
have been proposed, but they still require the domain to comprise a structured mesh of uniform cubes
or cuboids. The objective of any cell algorithm is to evaluate interactions between as few molecules as
possible that are further apart than rcut to maximise computational speed.

AICA uses a 3D mesh of unstructured polyhedra, as would be used in CFD to define the geometry
of a region. There are no restrictions on cell size, shape or connectivity. A cell’s position in the mesh
structure does not imply anything about its physical location or connectivity. Therefore, the ability to
handle arbitrary geometries comes from deducing locally which cells are in the interaction range. Each cell
has a unique list of other cells that it is to interact with, this list is known as the Direct Interaction List
(DIL) for the Cell In Question (CIQ). It is constructed by searching the mesh to create a set of cells that
have at least one part of their surface within a distance of rcut from the surface of the CIQ, see figure 3.
Where there are multiple molecular species present with different values of rcut, the maximum value is used
to determine cell interactions. Where substantially different cut-off radii are present, it would be possible
to have separate DILs for different range interactions, all of which could be constructed simultaneously
using a single evaluation of the mesh.

This work has been carried out on the basis that the mesh is static. It is possible to use the same
methods for a system with a dynamic mesh, providing that the information about which cells interact can
be efficiently and reliably kept up-to-date, or rebuilt without incurring an unreasonable computational
cost.

The DILs are established prior to the start of simulation and are valid throughout because the spatial
relationship of the cells is fixed, whereas the set of molecules they contain is dynamic. In a similar way
to the CCA, at every timestep a molecule in a particular cell calculates its interactions with the other
molecules in that cell and consults the cell’s DIL to find which other cells contain molecules it should
interact with. Information is required to be maintained at all times stating which cell a molecule is in —
this has been implemented in a robust and efficient manner in OpenFOAM as part of the methods for
tracking particle motion [20].

2.2 Replicated Molecule Periodicity and Parallelisation

When parallelising an MD simulation, the spatial domain is decomposed and each processor is given
responsibility for a single region [22]. Molecules that cross the boundaries between these regions need
to be communicated from one processor to the next. Processors also communicate when carrying out
intermolecular force calculations, in which molecules close to processor boundaries need to be replicated
on their neighbours to provide interactions. This process is illustrated in figure 4. Periodic boundaries also
require information about molecules that are not physically adjacent in the domain (see figure 5); these

Page 4 of 30

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

January 4, 2008 12:43 Molecular Simulation molSim˙AICA

G. B. Macpherson and J. M. Reese 5

cutr

Figure 3. Interacting cell identification example using 2D unstructured triangular cells. The spatial domain (main square section
comprising the real cells) is periodic top-bottom and left-right. Real cells within rcut that interact with the CIQ (dark) are shaded in

grey. The required referred cells are hatched in alternate directions according to which boundary they have been referred across.
Realistic systems would be significantly larger compared to rcut than shown here.

rcut

A

Replicated
molecules

Processor 2Processor 1

Figure 4. Spatial decomposition for parallel processing. Molecule A must calculate intermolecular forces with all other molecules
within its cut-off radius, rcut. When the domain has been decomposed, some of these molecules may lie on a different processor. In this

case, copies of the appropriate molecules from processor 2 are made on processor 1.

required interactions can also be constructed by creating copies of molecules outside the boundary.
It is possible to handle processor and periodic boundaries in exactly the same way, because they have

the same underlying objective: molecules near to the edge of a region need to be copied either between
processors or to other locations on the same processor at every timestep to provide interactions. This is
a useful feature because decomposing a mesh for parallelisation will often turn a periodic boundary into
a processor boundary. The issue is: how to efficiently identify which molecules need to be copied, and to
which location, because this set continually changes as the molecules move.

More general and flexible coupled boundaries can be implemented using the same framework, where
molecules are replicated to either side of a spatially-separated, non-parallel boundary. For example, a
‘recycling’ boundary condition or a rotationally symmetric simulation, see figure 6, or coupling an inlet or
outlet boundary or hybrid interface with any orientation to a static, external molecule reservoir.

2.2.1 Referred Molecules and Cells. Replicated molecule parallelisation and periodic boundaries are
handled in the same way using referred cells (see figure 3) and referred molecules.

Page 5 of 30

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

January 4, 2008 12:43 Molecular Simulation molSim˙AICA

6 MD in Arbitrary Geometries: Pair Forces

Replicated
molecules

rcut

B

Figure 5. Periodic boundaries. Molecule B must calculate intermolecular forces with all other molecules within rcut. Some of those
molecules may be on a periodic image of the system, which, in computational terms, will reside on the other side of the domain. Serial

calculations in simple geometries typically use the minimum image convention [22, 23], but this is not suitable for parallelisation.

rcut molecules
Replicated

Figure 6. An example of a non-parallel, separated boundary. This could represent either a 90◦ bend in a channel where molecules are
‘recycled’ from inlet to outlet. It could also represent a cross section through a hybrid simulation of flow in a pipe where the MD
section is an outer annulus and rotational symmetry has been exploited to simulate only a quarter of the pipe — a typical CFD

technique. In both cases, molecules near the separated boundaries must correctly exchange intermolecular forces.

Referred molecule. A copy of a real molecule that has been placed in a region outside a periodic or
processor boundary in order to provide the correct intermolecular interaction with molecules inside the
domain. A referred molecule holds only its own position and id (i.e. identification of which type of molecule
it is for multi-species simulations). Referred molecules are created and discarded at each timestep, and do
not report any information back to their source molecules. Therefore if molecule j on processor 1 needs to
interact with molecule k on processor 2, a separate referred molecule will be created on each processor.

Referred cell. Referred cells define a region of space and hold a collection of referred molecules. Each
referred cell knows

• which real cell in the mesh (on which processor) is its source;

• the required transformation to refer the positions and orientations of the real molecules in the source cell
to the referred location. A general transformation of position and orientation is required for the cases
mentioned in section 2.2 and figure 6 which require the replicated cells to have a different orientation to
their source cell;

• the positions of all of its own vertices. These are the positions of the vertices of the source cell which
have been transformed by the same referring transform as the referred molecules it contains;

• the structure of all of the cell edges. Each edge is defined by a pair of indices in the referred vertex
positions list indicating the vertices that comprise it;

• the structure of all of the cell faces. Each face is defined by a list of indices in the referred vertex positions
list indicating the vertices that comprise it;

• which real cells are in range of this particular referred cell and hence require intermolecular interactions
to be calculated. This is constructed once at the start of the simulation in the same way as the DIL for

Page 6 of 30

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

January 4, 2008 12:43 Molecular Simulation molSim˙AICA

G. B. Macpherson and J. M. Reese 7

BA rcut

Figure 7. Errors caused by cut-off radius searching from vertices only. A sphere of radius rcut drawn from the indicated vertex on cell
A intersects a face of cell B, therefore, molecules near this vertex should interact with molecules in the shaded region. A sphere of

radius rcut drawn from either of the indicated vertices on cell B will not intersect any point of the surface of cell A, therefore,
point-face searches are not reciprocal.

real-real cell interactions.

2.3 Interacting Cell Identification Methods

Building DILs and creating referred cells depends on identifying whether or not two cells are close enough
such that the molecules they contain need to interact. Four methods for testing this were considered: PP,
PPGR, CGAL and PFEE.

2.3.1 Point-Point (PP). The fastest and most straightforward method of determining whether cells
are within rcut is to use Point-Point (PP) searching. All of the Np points in the mesh are compared to each
other using a non-double-counting loop, and if any pair of points are within rcut of each other, then all of
the cells that these points form part of1 must all be in range of each other, see algorithm 1. Note that a
point is compared to itself (pj = pi is used for the inner loop rather than pj = pi + 1) — this guarantees
that neighbouring cells are identified for interaction if none of their non-shared vertices are within range
of each other.

Algorithm 1 Point-Point cell searching

for pi = 0; pi < Np; pi + 1 do
for pj = pi; pj < Np; pj + 1 do

if the magnitude of the separation of the points referenced by pi and pj ≤ rcut then
all cells which pj and pi form part of must interact.

end if
end for

end for

It is possible for PP to introduce errors, where molecules that should interact do not because their
containing cells are not identified as being in range. Slices of cells may not be identified for interaction
because

• a vertex may be within rcut of a face of another cell, but not of any vertex. See figure 7;

• the edges of two cells may be within rcut of each other, but none of the vertices of either cell are within
rcut of a vertex, edge or face of the other. See figure 8, this problem is only possible in 3D.

Both of these problems are most prevalent in meshes of tetrahedral cells, and cannot occur in regular
meshes with perfectly, or nearly-perfectly cuboid cells.

1The information about which cells use a specific mesh point, and all subsequent information about relationship between the points,
edges, faces and cells in the mesh exists in, and is readily accessible from the mesh description in OpenFOAM.

Page 7 of 30

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

January 4, 2008 12:43 Molecular Simulation molSim˙AICA

8 MD in Arbitrary Geometries: Pair Forces

Figure 8. Two tetrahedral cells with edges within rcut (dashed lines) of each other, but searching from vertices cannot establish this.
The closest points between the two edges are marked, and the intersecting volumes on the other cell of a sphere of radius rcut drawn

from these points is shaded.

v1

v2

PvA

PfA

PeA

v0

C

n
Pf

Pe

Pv

Figure 9. The three possibilities for the closest point on a face to an arbitrary point; the point is closest to a vertex, Pv, an edge, Pe,
or the face itself, Pf .

2.3.2 Point-Point with Guard Radius (PPGR). The errors identified with the PP method can be
reduced by adding a guard radius, rG to rcut. PPGR works exactly as PP, except cells with vertices
separated by ≤ rG +rcut now also interact. The guard radius will mean that many cells will have DILs that
are larger than necessary, which will slow down the running of the simulation because more unnecessary
molecule pairs will be evaluated at each time step. It is possible to remove all errors from PP by adding a
large enough guard radius, but this value is difficult to determine in advance, and in practice is relatively
large, introducing a significant running performance penalty.

2.3.3 Computational Geometry Algorithms Library (CGAL). Whether cells need to interact can be
found without either the errors of PP or the unnecessary additions to DILs of PPGR. The published
CGAL library [29] can be used to calculate the closest distance between two convex hulls [30], constructed
from the points of each cell. This method always finds all of the cells that need to interact, irrespective of
their relative geometry, by using a single non-double-counting loop comparing all cells in the mesh to each
other. When implemented, however, the computational cost proved thousands of times greater than any
of the other three methods described here. It is not suitable for meshes with a realistic number of cells,
and will not be discussed further.

2.3.4 Point-Face and Edge-Edge (PFEE). All cells within rcut of each other can be identified, without
adding any unnecessary cells to a DIL, by conducting the mesh search on the basis of the two errors
identified in PP: point-face and edge-edge searching.

Page 8 of 30

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

January 4, 2008 12:43 Molecular Simulation molSim˙AICA

G. B. Macpherson and J. M. Reese 9

APiAPo

Pi

Po

n

C

Figure 10. Projecting the point to be evaluated onto the plane defined by the face centre and normal unit vector. The projected point
can either lie outside (PoA) or inside (PiA) the face.

Point-Face. The closest point on a face (which is a polygon with an arbitrary number of sides) to an
arbitrary 3D point, P, can either be a face vertex, lie on an edge, or lie on the face itself. Figure 9 shows
these three cases. The question of whether the point is within rcut of the face can be determined by the
following algorithm. The structure of this point-face algorithm is such that it only evaluates as much of
the problem as is necessary to make a decision about whether the point is in range of the face. Once it is
has this, it stops the evaluation of the current point-face pair and moves on to the next.

(i) Project P to the nearest point, PA on the plane defined by the face centre, C and normal unit vector,
n, see figure 10, using

PA = P − ((P− C) · n)n. (1)

If |(P− C) · n| > rcut then it is not possible for the point to be in range of the face1. No more calculation
is necessary for this pair.

(ii) Whether PA lies inside or outside of the face must be determined. A line PAC is drawn from PA to
C, along the plane of the face and each edge of the face is tested to see if this line crosses it. To do
this, all of the vertices, v0,v1 . . .vN, are projected onto a local 2D coordinate system that coincides
with the plane of the face, with PA as its origin, see figure 11. This is necessary because PAC and an
edge may be skew if considered as 3D lines due to numerical round-off errors in the description points
of the face, or where a face is not perfectly flat [20]. The axis unit vectors of the coordinate system on
the plane are

x′ =
C− PA

|C− PA|
, (2)

y′ =
(C − PA) × n

|(C − PA) × n|
, (3)

(4)

and the position vector of a vertex, vα, in plane coordinates is

v′
α =

(

(vα − PA) · x′
)

x′ +
(

(vα − PA) · y′
)

y′. (5)

Given that C lies on the line of x′, by definition

1The test actually performed is |(P − C) · n|2 > r2
cut to avoid the square root when determining the magnitude of the vector. All

other comparisons of this type are also performed in this way.

Page 9 of 30

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

January 4, 2008 12:43 Molecular Simulation molSim˙AICA

10 MD in Arbitrary Geometries: Pair Forces

C′ = |C − PA|x′. (6)

When determining the local coordinates of the vertices, if |P− vα| ≤ rcut then the face must be in
range of the point. No more calculation is necessary for this pair.

(iii) Finding E, the intersection point between PAC and the edge defined by vertices v′
α and v′

β. The
equations for E′ (the intersection in plane coordinates) on the lines P′

A
C′ and v′

αv′
β are

E′ = λAC′, (7)

E′ = v′
α + λv

(

v′
β − v′

α

)

. (8)

Expanding equations (7) and (8) in x′ and y′ components

E′
x′ = λAC ′

x′ ,

E′
y′ = λAC ′

y′ ,

E′
x′ = v′αx′ + λv

(

v′βx′ − v′αx′

)

,

E′
y′ = v′αy′ + λv

(

v′βy′ − v′αy′

)

,

and solving for λA and λv, given that C ′
y′ = 0 because E′ lies on the line of x′

λA =
1

C ′
x′



v′αx′ − v′αy′

(

v′βx′ − v′αx′

)

(

v′βy′ − v′αy′

)



 , (9)

λv = −
v′αy′

v′βy′ − v′αy′

. (10)

If 0 ≤ λA ≤ 1 and 0 ≤ λv ≤ 1, then the edge in question is crossed between PA and C. PA must have
been outside of the face, and E is the closest point on the face to P,

E = PA + λA (C − PA) . (11)

If |P − E| ≤ rcut then the face is in range of the point. If no edge is crossed by PAC, then PA must
have been on the face, so if |PA − P| ≤ rcut then the face is in range of the point, and the cells that
the face forms part of must interact with the cells that the point forms part of.

The non-reciprocal nature of the point-face search must be borne in mind when searching for cells using
it. When constructing DILs all faces must be tested with all points; no reduction in cost via a non-double-
counting procedure is possible. Real cell points must search for referred cell faces and referred cell points
must search for real cell faces. This, and the relatively complex algorithm for calculating the point-face
distance, results in PFEE being computationally expensive.

Edge-Edge. Using the derivation of the closest distance between two skew lines [31] to determine whether
two edges are within range of each other. The equations for the closest points on the lines that the edges
to be compared lie on, see figure 12, are

Page 10 of 30

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

January 4, 2008 12:43 Molecular Simulation molSim˙AICA

G. B. Macpherson and J. M. Reese 11

v0

v3

v1

v2
PA

y’
CE

x’

n

Figure 11. Defining a coordinate system local to the plane of the face to calculate intersections with face edges.

c1

c2
vα

vβ

vγ

vδ

Figure 12. The closest distance between two edges.

c1 = vα + λ1 (vβ − vα) , (12)

c2 = vγ + λ2 (vδ − vγ) . (13)

Defining [32],

a = vβ − vα,

b = vδ − vγ ,

c = vγ − vα,

and solving equations (12) and (13) for λ1 and λ2 gives

λ1 =
(c × b) · (a × b)

|a × b|2
, (14)

λ2 =
(c × a) · (a × b)

|a × b|2
. (15)

If |a × b| = 0, then the lines are parallel and this algorithm is invalid. A point-face search will, however,
identify parallel edges as being in range if necessary. No more calculation is necessary for this edge pair.

If 0 ≤ λ1 ≤ 1 and 0 ≤ λ2 ≤ 1, then the closest points between the lines lie somewhere along both edges.
In this case, calculate c1 and c2 using equations (12) and (13) and test |c1 − c2| ≤ rcut to determine if
the edges, hence the cells they form part of, are in range. Edge-edge searching is reciprocal and can be
performed under a non-double-counting loop.

Page 11 of 30

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

January 4, 2008 12:43 Molecular Simulation molSim˙AICA

12 MD in Arbitrary Geometries: Pair Forces

2.4 Intermolecular Force Calculation Procedure

2.4.1 Build Cell Interactions. At the start of the simulation, the DIL for each real cell and appropriate
referred cells are created, and the referred cells determine which real cells they must supply interactions
to. Details of these processes can be found in appendix B. Referred cells need not be sourced only from
processors sharing a boundary, i.e. AICA is able to identify cell interactions between non-neighbouring
processors. However, when constructing the referred cells, processors need only communicate across inter-
processor faces, i.e. with neighbours only.

2.4.2 Build Cell Occupancy and Refer Molecules. At each timestep, before calculating any forces, a
list for each cell is built stating which molecules it contains. This is a computationally cheap operation
because it only involves querying each molecule for which cell it is in, and adding a reference or pointer
to that molecule to the list for the appropriate cell. Each molecule holds information about which cell it
occupies by virtue of the tracking mechanism [20].

At each timestep, all real cells which are the source cell of one or more referred cells send the position
and id of all of the molecules they contain to the appropriate referred cell on the appropriate processor.
The destination referred cells perform the appropriate position and orientation transformation when the
molecules are received. The referred molecules are discarded and re-created from the source molecules at
each timestep.

2.4.3 Force Calculation. The total intermolecular force acting on a molecule is calculated at each
timestep by considering two types of interactions. Real-Real interactions occur between a molecule and
others on the same processor, according to algorithm 2. Real-Referred interactions occur between real
molecules and referred molecules arising from the other side of a processor or periodic boundary, according
to algorithm 3. Referred molecules do not need to calculate interactions between themselves, because every
referred molecule is a copy of a real molecule elsewhere, and as such will receive all of its real-real and
real-referred interactions in-situ.

Algorithm 2 Real-Real Molecule Force Calculation.

for all real cells, ci do
for all real molecules in ci, mi do

for all real cells in ci’s DIL, cj do
for all real molecules in cj , mj do

calculate intermolecular force fij between mi and mj

add fij to fi (total force vector for mi)
add fji = −fij to fj

end for
end for
for all real molecules in ci with an index greater than mi, m∗

i′ do
calculate intermolecular force fii′ between mi and mi′

add fii′ to fi
add −fii′ to fi′

end for
end for

end for
∗Comparison of the index of molecules in the same cell, m′

i > mi, means that interactions between molecules in the same cell are not
double-counted and a molecule does not calculate an interaction with itself. The order of comparison is not important, as long as all
pairs are covered, so m′

i < mi would work equally well.

Page 12 of 30

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

January 4, 2008 12:43 Molecular Simulation molSim˙AICA

G. B. Macpherson and J. M. Reese 13

Algorithm 3 Real-Referred Molecule Force Calculation

for all referred cells, cq do
for all referred molecules in cq, mq do

for all real cells that cq interacts with, cp do
for all real molecules in cp, mp do

calculate intermolecular force fpq between mp and mq

add fpq to fp
end for

end for
end for

end for

3 Implementation and Performance

3.1 gnemdFOAM

AICA has been implemented in OpenFOAM [19], which is an open source C++ library intended for
continuum mechanics simulation of user-defined physics (primarily used for CFD) in arbitrary, unstruc-
tured geometries. The AICA MD code has been built using OpenFOAM’s lagrangian particle tracking
library [20] and is called gnemdFOAM. All features of OpenFOAM have a common infrastructure for
distributed memory parallel processing using MPI.

3.2 Accuracy: Single Timestep Average Pair Potential Energy

The total potential energy of all pair interactions in a test system was calculated by an in-house code,
gnemd, which was based on, and is validated against, the code supplied in [22]. The positions of all of the
molecules from the gnemd test case were imported into gnemdFOAM, transferring with a precision of 18
decimal places. The same system (same bounding box geometry and same intermolecular potential) was
simulated by gnemdFOAM using a regular cubic mesh and 21 different tetrahedral meshes generated by
commercial CFD meshing software GAMBIT R©. The cubic mesh in gnemdFOAM comprised 283 = 21952
cubic cells. The tetrahedral meshes were generated by specifying the number of cell edges to be placed
on the edges of the bounding geometry, and allowing GAMBIT R© to automatically generate a tetrahedral
mesh. Edge numbers of 10–30 were used and the number of cells generated in each case shown in table 1.
An example mesh (edge number 15) is shown in figure 13.

All MD values in these tests will be expressed in reduced units scaled using the Argon Lennard Jones
(LJ) potential length, energy and mass values. The shifted-force [23] LJ intermolecular potential for Argon
was used in all simulations:

u (rij) =























4ǫ

[(

(

σ
rij

)12
−
(

σ
rij

)6
)

−

(

(

σ
rcut

)12
−
(

σ
rcut

)6
)

+ 12rcut(rij−rcut)
σ2

(

(

σ
rcut

)14
− 1

2

(

σ
rcut

)8
)]

, rij ≤ rcut

0, rij > rcut,

(16)

with ǫ = 120kb, where kb is the Boltzmann constant, σ = 0.34nm and rcut = 2.5σ.
A cubic system domain of exactly 50 units side length was chosen to avoid any round-off errors when

generating the mesh geometry, and a fluid number density of (50/46)−3 = 0.778688 chosen to give a perfect
simple cubic lattice of 463 = 97336 molecules. The total potential energy of all pair interactions for the
molecules in their initial configuration, divided by the number of molecules, will be used to compare the
results. This average potential per molecule, 〈PE〉, was calculated using gnemd, 〈PE〉g, and by gnemd-

FOAM for 22 meshes (21 tetrahedral and cubic) using the PP, PPGR (with rG = 0.125, 0.25, 0.5, 1.0) and
PFEE cell interaction identification methods. The cubic mesh in gnemdFOAM was not sensitive to any of

Page 13 of 30

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

January 4, 2008 12:43 Molecular Simulation molSim˙AICA

14 MD in Arbitrary Geometries: Pair Forces

Table 1. Number of cells in test tetrahedral meshes generated by GAMBITR©.

edge no. 10 11 12 13 14 15 16 17 18 19
Ncells 7520 9748 11101 19344 22289 22338 28113 36646 43420 50877

20 21 22 23 24 25 26 27 28 29 30
56171 67520 73801 88334 97488 105385 129761 145016 145196 185016 196847

Figure 13. Tetrahedral mesh with edge number 15. The outline of cells on four of six faces of the bounding cube are shown and two of
twelve portions of cells are shown from the mesh decomposed for parallelisation.

the mesh searching errors of PP identified in section 2.3.1 and produced exactly the same result, 〈PE〉gF ,
with each of the cell interaction identification methods:

〈PE〉g = −4.22656275761469,

〈PE〉gF = −4.22656275759921,
∣

∣

∣

∣

〈PE〉g − 〈PE〉gF

〈PE〉gF

∣

∣

∣

∣

= 3.64 × 10−12. (17)

The difference between 〈PE〉g and 〈PE〉gF , equation (17), is thought to arise from the accumulation of
rounding errors in the calculation of all pair potentials and any round-off error in the transfer of molecule
positions between the two codes. The magnitude of this difference is considered to be insignificant. The
relative error between 〈PE〉 for the tetrahedral meshes using the various cell interaction methods and
〈PE〉gF is calculated in the same manner as equation (17) and shown in figure 14. The errors in the PP or
PPGR results are due to cells containing molecules that should interact not being identified by point-point
searching of the mesh. The errors in PP and PPGR simulations become smaller in meshes with more
cells because a fixed rcut + rG length becomes larger relative to the cell size, giving a greater chance of
establishing two points of a cell being in range.

Note that PFEE always produces a result that appears to be on the numerical ‘noise floor’ of the simu-
lation — where the cumulative effect of numerical rounding errors becomes important. This is supported
by the PPGR results dropping onto this line when rG is large enough, indicating that all errors have been
removed. This line has a smaller magnitude than the value from equation (17), which is plotted as ‘g
to gF, cubic mesh’. This demonstrates that PFEE identifies the correct cells to provide every molecular
interaction in the system, irrespective of mesh topology.

Page 14 of 30

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

January 4, 2008 12:43 Molecular Simulation molSim˙AICA

G. B. Macpherson and J. M. Reese 15

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

 0 40000 80000 120000 160000 200000

R
el

at
iv

e
er

ro
r

m
ag

ni
tu

de

Number of cells

PP
PPGR, rG = 0.125
PPGR, rG = 0.25
PPGR, rG = 0.5
PPGR, rG = 1
PFEE
g to gF, cubic mesh

Figure 14. Relative error between 〈PE〉 for each tetrahedral mesh and 〈PE〉gF with different cell interaction build methods.

3.2.1 Parallel Accuracy. The accuracy of PFEE when the simulation is parallelised is demonstrated in
figure 15. The tetrahedral meshes were decomposed into 12 portions (as shown in figure 13) by a simple
x : y : z = 2 : 3 : 2 split and into 32 portions using METIS [33], then simulated on a distributed memory
parallel cluster. The ‘parallel to serial error’ data represents the relative difference between 〈PE〉 calculated
for each mesh and 〈PE〉gF . The ‘parallel self error’ data represents the difference between 〈PE〉 calculated
for each mesh and 〈PE〉 calculated for the cubic mesh parallelised in the same way as the tetrahedral
meshes. It is interesting to note that the parallel self errors are substantially lower than the parallel to
serial errors. This is likely to be due to referred molecule positions being truncated from 64bit to 32bit
precision by OpenFOAM to speed up interprocessor transfer. This would explain why the cubic mesh
simulated in parallel gives a result substantially closer to the parallel tetrahedral meshes than the serial
result. The parallel to serial errors are larger than those for PFEE in figure 14, although still acceptably
small. This demonstrates that the referred cells, which provide the intermolecular force connection between
processors, are correctly created and used.

3.2.2 Distribution of Errors. The values of 〈PE〉 for PP and PPGR do not give an indication of how
the intermolecular force errors due to missed interactions are distributed. If a large number of molecules
experience small errors, then this is perhaps tolerable. If, however, a small number of molecules receive
substantial errors, this will may cause unacceptable perturbations to the dynamics. The latter case is
observed in practice.

The system simulated above is initialised in the cubic mesh with molecule velocities drawn from a
Maxwellian distribution at a temperature of 2.5 and allowed to evolve in gnemdFOAM using the Verlet
leapfrog [22] integration scheme for 1000 timesteps of ∆t = 0.005 to create a reference system. This was
done to let the initial simple cubic lattice relax into a more realistic configuration, because the net force on
each molecule in the perfect crystal is zero, which is not useful for calculating relative errors. The molecule
positions from the reference system are used in the tetrahedral meshes and the acceleration vector for each
molecule calculated. The absolute and relative error magnitude between the acceleration for each molecule
in the tetrahedral mesh and the acceleration for the corresponding molecule in the reference system is

Page 15 of 30

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

January 4, 2008 12:43 Molecular Simulation molSim˙AICA

16 MD in Arbitrary Geometries: Pair Forces

10-14

10-13

10-12

10-11

10-10

 0 40000 80000 120000 160000 200000

R
el

at
iv

e
er

ro
r

m
ag

ni
tu

de

Number of cells

12 processor PFEE, parallel to serial error
32 processor PFEE, parallel to serial error
12 processor PFEE, parallel self error
32 processor PFEE, parallel self error

Figure 15. Relative error in 〈PE〉 for each tetrahedral mesh simulated in parallel using 12 and 32 processors. Cell interactions built
with PFEE.

calculated:

absolutei = |ateti − aref i| , (18)

relativei =
|ateti − aref i|

|aref i|
. (19)

These errors were added to histograms to assess their distribution. Examples of the histograms are shown
in figures 16 and 17 for the edge number 14 mesh, using PP and PPGR (rG = 0.125, 0.25, 0.5, 1.0). Both
graphs show that the vast majority of molecules receive very small errors. A small number of molecules
receive a substantial absolute error — up to 2.5, where acceleration magnitudes of up to 100–150 are
typical in this simulation. Large relative errors of 30% (see the inset portion of figure 16) are also seen,
although these may be caused by the reference acceleration magnitude being very small. The addition of
a guard radius does improve matters, but not substantially until, in this example, rG > 0.5 is used.

3.3 Computational Speed

The computational speed of establishing cell interactions and calculating intermolecular forces in gnemd-

FOAM was assessed for each of the tetrahedral meshes above, filled with 97336 LJ molecules. The time
taken to build the interaction lists (create DILs, create referred cells and find real cells in range of referred
cells) was recorded, and an intermolecular force calculation for all molecules performed 400 times and
timed. The molecules were not moved during the simulation. All timing tests were performed on a PC
with a 2.8GHz, AMD AthlonTMFX-62 processor.

The time taken to build the interaction lists is shown in figure 18 (note the logarithmic time axis).
For the PP and PPGR data, an increase with increasing rG is seen because more referred cells will be
created. It is clear that PFEE takes substantially longer than PP or PPGR to build the interaction lists.

Page 16 of 30

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

January 4, 2008 12:43 Molecular Simulation molSim˙AICA

G. B. Macpherson and J. M. Reese 17

10-3

10-2

10-1

100

101

 0 0.02 0.04 0.06 0.08 0.1

P
ro

ba
bi

lit
y

Relative acceleration error magnitude

PP
PPGR, rG = 0.125
PPGR, rG = 0.25
PPGR, rG = 0.5
PPGR, rG = 1

10-3

10-2

 0.1 0.15 0.2 0.25 0.3 0.35

Figure 16. Relative error magnitude distribution for tetrahedral mesh, edge number 14.

10-5

10-4

10-3

10-2

10-1

100

 0 0.5 1 1.5 2 2.5

P
ro

ba
bi

lit
y

Absolute acceleration error magnitude

PP
PPGR, rG = 0.125
PPGR, rG = 0.25
PPGR, rG = 0.5
PPGR, rG = 1

Figure 17. Absolute error magnitude distribution for tetrahedral mesh, edge number 14.

Page 17 of 30

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

January 4, 2008 12:43 Molecular Simulation molSim˙AICA

18 MD in Arbitrary Geometries: Pair Forces

This is understandable given the number of comparisons and calculations required by PFEE. Building
the interaction lists is O(N2), for a mesh of N cells, and as such benefits greatly from parallelisation
because each portion of the mesh only needs to search itself. The longest PFEE builds, taking several
1000s of seconds, would typically not be practical and the mesh would be decomposed and the simulation
parallelised. The interaction lists are established only once, at the start of the simulation, so for a very long
simulation this may not represent a substantial portion of the total time. If the same mesh with the same
rcut is to be used repeatedly, then the cell interaction information can be calculated once then written to
and read from disk.

The average time taken per timestep to calculate the intermolecular forces is shown on figure 19. All of
the results follow a similar trend: in meshes with few cells, each cell contains a large number of molecules,
and many pairs identified to interact will be further apart than rcut. As the cells become smaller, the
number of unnecessary interactions reduces until a point where the additional overhead of administrating
more cells becomes more costly than the benefit derived, producing a ‘dip.’ All of the results essentially
level off for meshes with a large number of cells (greater than 80000). This shows that the presence of
empty cells (there are 97336 molecules in the system) does not present a significant overhead — this is a
favourable characteristic. The only exception is for PPGR, rG = 1.0, where the large number of additional
interacting cells seems to cause a noticeable overhead increase in meshes containing many cells.

The PP and PPGR results produce a family of curves, with increasing rG the computational time
increases and the region of the ‘dip’ narrows. An increased guard radius will produce DILs with unnecessary
cells on them and unnecessary real-referred cell interactions, increasing the number of intermolecular
evaluations between pairs of molecules that are further apart than rcut.

The PFEE result has a similar form to PP and PPGR but does not fit into the family. In meshes
with fewer cells, PFEE is more expensive than PP and most of the PPGR results because it is correctly
identifying cells to interact that PP and PPGR miss. Comparing 19 to figure 14 it can be seen that the
‘dip’ (up to approximately 40000 cells) in computational time coincides with the region of maximum errors
for PP and PPGR — missed cell interactions emphasise the ‘dip’ by reducing the number of calculations
required by each molecule. The fact that PFEE does not take significantly longer to calculate forces than
PP for larger meshes demonstrates that it does not identify any more cells to interact than are absolutely
necessary.

There is a opportunity to trade-off the time taken to build the interaction lists using PFEE with a quick
list build and slower timesteps using PPGR and a large enough rG to remove all errors. The required
rG length is difficult to determine in advance, however, and most realistic simulations involve very many
timesteps, which would soon make the PPGR simulation slower overall.

Simulations to characterise the performance of the code, exploring the impact of number density, system
size, mesh cell size and morphology (for example, tetrahedral vs. hexahedral, skew, aspect ratio) number
of processors and decomposition method will be presented in a future publication.

4 Discussion and Conclusions

The AICA algorithm is able to identify cells which are within a distance rcut of each other in a mesh
of unstructured arbitrary polyhedra. It can be used for building neighbour lists, or for intermolecular
force calculations directly. In order to guarantee that every cell interaction is identified, particularly in
tetrahedral meshes, a significant amount of calculation is required to identify when pairs of points and faces
in the mesh are within range of each other, and when pairs of edges are within range. This is Point-Face,
Edge-Edge (PFEE) searching of the mesh.

The accuracy of using PFEE mesh searching to determine which cells in the mesh should interact has
been demonstrated by simulating a cubic MD system represented by 21 different tetrahedral meshes,
ranging from 7520 to 196847 cells. The results are the same, to within numerical round off error, to those
produced by another verified MD code. The computational cost of intermolecular force calculation with
AICA depends on the mesh used (see below) but scales favourably with increasing refinement of the mesh.
In particular, having a significant number of empty cells does not add much computational overhead.
The accuracy of exchanging intermolecular force data across periodic and interprocessor boundaries using

Page 18 of 30

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

January 4, 2008 12:43 Molecular Simulation molSim˙AICA

G. B. Macpherson and J. M. Reese 19

 1

 10

 100

 1000

 10000

 100000

 0 40000 80000 120000 160000 200000

C
om

pu
ta

tio
na

l t
im

e
to

 b
ui

ld
 in

te
ra

ct
io

n
lis

ts
/[s

]

Number of cells

PP
PPGR, rG = 0.125

PPGR, rG = 0.25
PPGR, rG = 0.5
PPGR, rG = 1.0

PFEE

Figure 18. Time taken to build interaction lists at the start of the simulation.

 1

 1.5

 2

 2.5

 3

 3.5

 0 40000 80000 120000 160000 200000

C
om

pu
ta

tio
na

l t
im

e
pe

r
tim

es
te

p/
[s

]

Number of cells

PP
PPGR, rG = 0.125

PPGR, rG = 0.25
PPGR, rG = 0.5
PPGR, rG = 1.0

PFEE

Figure 19. Time taken to calculate intermolecular pair forces between all molecules.

Page 19 of 30

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

January 4, 2008 12:43 Molecular Simulation molSim˙AICA

20 REFERENCES

referred molecules and cells has been demonstrated, with the 21 tetrahedral meshes producing the same
results when simulated in serial as on 12 and 32 processors.

4.1 Choosing a Mesh

The performance of the algorithm is highly dependent on the mesh it is applied to. When choosing a mesh
to use for a simulation the following points must be considered, and in some cases numerically tested and
traded-off against one another:

• The time required to build cell interaction lists depends on the intermolecular potential cut-off radius,
rcut, the number of cells and their shape, and the form of the mesh: a tetrahedral mesh will have a
difference balance of points:edges:cells compared to a hexahedral mesh, which will impact on the time
taken for a PFEE search.

• Optimising the size of the mesh to minimise the time taken to run the simulation is complex and is
case-specific, as demonstrated in section 3.3.

• The mesh is not only used to define the shape of the domian and to help identify interacting molecules,
thermodynamical and fluid mechanical fields are spatially resolved onto it and the mesh resolution may
be dictated by this.

• The mesh does not need to be uniform, it can have locally high resolution for making measurements
in regions of interest but be coarser to improve computational speed if necessary in other regions. The
‘tricks of the trade’ used in CFD can also be applied, for example the mesh can be adaptively refined
to track a region of interest.

• The results in section 3 showed that PP and PPGR are generally not good choices for building cell
interactions unless either the mesh in question comprises fairly regular hexahedra or some errors can be
tolerated.

4.2 Future Developments

Currently this algorithm deals only with short-ranged pair forces. Future developments will incorporate
rigid and flexible polyatomic molecules, and long-range electrostatic forces. A hybrid MD/continuum
implementation in OpenFOAM is currently under development. OpenFOAM is ideal for incorporating
polar fluids and electrokinetic actuation, which feature in envisioned applications, because it is able to
simulate electromagnetic, magnetohydrodynamic and fluid mechanic continuum fields on the same mesh
that AICA operates on.

5 Acknowledgements

The authors would like to thank Chris Greenshields and Matthew Borg of Strathclyde University, and
Henry Weller and Mattijs Janssens of OpenCFD Ltd. for useful discussions. This work is funded in the
UK by Strathclyde University, the Miller Foundation and the James Weir Foundation, and through a
Philip Leverhulme Prize for JMR from the Leverhulme Trust.

References

[1] Peter Agre. The aquaporin water channels. Proceedings of the American Thoracic Society, 3(1):5–13,
2006.

[2] Joel Koplik and Jayanth R. Banavar. Continuum deductions from molecular hydrodynamics. Annual

Review of Fluid Mechanics, 27:257–292, 1995.
[3] H. Brenner and V. Ganesan. Molecular wall effects: are conditions at a boundary “boundary condi-

tions”? Physical Review E, 61(6):6879–6897, 2000.

Page 20 of 30

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

January 4, 2008 12:43 Molecular Simulation molSim˙AICA

REFERENCES 21

[4] D. Hirshfeld and D.C. Rapaport. Molecular dynamics simulation of Taylor-Couette vortex formation.
Physical Review Letters, 80(24):5337–5340, 1998.

[5] D.C. Rapaport and E. Clementi. Eddy formation in obstructed fluid flow: a molecular-dynamics
study. Physical Review Letters, 57(6):695–698, 1986.

[6] K.P. Travis, B.D. Todd, and D.J. Evans. Poiseuille flow of molecular fluids. Physica A, 240(1-2):315–
27, 1997.

[7] K.P. Travis, B.D. Todd, and D.J. Evans. Departure from Navier-Stokes hydrodynamics in confined
liquids. Physical Review E, 55(4):4288–95, 1997.

[8] Tiezheng Qian and Xiao-Ping Wang. Driven cavity flow: from molecular dynamics to continuum
hydrodynamics. Multiscale Modeling and Simulation, 3(4):749–763, 2005.

[9] Thomas Becker and Frieder Mugele. Nanofluidics: viscous dissipation in layered liquid films. Physical

Review Letters, 91(16):166104, 2003.
[10] Hisashi Okumura and David M. Heyes. Comparisons between molecular dynamics and hydrodynamics

treatment of nonstationary thermal processes in a liquid. Physical Review E, 70(6):061206, 2004.
[11] Rafael Delgado-Buscalioni and Peter V. Coveney. Hybrid molecular-continuum fluid dynamics. Philo-

sophical Transactions of the Royal Society London, 362(1821):1639–1654, 2004.
[12] G. Wagner and E. G. Flekkøy. Hybrid computations with flux exchange. Philosophical Transactions

of the Royal Society London, 362(1821):1655–1665, 2004.
[13] X. B. Nie, S. Y. Chen, W.N. E, and M. O. Robbins. A continuum and molecular dynamics hybrid

method for micro- and nano-fluid flow. Journal of Fluid Mechanics, 500:55–64, 2004.
[14] Thomas Werder, Jens H. Walther, and Petros Koumoutsakos. Hybrid atomistic-continuum method

for the simulation of dense fluid flows. Journal of Computational Physics, 205(1):373–390, 2005.
[15] Sumita Pennathur and Juan G. Santiago. Electrokinetic transport in nanochannels. 2. Experiments.

Analytical Chemistry, 77(21):6782–6789, 2005.
[16] P. Español and P.Warren. Statistical mechanics of dissipative particle dynamics. Europhysics Letters,

30(4):191–196, May 1995.
[17] J. Horbach and S. Succi. Lattice boltzmann versus molecular dynamics simulation of nanoscale

hydrodynamic flows. Physical Review Letters, 96(22):224503, 2006.
[18] A J Archer. Dynamical density functional theory for dense atomic liquids. Journal of Physics:

Condensed Matter, 18(24):5617–5628, 2006.
[19] OpenFOAM: The Open Source CFD Toolbox. http://www.openfoam.org.
[20] Graham B. Macpherson, Niklas Nordin, and Henry G. Weller. Particle tracking in unstructured, arbi-

trary polyhedral meshes for use in CFD and molecular dynamics. Under review for Communications

in Numerical Methods in Engineering, 2007.
[21] Graham B. Macpherson, Matthew K. Borg, and Jason M. Reese. Parallel generation of molecular

dynamics initial configurations in arbitrary geometries. Molecular Simulation, 33(15):1199–1212, 2007.
[22] D. C. Rapaport. The Art of Molecular Dynamics Simulation. Cambridge University Press, 2nd

edition, 2004.
[23] M.P. Allen and D.J. Tildesley. Computer simulation of liquids. Oxford University Press, 1987.
[24] W. Smith. Molecular dynamics on hypercube parallel computers. Computer Physics Communications,

62(2–3):229–248, 1991.
[25] D.C. Rapaport. Multi-million particle molecular dynamics. II. Design considerations for distributed

processing. Computer Physics Communications, 62(2–3):217–228, 1991.
[26] Tim N. Heinz and Philippe H. Hunenberger. A fast pairlist-construction algorithm for molecular

simulations under periodic boundary conditions. Journal of Computational Chemistry, 25(12):1474 –
1486, 2004.

[27] W. Mattson and B.M. Rice. Near-neighbor calculations using a modified cell-linked list method.
Computer Physics Communications, 119(2-3):135–148, 199.

[28] Pedro Gonnet. A simple algorithm to accelerate the computation of non-bonded interactions in cell-
based molecular dynamics simulations. Journal of Computational Chemistry, 28(2):570–573, 2007.

[29] Cgal, Computational Geometry Algorithms Library. http://www.cgal.org.
[30] Kaspar Fischer, Bernd Gärtner, Thomas Herrmann, Michael Hoffmann, Sven Schnherr, and the CGAL

Page 21 of 30

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

January 4, 2008 12:43 Molecular Simulation molSim˙AICA

22 REFERENCES

Editorial Board. Optimal distances. In CGAL User and Reference Manual. 3.3 edition, 2007.
[31] W. Gellert, S. Gottwald, M. Hellwich, H.; Kästner, and H. Künstner, editors. VNR concise encyclo-

pedia of mathematics. Van Nostrand Reinhold, New York, 2nd edition, 1989.
[32] Eric W Weisstein. Line-Line Distance. From MathWorld — A Wolfram Web Resource.

http://mathworld.wolfram.com/Line-LineDistance.html.
[33] George Karypis and Vipin Kumar. METIS. A software package for partitioning unstructured graphs,

partitioning meshes, and computing fill-reducing orderings of sparse matrices. Version 4.0. University
of Minnesota,
http://glaros.dtc.umn.edu/gkhome/views/metis.

Page 22 of 30

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

January 4, 2008 12:43 Molecular Simulation molSim˙AICA

REFERENCES 23

Appendix A: Neighbour List Lifetime Prediction

The computational cost of the neighbour list algorithm depends on the number of timesteps a neighbour
list remains valid for — a quantity whose dependence on simulation properties can be predicted. For a
given number of molecules, N , of mass m, in equilibrium at a temperature T , there is a probability of
1/N that a molecule in the system will be travelling with a velocity vN . It is therefore likely that at every
timestep there will be one molecule travelling at, or close to this velocity. Given that a neighbour list is
invalidated when the cumulative sum of maximum displacements in the system exceeds a fixed threshold
(usually 0.5∆R, half the shell thickness [22]), finding the number of timesteps required for a molecule
travelling at vN to cover this distance gives an estimate of the lifetime of the list. Estimating vN by
equating the Maxwellian velocity distribution to 1/N , where T , m and vN are in reduced MD units [23]
(see figure A1):

4π
(m

2πT

)
3

2

v2
Ne

„

−mv2

N

2T

«

=
1

N
. (A1)

The high speed solution is,

vN (T,m,N) =

√

√

√

√−
2T

m
W−1

(

−
1

4N

√

2πT

m

)

, (A2)

where W−1 is the secondary real branch of the Lambert W function.
The accuracy of vN as a prediction of the maximum velocity in the system has been tested experimentally.

Two systems containing 1728 and 13824 Lennard-Jones molecules, m = 1, at a number density of 0.8 were
equilibrated to two different temperatures, T = 1.0 and T = 2.5, then simulated for 44000 timesteps of
∆t = 0.005. At each timestep the maximum velocity in the system was found and added to a histogram
with a velocity bin width of 0.05. The histograms were then normalised to produce probability functions,
their mean calculated, and the data was fitted to a curve of the form,

fvN
(x) = p(x − s)qe−(x−s)/r. (A3)

Figure A2 shows the maximum velocity probability functions with their mean and the corresponding
value of vN (T,m,N). Table A1 shows the pertinent data and the curve fitting parameters for each result.
The values of vN and the distribution mean are close in all four cases, with vN consistently higher (2-5%
– 5.5% in these examples) but lying comfortably within the distribution. Using vN will probably result in
a slightly pessimistic estimate of the lifetime of a neighbour list.

The number of timesteps (of length ∆t) a neighbour list is valid for, L, is given by

L =

⌈

0.5∆R

∆tvN

⌉

. (A4)

This lifetime reduces with increasing temperature and number of molecules, as shown in figure A3, resulting
in a higher computational cost when using neighbour lists. At higher temperatures, vN is higher because
the velocity distribution covers a higher molecular speed range. In systems comprising more molecules,
it is more probable that at least one molecule will be travelling at a given speed in the upper region of
the distribution, therefore vN is also higher. The cost of an algorithm such as AICA, based only on cell
interactions, is not sensitive to either of these parameters, therefore becomes increasingly attractive in
large systems (> 106 molecules) where neighbour list lifetimes are lower. The use of the ceiling function in

Page 23 of 30

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

January 4, 2008 12:43 Molecular Simulation molSim˙AICA

24 REFERENCES

P
ro

ba
bi

lit
y

Velocity Magnitude

1/N

vN

Figure A1. Maxwellian velocity distribution. Finding velocities corresponding to a probability of 1/N , where N is the number of
molecules in the system. There are two real, positive solutions — the high speed one is vN , the quantity of interest.

Table A1. Experimental data and curve fitting parameters for fvN
(x).

T N vN mean vN−mean

mean
p q r s

1 1728 4.528 4.294 5.45% 17310 6.794 0.1008 3.504
1 13824 5.006 4.783 4.66% 47060 7.027 0.08975 4.058

2.5 1728 6.979 6.821 2.31% 610.7 8.334 0.1494 5.416
2.5 13824 7.756 7.558 2.62% 1276 7.157 0.1406 6.406

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 3 3.5 4 4.5 5 5.5 6 6.5

pr
ob

ab
ili

ty

Maximum velocity in timestep (reduced units)

T = 1, m = 1

N = 13824: mean = 4.783

vN(1,1,13824) = 5.006

N = 1728: mean = 4.294

vN(1,1,1728) = 4.528

N = 13824: data
N = 13824: fit

N = 1728: data
N = 1728: fit

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 5 6 7 8 9 10

pr
ob

ab
ili

ty

Maximum velocity in timestep (reduced units)

T = 2.5, m = 1

N = 13824: mean = 7.558

vN(2.5,1,13824) = 7.756

N = 1728: mean = 6.821

vN(2.5,1,1728) = 6.979

N = 13824: data
N = 13824: fit

N = 1728: data
N = 1728: fit

Figure A2. Probability of maximum velocity in simulation at T = 1.0 (left) and T = 2.5, (right) for 1728 and 13824 Lennard-Jones
molecules of mass m = 1 compared to vN (T, m, N). The data was collected from 44000 timesteps of ∆t = 0.005. The mean of the

distributions is shown for comparison. Temperature, velocity and mass are expressed in reduced units.

equation (A4) reduces the impact of the difference between vN and the measured mean of the maximum
velocity probability function, resulting only in a alteration of the position of the ‘steps’ in the result.

Page 24 of 30

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

January 4, 2008 12:43 Molecular Simulation molSim˙AICA

REFERENCES 25

 4

 5

 6

 7

 8

 9

 10

 11

 12

102 103 104 105 106

P
re

di
ct

ed
 n

um
be

r
of

 ti
m

es
te

ps
 o

f n
ei

gh
bo

ur
Li

st
 v

al
id

ity

Number of molecules, N (m = 1, ∆R = 0.4, ∆t = 0.005)

T = 1
T = 1.5
T = 2.5

Figure A3. Variation of estimated neighbour list lifetime with typical simulation parameters for a Lennard Jones fluid [22]. T, m, ∆R
and ∆t are in reduced MD units.

Appendix B: Build Cell Interactions

Building DILs, creating referred cells and determining which real cells are in range of them is allowed to
be computationally expensive (within reason) because it will only happen once at the beginning of the MD
simulation, if the mesh is static. Accessing the information, however, must be as fast as possible because it
will happen at every timestep. In each of these steps either the PP, PPGR or PFEE method can be used
to test whether or not two cells are within rcut of each other.

B.1 Building DILs

The construction of the DILs and accessing molecules is done in such a way as to not double-count
interactions. For example, if cells A and B need to interact, cell B will be on cell A’s DIL, but cell A will
not be on cell B’s DIL. When a molecule in cell A interacts with one in cell B the molecule in cell B will
receive the inverse of the force vector calculated to be added to the molecule in cell A, because the pair
forces are reciprocal, i.e. fab = −fba.

When using PP or PPGR, all points in the mesh are compared, as per algorithm 1. When two points
are in range, this produces a set of cells attached to one point and another set attached to the other point.
When using PFEE, all points are compared to all faces. When this pair are in range the set of cells that
are attached to the point and the set of cells that the face forms part of are produced. All edges in the
mesh are compared in a non-double-counting loop, and when they are in range two sets of cells are again
produced — those attached to one edge and those attached to the other.

For each step in each method, two sets of cells are returned. The index of each cell in one set is compared
to the index of each cell in the other set, and the cell with the higher index is added to the DIL of the cell
with the lower index. Cells are not added to their own DIL.

B.2 Creating Referred Cells

Coupled patches are the basis of periodic and interprocessor communication for creating referred cells.
Patches, in general, are an OpenFOAM class comprising a collection of cell faces representing a mesh
boundary of some description — they may provide solid surfaces, inlets, outlets, symmetry planes, periodic
planes, or interprocessor connections. Coupled patches provide two surfaces; that which exits one enters
the other and vice versa. Two types are used in AICA:

• Periodic patches on a single processor are arranged into two halves, each half representing one of the

Page 25 of 30

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

January 4, 2008 12:43 Molecular Simulation molSim˙AICA

26 REFERENCES

coupled periodic surfaces. When a molecule crosses a face on one surface, it is wrapped around to the
corresponding position on the corresponding face on the other surface.

• Processor patches provide links between portions of the mesh on different processors, one half of the patch
is on each processor. When a molecule crosses a face on one surface, it is moved to the corresponding
position on the corresponding face on the other surface, on the other processor. Decomposing a mesh
for parallelisation will often require a periodic patch to be changed to a processor patch.

The surfaces of coupled patches may have any relative orientation, and may be spatially separated as long
as the face pairs on each surface correspond to each other.

B.2.1 Create Patch Segments. In the decomposed portion of the mesh on each processor, each processor
and periodic patch should be split into segments, such that:

• faces on a processor that were internal to the mesh prior to decomposition end up on a segment;

• faces on a processor patch that were on separate periodic patches on the undecomposed mesh end up
on different segments. These segments are further split such that faces that were on different halves of
the periodic patch on the undecomposed mesh end up on different segments;

• faces on different halves of a periodic patch end up on different segments.

Each segment must produce a single vector/tensor transformation pair (see appendix C) which will be
applied to all cells referred across it.

B.2.2 Cell Referring Iterations. For each patch segment:

(i) Find all real and existing referred cells with a portion of their surface in range of the faces comprising
the patch segment.

(ii) Refer or re-refer this set of cells across the boundary defined by the patch segment using its trans-
formation, see appendix C. In the case of a segment of periodic boundary, this creates new referred
cells on the same processor. For a segment of a processor patch, these cells are communicated to, and
created on the neighbouring processor. Before creating any new referred cell a check is carried out to
ensure that it is not

• a duplicate referred cell, one that has been created already by being referred across a different
segment;

• a referred cell trying to be duplicated on top of a real cell, i.e. a cell being referred back on top of
itself.

If the proposed cell for referral would create a duplicate of an existing referred cell, or end up on top
of a real cell, then it is not created. To be a duplicate, the source processor, source cell and the vector
part of the transformation (see appendix C) must be the same for the two cells (note, the vector part
of transformation for a real cell is zero by definition).

A single run of these steps will usually not produce all of the required referred cells. They are repeated
until no processor adds a referred cell in a complete evaluation of all segments, meaning all possible
interactions are accounted for. In iterations after the first, in step 1 it is enough to search only for referred
cells in range of the faces on the patch segment, because the real cells will not have changed and would
all be duplicates. The final configuration of referred cells does not depend on the order of patch segment
evaluation.

B.3 Determining Real Cells in Range of Referred Cells

Once all of the referred cells have been created, each referred cell searches the mesh to determine which
real cells have part of their surface within rcut range of the surface of the referred cell, therefore needs to
be supplied with referred molecule interactions. The referred cell stores which real cells it needs to interact

Page 26 of 30

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

January 4, 2008 12:43 Molecular Simulation molSim˙AICA

REFERENCES 27

Processor 2

Processor 1

Processor 0

Figure B1. An arbitrary unstructured mesh, which is periodic top-bottom and left-right. It is decomposed into 3 irregular portions for
parallel processing as marked.

with. This process is accelerated by only searching a subset of the real cells in the mesh. These are the real
cells that were identified as being in range of any processor or periodic patch when creating the referred
cells. This set is guaranteed to contain all cells that could be in range of a referred cell.

B.4 Example Construction of Referred Cells

Figures B1 and B2 show the start and end points of the cell referring operation on a mesh that has been
decomposed to run in parallel. The example is in 2D for clarity but the process is exactly the same in
3D. In this example the number of referred cells created exceeds the number of real cells, which would
lead to much costly interprocessor communication. This is because the mesh has been made deliberately
small relative to rcut to demonstrate as many features of the algorithm as possible and to be practical to
understand. In realistic systems, the mesh portions would be significantly bigger than rcut and the referred
cells would form a relatively thin halo around each portion. Decomposition of the mesh should preferably
be carried out to minimise the number of cells that need to be referred and to ensure that the vast majority
of the intermolecular interactions happen between real-real molecule pairs; in this way the communication
cost is minimised.

Page 27 of 30

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

January 4, 2008 12:43 Molecular Simulation molSim˙AICA

28 REFERENCES

Source on processor 0
Referred cell

Source on processor 2
Referred cell

Source on processor 1
Referred cellReal cell

Processor 2

Processor 1

Processor 0

Figure B2. The final configuration of referred cells around the portions of the mesh in figure B1 on each processor. A circle of radius
r̂cut drawn from any part of a real cell would be fully encompassed by other real or referred cells, thereby providing all molecules in that
cell with the appropriate intermolecular interactions, either across a periodic boundary or from another processor. Note that many cells
are referred several times; for example, the source cell marked with ⋆ on processor 2 is referred to processors 0 and 1 twice on each.

Appendix C: Cell Referring Transformations

A spatial transformation is required to refer a cell across a periodic or processor boundary. Figure C1
shows the most general case of a cell being referred across a separated, non-parallel boundary, where,

α0 = Cell with a face on one side of the boundary,
β0 = Cell with a face on the other side of the boundary, coupled to α0,
α1 = Cell α0 referred across the boundary,
C = Cell centre,
n = Face normal unit vector,

Sα0β0 = Cβ0 − Cα0 . Position shift from Cα0 to Cβ0,
Rα0β0 = Tensor required to rotate −nα0 to nβ0 , given by,

Rα0β0 = − (nα · nβ) I + (1 + nα · nβ)

(

nα × nβ

|nα × nβ|

)2

+ nαnβ − nβnα, (C1)

where I is the identity tensor. The absolute position, P′, of a molecule transformed across a boundary
(with its containing cell) from its original position P is required. To derive the P → P′ transform, first
the position of P relative to the centre of the coupled face on α0 is given by

P − Cα0 . (C2)

Page 28 of 30

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

January 4, 2008 12:43 Molecular Simulation molSim˙AICA

REFERENCES 29

α0

β0

α1

Cβ0

Cα0

−nα0

nβ0

nα0P

P′
Rα0β0

Sα0β0

Figure C1. A molecule at point P is referred across the boundary (heavy line) to P
′ by a transformation defined by the face

centre/face normal vectors of the faces of cells α0 and β0 on the boundary. The mesh is rigid, so all points of cell α1 have the same
relative spatial relationship as α0. The vertices of referred cell α1 are calculated by the same process.

Then this vector is rotated by the transformation tensor defined by the source and destination coupled
face normals:

Rα0β0 · (P − Cα0). (C3)

The rotated position is transformed back to global coordinates:

Cα0 + Rα0β0 · (P − Cα0), (C4)

and then shifted by the relative separation of the coupled face centres, i.e.

P′ = Cα0 + Sα0β0 + Rα0β0 · (P− Cα0),

= Cα0 + Cβ0 − Cα0 + Rα0β0 · (P− Cα0),

= Cβ0 − Rα0β0 ·Cα0 + Rα0β0 ·P. (C5)

The result is the same if the point is shifted by Sα0β0 prior to rotation by Rα0β0 around Cβ0. The final
position of P′ is the same if any coupled face centre/face normal pair on the boundary is used. Therefore,
all cells and all molecules referred across a particular boundary may use the transformation derived from
one cell.

This result can be used to transform the positions of all of the molecules in a source cell to their correct
position in a referred cell. Molecules being referred also operate on their own rotationally-dependent
properties (e.g. angular orientation) using the rotation tensor. This transformation is suitable for multiple
periodic boundaries and arbitrary mesh decompositions where existing referred cells must be re-referred
by other boundaries. This creates the cell relationships across edges, corners, and also on non-neighbouring

Page 29 of 30

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
 O

nly

January 4, 2008 12:43 Molecular Simulation molSim˙AICA

30 REFERENCES

processors. See Appendix B.4 for an example. Cell re-referring is achieved by writing equation (C5) as a
generic transform:

P′ = y + R ·P, (C6)

where,

y = Cβ0 − Rα0β0 ·Cα0 , (C7)

R = Rα0β0 . (C8)

If y and R are the transformations required to move P to P′, then transforming P′ to P′′ using y′ and
R′ gives:

P′′ = y′ + R′ ·P′,

= y′ + R′ · y + R′ · R · P,

= y′⋆ + R′⋆ ·P, (C9)

and reduced to the generic form by defining,

y′⋆ = y′ + R′ · y, (C10)

R′⋆ = R′ ·R. (C11)

Further re-referrals can be reduced to a single transform in a predictable way, with only a single vec-
tor/tensor pair required to be stored by the referred cell at any stage. Any number of cell referring trans-
formations may be made sequentially, but the resulting transformation takes the initial source position
(P) and directly transforms it to the final destination regardless of, and without having to intermediately
visit, the other referred locations along the way.

Page 30 of 30

http://mc.manuscriptcentral.com/tandf/jenmol

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

