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An empirical strategy to detect spurious effects in long
memory and occasional-break processes

Luisa Bisaglia, Margherita Gerolimetto ∗

August 27, 2008

Abstract

Long range dependence and structural changes in level are intimely related phenomena and
it is very difficult to separate the two effects. In this paper we present an empirical procedure
to distinguish between long memory and occasional-break processes. An extensive Monte Carlo
experiment illustrates the performance of the procedure and an application to real data is also
included.

key words: Long memory, Occasional structural breaks, Break-free series

1 Introduction

Since the seminal papers of Granger and Joyeux (1980) and Hosking (1981) there has been a

considerable interest in modelling strong persistence in time series. This interest is motivated by

the analysis of many empirical time series whose autocorrelation function decreases to zero like

a power function rather than exponentially and the spectral density diverges as the frequencies

tend to zero.

Many authors have studied the problem of estimating the long memory parameter with both

parametric and non/semi-parametric methods (see Beran, 1994, Percival and Walden, 2000 and

Palma, 2007 for good reviews on this argument). However, recently (see, for example, Giraitis

et al., 2001, Berkes et al., 2006 and the refences therein), it has been shown that inference

on the long memory parameter and persistence tests are severely compromised in series which

display occasional structural breaks, since these processes give the impression of persistence. In
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other words, neglecting structural changes causes a spurious over estimation of the long memory

parameter, leading the reseacher to believe erroneously in a long memory data generating process

(among the others, Granger and Hyung, 2004, Diebold and Inoue, 2001).

On the other hand, if an observed time series follows a fractionally integrated model, then

change point tests may indicate the presence of change points, when, in fact, there are no

change. Indeed, when the Data Generated Process (hereafter, DGP) is fractionally integrated

of order d, I(d), with 0 < d < 0.5 and no change, many well-known structural change tests are

likely to suggest that changes have spuriously take place (Kuan and Hsu, 1998).

From an empirical point of view, Morana and Beltratti (2004) analyse the realized variance

process for the DM/US$ and Yen/US$ exchange rates. They find that while long memory is

evident in the actual process, a structural break analysis reveals that this feature is partially

explained by unaccounted changes in regime. Hsu (2005) analyses monthly G7 inflation rates

and suggests that for Germany and Japan the long memory phenomenon may just be a conse-

quence of structural change. The same findings apply to other countries, whose inflation rates

may exhibit both long memory and structural change. Gil-Alana (2004) analyses annual data

on German real GDP and shows that the series may be well described in terms of fractional

models with a structural slope break due to World War II.

Moreover, the importance of distinguishing between long memory and occasional-break mod-

els is justified also in the perspective of forecasting (Diebold and Inoue, 2001, Gabriel and

Martins, 2004).

With this paper we contribute in two directions. Firstly, we conduct an extensive Monte

Carlo experiment to evaluate and compare the performance of various estimators of the long

memory parameter under some occasional-break DGPs.

Secondly, we present an empirical strategy to detect the spurious effects caused by a mis-

specification of the model when the data show persistence. The procedure is based on the

different behaviour of the long memory parameter estimators when applied to the original series

and its break-free version. A further Monte Carlo experiment illustrates the performance of the

strategy. We also apply the suggested strategy to the daily series of absolute S&P500 stock

returns to show with an empirical example how to implement the procedure.

In literature, to our knowledge, there are only a few proposals to separate the long memory

from the occasional breaks effects (Ohanissian et al., 2004, Dolado et al., 2004, Teyssiere and
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Abry, 2006). However, they do not refer to the cases we consider.

The plan of the paper is as follows. In Section 2, we briefly introduce I(d) processes. In

Section 3 some models for occasional structural breaks are discussed. Section 4 describes a

simple empirical strategy to deal with spurious effects. Section 5 describes our Monte Carlo

experiments. In Section 6 we apply the proposed methodology to the S&P 500 absolute stock

returns series and Section 7 concludes.

2 Structural breaks

Following Granger and Hyung (2004) we describe three models with occasional breaks in mean,

hence the number of breaks that can occur in a specific period of time is somehow bounded.

More formally, we assume, as in Granger and Hyung (2004), that the probability of breaks,

p, converges to zero slowly as the sample size increases, i.e. p → 0 as T → ∞, yet limT→∞Tp

is a non-zero finite constant.

This implies that letting p decrease with the sample size, realization tends to have just a

finite number of breaks (see also Diebold and Inoue, 2001).

The three model we consider are the following:

1. Mean plus noise model (Chen and Tiao, 1990, Engle and Smith, 1999)

yt = mt + εt, t = 1, ..., T,
mt = mt−1 + qtηt

where εt is a noise variable1 and occasional level shifts, mt, are controlled by two variables

qt (date of breaks) and ηt (size of jump). ηt is an i.i.d. N(0, σ2
η) although the normality

assumption can be dropped and qt is assumed to be an i.i.d. sequence of Bernoulli random

variables such that Pr(qt = 1) = p.

2. Markov switching model (Hamilton, 1989) The binomial model is characterized by

sudden changes only, but the structural changes might also occur gradually. In this case

a Markov switching model is more appropriate. Suppose st is a latent random variable

that can assume only values 0 or 1. st is assumed to be a Markov chain, with transition

probability pij = Pr (st = j/st−1 = i). Then, it is possible to use a switching model for qt

such that qt = 0 when st = 0 and qt = 1 when st = 1. In this specification a regime with

st = 1 represents a period of structural change, regardless of the value of st−1.

1Even if εt can be any short memory process, in this work we consider εt ∼ i.i.d.N(0, σ2
ε )
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3. Stocastic Permanent Break (STOPBREAK) model (Engle and Smith, 1999)

This model bridges the gap between transience and permanence of the shocks. In the

STOPBREAK process the long run impact of each obervation is time varying and stochas-

tic. The formulation is as follows:

yt = mt + εt
mt = mt−1 + qt−1εt−1

where qt = q (|εt|) is non decreasing in |εt| and bounded by zero and one, so that bigger

innovations have more permanent effects, and εt are i.i.d N
(
0, σ2

ε

)
, moreover qt = ε2t

(γ+ε2t )
for γ > 0. Therefore in the STOPBREAK process permanent shocks can be identified by

their larger magnitude. With this approach the effects of shocks can fluctuate between

transient and permanent. Typically, realizations of this process show periods of apparent

stationarity punctuated by occasional mean shifts.

To estimate and test for multiple breaks at unknown dates one of the most used methods

is the Bai-Perron (hereafter BP) procedure (Bai and Perron, 1998, 2003). It is based on a type

test for the null hypothesis of no change versus a prespecified number of changes and also an

alternative of an arbitrary number of changes (up to some maximum) as well as a procedure that

allows one to test for the null hypothesis of, say, l changes against the alternative hypothesis of

l + 1 changes. The latter is particularly useful in that it allows a specific to general modeling

strategy to determine consistently the appropriate number of changes in the data. The tests

can be constructed allowing different serial correlation in the errors, different distributions for

the data and the errors across segments or imposing a common structure.

3 Fractionally integrated processes

There are various definitions of long memory processes. In particular, long memory can be

expressed either in the time domain or in the frequency domain. In the time domain, a stationary

discrete time series is said to be long memory if its autocorrelation function decays to zero like

a power function. This definition implies that the dependence between successive observations

decays slowly as the number of lags tends to infinity. On the other hand, in the frequency

domain, a stationary discrete time series is said to be long memory if its spectral density is

unbounded at low frequencies.

4
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In this paper we consider the fractionally integrated process, I(d), independently introduced

by Granger and Joyeux (1980) and Hosking (1981). Let εt be a white noise process such that

E[ε2t ] = σ2. The process {Xt, t ∈ Z} is said to be an I(d) process with d ∈ (−1/2, 1/2), if it is

stationary and satisfies the difference equation

∆(B) (Xt − µ) = εt,

where ∆(B) = (1 − B)d =
∑∞

j=0 πjB
j with πj = Γ(j − d)/[Γ(j + 1)Γ(−d)], Γ(·) is the gamma

function and µ is the mean of the process.

In the following we will concentrate on I(d) processes with d ∈ (0, 1/2): for this range of

values the process is stationary, invertible and possesses long-range dependence. Moreover, we

will assume for convenience and without loss of generality that σ2 = 1 and µ = 0.

In literature several methods to estimate the long memory parameter d have been proposed, see

Palma (2007) for a comprehensive review.

To our knowledge, in the literature regarding the problem of discriminating between long

memory and occasional-break processes only Gaussian semiparametric estimators like the Geweke-

Porter Hudak (1983) method (hereafter GPH), the local Whittle method (Kunsch, 1987, Robin-

son, 1995b) or Lobato and Robinson’s LM test (1998) are used.2 There are no results on the

performance of other estimation methods, for this reason in the Monte Carlo study in Section

5 of this paper we will consider:

1. The R/S or rescaled adjusted range method (Hurst, 1951, Mandelbrot 1972, 1975, Man-

delbrot and Taqqu, 1979);

2. The aggregate variance method (Taqqu et al., 1995);

3. Higuchi method (Higuchi, 1988);

4. Whittle method (Fox and Taqqu, 1986)

5. Robinson’s modified version of the periodogram method (Robinson, 1995a).

The GPH method is also included in the Monte Carlo experiment with the role of benchmark.

Indeed, Granger and Hyung (2004), Perron and Qu (2006) and Smith (2005) show analitically

2We thank a referee for reminding us of the existence of a strain of literature that treats the estimation of d with
wavelets (e.g. Jensen, 1999, Wang, 1999, Craigmile et al., 2005). In this framework Teyssiere and Abry (2006) consider
also the issue of distinguishing between long memory and structural breaks but the models they study are different
from the models analyzed in this paper.
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that, in hypothesis of occasional-break process, the GPH estimator is biased. Smith (2005)

derives an approximation to this bias and proposes a modified version of the GPH estimator

that takes into account this result. Bearing in mind the bias of the GPH estimator, we included

also Robinson’s version of the GPH (R-GPH, herafter) since it triggers out the first frequencies

of the periodogram and its performance may be less affected by the presence of occasional

breaks.3

4 An empirical strategy

As discussed in the Introduction, there are several results in literature about the spurious effects

that may arise from the analysis of both stationary data with long memory and non stationary

data with structural breaks.

When a series gives the impression of persistence and the estimated value of the long memory

parameter (d̂) is bigger than zero, there might be the suspicion that this result is due to spurious

long memory, provoked by neglected structural breaks.

To overcome this uncertainty it is possible to use an empirical procedure based on the

estimation of d after detecting and eliminating the true break points from the series. Indeed

this allows (Granger and Hyung, 2004) examining the effects of removing break components on

the estimated value of d.

More specifically, the following is the simple scheme of the strategy:

• Estimate d in the original series xt, obtaining d̂

• Estimate the break dates in xt with the BP procedure

• Obtain the break-free series x′t = xt −mt, where mt is the sample mean of each regime

• Estimate d in x′t, obtaining d̂′

If after filtering out the break points, d̂′ is still approximately close to d̂, then long memory

should be a true feature of the series and the structural breaks are spurious. If on the contrary,

after deleting the break points from the series, d̂′ tends to zero we can conclude that the long

memory is spurious, caused by neglected occasional breaks.4

3Originally, we had considered in our experiment also Smith’s estimator but we did not present the results in the
tables since its performance seemed to be approximately between the GPH and R-GPH.

4For the estimators that possess the asymptotic distribution (e.g. Whitlle and GPH) it is possible to test the null

6
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Because of its empirical nature, this strategy cannot answer the question of whether long

memory or structural changes are present for all imaginable frameworks. However it gives

helpful indications in some important cases.

5 Simulation study

In this Section we describe our twofold Monte Carlo experiment. On the one hand it is devoted to

evaluate the performance (in terms of bias and standard errors) of the estimation methods listed

in Section 2 in hypothesis of DGP with occasional breaks in mean (in the tables the acronyms

rs, av, hi, gph,r-gph, wh stay respectively as R/S, aggregate variance, Higuchi, GPH, R-GPH,

Whittle method). On the other hand it aims to show the behaviour of the empirical strategy to

distinguish between long memory and occasional-break DGP described in the previous Section.

The functions we use are written in R language (R Development Core Team, 2006) and are

available upon request by the authors.

The following are the models we consider in the simulations:5

1. DGP1: mean plus noise model, with p = 0.01, 0.05, 0.1 and σ2
η = 0.01, 0.05, 0.1;

2. DGP2: Markov switching model, with (p, q) = (0.95, 0.95; 0.95, 0.99; 0.99, 0.95; 0.99, 0.99;

0.999, 0.999) and σ2
η = 0.1. In this case the initial state s1 is generated by a Bernoulli

random variable with p = 0.5;

3. DGP3: STOPBREAK model, with γ = (10−5, 10−1, 1, 10, 103), following Diebold and

Inuoe (2001), in order to make comparisons.

4. DGP4: I(d) model, with d = 0.1, 0.2, 0.3, 0.4, 0.45. The error term in normally distributed

with zero mean and unit variance.

For each model we consider σ2
ε = 1 and s = 1000 independent realizations. Thus for a

given estimation method we obtain s = 1000 estimated values for d. The considered sample

sizes are T = 500, 1000 for the first three DGPs and T = 500, 1000, 2000 for DGP4.6 All

series are generated with 200 additional values to obtain random starting values. The number

hypothesis of true long memory (d̂ = d̂
′
) by extending to this special context the results obtained by Beran and Terrin

(1996) and further revised by Horváth and Shao (1999).
5We did not consider processes with both long memory and structural breaks since in this case our procedure would

clearly detect both phenomena.
6For DGP1, DGP2, DGP3 we did not consider T = 2000 because of the computational burden of the procedure

that would have required to much time.
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of frequencies included in the GPH estimator is set m =
√
T as suggested by Geweke and

Porter-Hudack (1983), whereas the number of frequencies triggered out in the R-GPH method

is set l = (m− τ)/J where τ = J = 4 as in Lee and Robinson (1996).

In tables 3-6 our results are presented. In each cell of the tables we report in the first row

the estimation (standard error in parenthesis) of the long memory parameter d from the original

series, whereas in the second row the same estimation from the break-free series.

From the tables we can obtain a conspicuous amount of information regarding the two aims

of the simulation study.

Relatively to the first objective, the observation of the first row of the cells in tables 3-5

reveals that long memory is erroneously found whatever estimation method is used. Hence not

only the GPH (as already highlighted in the literature) but more in general all the considered

estimators are severely upward biased. Whittle and R-GPH estimator exhibit a slightly better

performance, in the sense that d̂ is often much closer to zero over all the considered DGPs.

Moreover, the perfomance of all methods becomes poorer as the sample size, T, and the

jump size, σ2
η, increase. Indeed, as the series length grows, Tp also grows and more breaks are

present, that emphasize the non stationary behaviour of the series. Consequently the degree of

similarity between occasional-break and long memory processes grows. Similarly, an increase of

σ2
η strenghtens the bias of d as the size of the jumps is bigger.

Relatively to the second objective, the comparison between the first and the second row of

each cell in tables 3 and 4 reveals a clear change in the estimate before and after removing the

break points. The result is particularly interesting when Whittle and R-GPH method are used

since in that case the break-free estimation, d̂′, is approximately around zero. This gives the

indication that the long memory found in the original series is in fact spurious and the true

DGP should be with occasional breaks.

Some more comments have to be made for table 5 where the variation in the estimation of d

after removing the break points is not so evident as in DGP1 and DGP2. In the STOPBREAK

process qt is εt
γ+εt

therefore if γ → 0, qt → 1 and the process is almost I(1), whereas if γ →∞,

qt → 0 and the process is I(0). As a consequence, when γ does not tend to zero all methods

work, since the process is I(0) and it is easier to recognize the non long memory feature. For

the smallest values of γ the process is so close to I(1) that it is very complicate to identify the

DGP. Indeed, in this case it may be more adequate to model the first difference of the series

8
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rather than looking for structural breaks.

On the other hand, it appears that the empirical procedure is also able to recognize when

the DGP is truly long memory. Table 6 shows that the break-free estimation (d̂′) obtained with

Whittle and R-GPH methods, is approximately stable around the original estimation d̂ and this

result improves when T increases.

We observe that there is a slight tendence to underestimate d in the break-free series. This

is expected because the implementation of the procedure means subtracting from the series the

sample means of each estimated regime and somehow “compressing” the series that looks less

persistent. However, when we use Whittle or R-GPH method this is only a negligible effect,

whereas for the other estimation methods this phenomenon affects much more the estimates

that are often negative. These results are consistent with the findings of Granger and Hyung

(2004) about the GPH method.

6 An example on a real time series

In this Section we illustrate on a real time series how our procedure can be applied in practice.

In particular, we apply the empirical strategy to the time series of absolute stock returns of the

S&P 500 from January 2, 1988 to June 15, 2005, with 4292 daily observations. The series of

returns is constructed by differencing the log-price index of S&P 500.

In several papers this series has been found to possess features typical of long memory data.

In particular, Granger and Ding (1995, 1996), Lobato and Savin (1998) suggest a fractionally

integrated model.7 However, more recently, attempts have been made to explain strong per-

sistence in this series with unaccounted structural breaks (Granger and Hyung, 2004) and the

problem is still partially open. On the one hand the only method used to estimate the long

memory parameter is the GPH that has been shown to be biased. On the other hand structural

change tests are severely biased in presence of long memory. Therefore we take this series as a

concrete example of a real problem where our strategy can be used to detect spurious effects.

Figure 1 presents the plot of absolute stock returns as well as the breaks detected by BP

procedure. Figure 2 shows the sample autocorrelation function for absolute stock returns that

exhibits a slow hyperbolic decay indicating the presence of long memory.

In table 1 are reported the estimates of the long memory parameter in the whole sample

7The series considered by these authors is in fact the S&P 500 from January 4, 1928 to October 30, 2002.
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Figure 1: S&P 500 daily absolute returns and estimated breaks
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Figure 2: Autocorrelation for S&P 500 daily absolute returns
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Table 1: Estimation of d in the original and break-free series

rs av hi gph r-gph wh

d̂ 0.815 0.397 0.506 0.534 0.437 0.160
d̂′ 0.014 -0.107 -0.131 -0.161 0.050 0.015

Table 2: Estimation results for d in the subsamples with Whittle method

subseries 1:411 412:484 485:779 780:2067 2068:2496 2497:2552 2553:2912

d̂ 0.000 0.000 0.000 0.048 0.079 0.044 0.000

subseries 2913:2978 2979:3067 3068:3211 3212:3522 3523:3597 3598:3734 3735:4292

d̂ 0.042 0.000 0.062 0.006 0.045 0.000 0.008

before and after the detection of the break points. We can observe that, after removing the

break points from the series, the estimated value of the long memory parameter move towards

zero whatever estimation method is used. However, as expected from our Monte Carlo study,

d̂′ is very close to zero when computed with Whittle method.

Our conclusion is that the series of S&P 500 daily absolute returns is characterized by

structural breaks and not by long memory. To give some more evidence on this we estimate

(with Whittle method) the long memory parameter in the subseries obtained between breaks

and, as expected, they are found to be short memory (table 2).

7 Conclusions

In this article we focus on the issue of distinguishing between a time series exhibiting long-

range dependence and one with short memory but suffering from occasional structural breaks.

Nowadays this is a very interesting topic to which an entire special number of the Journal of

Econometrics (vol. 129, issue 1-2, 2005) is devoted.

Firstly, we investigate with an extensive Monte Carlo experiment about the performance

of various estimators of the long memory parameter under some occasional-break DGPs. Our

findings are that not only the GPH (as well known in literature), but also other estimators of d

are severely biased when applied to a series that looks persistent in case of neglected structural
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breaks.

Then, we present an empirical strategy based on the different behaviour of the estimators

of the long memory parameter when applied to the original series and its break-free version.

From the findings of another simulation study, the procedure, combined to Whittle or R-GPH

method, seems in general able to signal the presence of spurious effects. This is a rather crucial

point since they are responsible for leading the researcher to erroneously believe that the DGP

is long memory when it is in fact with occasional breaks in mean.

It is important to observe that the strategy we describe cannot for all possible circum-

stances answer the question of whether long memory or structural changes cause the persistent

appearance of the series. However it gives indications in various interesting situations.

Many topics are still worthy of investigation, for example the idea of studying models char-

acterized both by long memory and structural breaks. In this direction is the very interesting

paper by Gil-Alana (2008) who proposes a simple procedure for determining fractional integra-

tion and structural breaks in a unified treatment. With a different approach Ko and Vannucci

(2006) describe a wavelet-based bayesian procedure to estimate and locate multiple change

points in the long memory parameter of Gaussian autoregressive fractionally integrated moving

average models with unknown number of change points.
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Table 3: Estimation results for d: DGP1, T=500, 1000

T=500 T=1000

p 0.01 0.05 0.1 0.01 0.05 0.1

rs 0.091 (0.094) 0.204 (0.125) 0.285 (0.139) 0.168 (0.117) 0.343 (0.148) 0.438 (0.147)
0.063 (0.089) 0.067 (0.095) 0.074 (0.093) 0.074 (0.085) 0.075 (0.088) 0.091 (0.079)

av 0.030 (0.088) 0.136 (0.106) 0.208 (0.111) 0.112 (0.099) 0.263 (0.103) 0.331 (0.087)
-0.002 (0.078) 0.011 (0.079) 0.021 (0.083) 0.023 (0.072) 0.041 (0.077) 0.078 (0.075)

σ2
η = 0.01 hi 0.190 (0.157) 0.337 (0.134) 0.380 (0.118) 0.284 (0.143) 0.399 (0.104) 0.431 (0.085)

0.126 (0.178) 0.094 (0.216) 0.065 (0.210) 0.112 (0.186) 0.028 (0.177) 0.019 (0.154)

gph 0.086 (0.183) 0.230 (0.188) 0.317 (0.196) 0.156 (0.152) 0.359 (0.162) 0.450 (0.166)
0.031 (0.173) 0.059 (0.173) 0.052 (0.184) 0.035 (0.136) 0.069 (0.157) 0.046 (0.156)

r-gph 0.017 (0.356) 0.037 (0.347) 0.063 (0.351) 0.006 (0.321) 0.050 (0.324) 0.083 (0.340)
0.030 (0.351) 0.005 (0.338) 0.012 (0.332) -0.028 (0.338) -0.009 (0.322) 0.014 (0.325)

wh 0.019 (0.024) 0.055 (0.045) 0.089 (0.056) 0.033 (0.030) 0.091 (0.050) 0.135 (0.055)
0.014 (0.021) 0.015 (0.021) 0.017 (0.022) 0.011 (0.014) 0.016 (0.018) 0.029 (0.024)

p 0.01 0.05 0.1 0.01 0.05 0.1

rs 0.194 (0.138) 0.376 (0.157) 0.474 (0.154) 0.325 (0.155) 0.538 (0.152) 0.604 (0.153)
0.057 (0.099) 0.054 (0.093) 0.044 (0.084) 0.067 (0.093) 0.054 (0.081) 0.049 (0.071)

av 0.129 (0.121) 0.284 (0.109) 0.357 (0.083) 0.244 (0.113) 0.392 (0.073) 0.426 (0.057)
0.001 (0.085) 0.012 (0.082) 0.011 (0.082) 0.027 (0.083) 0.043 (0.077) 0.049 (0.075)

σ2
η = 0.05 hi 0.327 (0.144) 0.424 (0.095) 0.446 (0.080) 0.391 (0.112) 0.453 (0.072) 0.462 (0.067)

0.084 (0.218) -0.028 (0.157) -0.064 (0.122) 0.021 (0.174) -0.062 (0.106) -0.094 (0.086)

gph 0.203 (0.194) 0.466 (0.208) 0.599 (0.193) 0.352 (0.179) 0.607 (0.168) 0.719 (0.164)
0.047 (0.171) 0.036 (0.186) 0.025 (0.202) 0.041 (0.149) 0.021 (0.145) -0.010 (0.144)

r-gph 0.041 (0.351) 0.118 (0.356) 0.221 (0.356) 0.054 (0.334) 0.189 (0.333) 0.300 (0.342)
0.034 (0.336) 0.027 (0.332) 0.079 (0.334) -0.001 (0.328) 0.062 (0.300) 0.163 (0.338)

wh 0.054 (0.048) 0.141 (0.069) 0.203 (0.072) 0.085 (0.051) 0.199 (0.064) 0.254 (0.068)
0.013 (0.020) 0.019 (0.024) 0.022 (0.026) 0.015 (0.018) 0.036 (0.025) 0.058 (0.030)

p 0.01 0.05 0.1 0.01 0.05 0.1

rs 0.256 (0.161) 0.474 (0.160) 0.546 (0.156) 0.416 (0.164) 0.602 (0.146) 0.648 (0.156)
0.056 (0.098) 0.046 (0.089) 0.027 (0.082) 0.067 (0.089) 0.044 (0.064) 0.055 (0.059)

av 0.181 (0.133) 0.350 (0.093) 0.398 (0.069) 0.311 (0.105) 0.425 (0.056) 0.446 (0.048)
-0.002 (0.087) 0.011 (0.088) -0.004 (0.085) 0.031 (0.078) 0.043 (0.073) 0.056 (0.074)

σ2
η = 0.1 hi 0.372 (0.133) 0.444 (0.077) 0.458 (0.069) 0.425 (0.094) 0.465 (0.059) 0.468 (0.062)

0.053 (0.216) -0.057 (0.133) -0.103 (0.106) -0.004 (0.148) -0.101 (0.084) -0.113 (0.073)

gph 0.282 (0.216) 0.587 (0.198) 0.703 (0.195) 0.446 (0.185) 0.719 (0.160) 0.808 (0.144)
0.034 (0.182) 0.012 (0.192) -0.042 (0.206) 0.061 (0.162) -0.005 (0.153) 0.013 (0.136)

r-gph 0.065 (0.359) 0.210 (0.354) 0.319 (0.369) 0.097 (0.337) 0.291 (0.325) 0.399 (0.338)
0.002 (0.356) 0.054 (0.351) 0.103 (0.362) 0.034 (0.334) 0.171 (0.311) 0.301 (0.336)

wh 0.080 (0.062) 0.199 (0.077) 0.262 (0.076) 0.125 (0.063) 0.250 (0.066) 0.312 (0.068)
0.012 (0.018) 0.021 (0.026) 0.027 (0.029) 0.017 (0.021) 0.057 (0.033) 0.097 (0.036)
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Table 4: Estimation results for d: DGP2, T=500, 1000

T=500 (p,q) (0.95,0.95) (0.95,0.99) (0.99,0.95) (0.99,0.99) (0.999,0.999)

rs 0.679 (0.178) 0.558 (0.222) 0.694 (0.189) 0.651 (0.208) 0.439 (0.341)
-0.031 (0.068) 0.015 (0.084) -0.064 (0.055) -0.025 (0.081) -0.027 (0.079)

av 0.455 (0.046) 0.382 (0.119) 0.464 (0.040) 0.434 (0.087) 0.285 (0.235)
-0.082 (0.088) -0.042 (0.084) -0.121 (0.079) -0.085 (0.087) -0.084 (0.091)

hi 0.474 (0.057) 0.463 (0.074) 0.477 (0.052) 0.468 (0.065) 0.328 (0.234)
-0.185 (0.090) -0.084 (0.134) -0.236 (0.067) -0.154 (0.121) -0.132 (0.180)

gph 0.884 (0.177) 0.706 (0.265) 0.927 (0.165) 0.861 (0.221) 0.610 (0.458)
-0.238 (0.193) -0.054 (0.192) -0.254 (0.165) -0.166 (0.183) -0.157 (0.213)

r-gph 0.563 (0.346) 0.372 (0.390) 0.619 (0.343) 0.566 (0.357) 0.408 (0.464)
0.079 (0.332) 0.061 (0.359) 0.209 (0.345) 0.144 (0.370) 0.129 (0.381)

wh 0.436 (0.089) 0.282 (0.123) 0.499 (0.082) 0.419 (0.121) 0.308 (0.234)
0.053 (0.039) 0.021 (0.026) 0.098 (0.049) 0.051 (0.046) 0.066 (0.059)

T=1000 (p,q) (0.95,0.95) (0.95,0.99) (0.99,0.95) (0.99,0.99) (0.999,0.999)

rs 0.713 (0.180) 0.691 (0.176) 0.723 (0.207) 0.749 (0.186) 0.534 (0.341)
-0.069 (0.053) -0.018 (0.076) -0.091 (0.038) -0.046 (0.063) -0.038 (0.076)

av 0.469 (0.035) 0.447 (0.060) 0.474 (0.034) 0.467 (0.040) 0.342 (0.212)
-0.139 (0.072) -0.060 (0.079) -0.177 (0.058) -0.117 (0.074) -0.120 (0.089)

hi 0.475 (0.054) 0.473 (0.059) 0.479 (0.052) 0.480 (0.046) 0.371 (0.204)
-0.246 (0.064) -0.142 (0.098) -0.281 (0.049) -0.200 (0.089) -0.156 (0.167)

gph 0.942 (0.128) 0.838 (0.177) 0.963 (0.133) 0.942 (0.150) 0.705 (0.421)
-0.124 (0.134) -0.070 (0.154) -0.139 (0.143) -0.110 (0.154) -0.092 (0.155)

r-gph 0.611 (0.305) 0.464 (0.353) 0.654 (0.302) 0.615 (0.324) 0.474 (0.406)
0.421 (0.339) 0.171 (0.375) 0.485 (0.354) 0.421 (0.395) 0.413 (0.398)

wh 0.472 (0.075) 0.348 (0.095) 0.532 (0.071) 0.469 (0.086) 0.367 (0.219)
0.099 (0.041) 0.031 (0.028) 0.164 (0.037) 0.102 (0.046) 0.099 (0.073)
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Table 5: Estimation results for d: DGP3, T=500, 1000

T=500 γ 10−5 10−1 1 10 103

rs 0.719 (0.308) 0.731 (0.330) 0.714 (0.285) 0.709 (0.191) 0.044 (0.085)
-0.093 (0.043) -0.092 (0.041) -0.089 (0.046) -0.059 (0.060) 0.037 (0.086)

av 0.476 (0.030) 0.478 (0.033) 0.475 (0.033) 0.463 (0.041) -0.012 (0.075)
-0.204 (0.058) -0.207 (0.058) -0.192 (0.060) -0.116 (0.084) -0.018 (0.074)

hi 0.476 (0.051) 0.479 (0.049) 0.479 (0.047) 0.475 (0.052) 0.076 (0.132)
-0.279 (0.042) -0.282 (0.042) -0.278 (0.042) -0.230 (0.074) 0.069 (0.131)

gph 0.989 (0.162) 0.994 (0.164) 0.997 (0.157) 0.924 (0.154) 0.011 (0.172)
-0.615 (0.155) -0.609 (0.155) -0.508 (0.143) -0.231 (0.172) 0.017 (0.162)

r-gph 0.747 (0.328) 0.734 (0.318) 0.749 (0.319) 0.624 (0.327) -0.005 (0.344)
-0.213 (0.374) -0.247 (0.362) -0.066 (0.363) 0.267 (0.368) -0.017 (0.353)

wh 0.982 (0.023) 0.958 (0.033) 0.825 (0.059) 0.485 (0.082) 0.012 (0.018)
0.695 (0.051) 0.657 (0.051) 0.472 (0.056) 0.080 (0.046) 0.009 (0.017)

T=1000 γ 10−5 10−1 1 10 103

rs 0.729 (0.348) 0.707 (0.339) 0.731 (0.302) 0.728 (0.199) 0.061 (0.084)
-0.057 (0.046) -0.055 (0.048) -0.010 (0.045) 0.128 (0.060) 0.044 (0.081)

av 0.478 (0.029) 0.478 (0.029) 0.478 (0.046) 0.473 (0.031) 0.011 (0.073)
-0.163 (0.049) -0.163 (0.053) -0.104 (0.061) 0.111 (0.069) -0.001 (0.068)

hi 0.477 (0.052) 0.476 (0.052) 0.479 (0.046) 0.477 (0.054) 0.147 (0.144)
-0.271 (0.036) -0.267 (0.039) -0.229 (0.046) -0.087 (0.068) 0.137 (0.155)

gph 0.997 (0.125) 1.001 (0.128) 1.001 (0.127) 0.962 (0.125) 0.045 (0.142)
-0.590 (0.111) -0.597 (0.118) -0.591 (0.122) -0.279 (0.133) 0.023 (0.138)

r-gph 0.735 (0.303) 0.720 (0.293) 0.723 (0.296) 0.661 (0.293) 0.0134 (0.330)
-0.188 (0.349) -0.213 (0.354) -0.177 (0.356) 0.354 (0.316) -0.008 (0.321)

wh 0.987 (0.015) 0.965 (0.025) 0.834 (0.049) 0.514 (0.069) 0.010 (0.015)
0.825 (0.033) 0.793 (0.033) 0.656 (0.036) 0.324 (0.045) 0.009 (0.014)
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Table 6: Estimation results for d: DGP ARFIMA(0,d,0), T=500, 1000, 2000

T=500 d 0.1 0.2 0.3 0.4 0.45

rs 0.117 (0.089) 0.201 (0.103) 0.272 (0.111) 0.360 (0.120) 0.393 (0.129)
0.075 (0.087) 0.048 (0.077) 0.000 (0.069) -0.033 (0.056) -0.041 (0.054)

av 0.068 (0.074) 0.153 (0.075) 0.216 (0.074) 0.289 (0.073) 0.317 (0.069)
0.024 (0.076) 0.011 (0.078) -0.037 (0.073) -0.080 (0.069) -0.095 (0.074)

hi 0.074 (0.107) 0.184 (0.109) 0.262 (0.117) 0.369 (0.104) 0.417 (0.098)
0.017 (0.122) -0.029 (0.147) -0.138 (0.089) -0.194 (0.072) -0.208 (0.071)

gph 0.117 (0.162) 0.197 (0.167) 0.315 (0.175) 0.408 (0.178) 0.481 (0.166)
0.095 (0.165) 0.101 (0.172) 0.080 (0.183) -0.014 (0.178) -0.085 (0.183)

r-gph 0.082(0.350) 0.165 (0.335) 0.241 (0.371) 0.284 (0.369) 0.371 (0.340)
0.079 (0.347) 0.162 (0.336) 0.217 (0.364) 0.244 (0.372) 0.311 (0.358)

wh 0.093 (0.036) 0.194 (0.033) 0.291 (0.036) 0.396 (0.039) 0.446 (0.036)
0.079 (0.037) 0.148 (0.041) 0.215 (0.044) 0.291 (0.046) 0.332 (0.047)

T=1000 d 0.1 0.2 0.3 0.4 0.45

rs 0.101 (0.089) 0.199 (0.099) 0.286 (0.109) 0.354 (0.118) 0.399 (0.114)
0.062 (0.077) 0.021 (0.067) -0.017 (0.054) -0.034 (0.048) -0.032 (0.042)

av 0.063 (0.067) 0.155 (0.071) 0.235 (0.071) 0.292 (0.068) 0.325 (0.062)
0.027 (0.067) -0.007 (0.066) -0.056 (0.067) -0.089 (0.061) -0.099 (0.060)

hi 0.080 (0.111) 0.181 (0.110) 0.275 (0.106) 0.359 (0.109) 0.401 (0.105)
0.024 (0.118) -0.085 (0.122) -0.169 (0.079) -0.216 (0.062) -0.220 (0.060)

gph 0.106 (0.139) 0.201 (0.124) 0.306 (0.134) 0.404 (0.132) 0.458 (0.138))
0.088 (0.139) 0.096 (0.141) 0.059 (0.153) -0.010 (0.153) -0.097 (0.153)

r-gph 0.089 (0.354) 0.121 (0.330) 0.198 (0.350) 0.288 (0.326) 0.316 (0.352)
0.087 (0.355) 0.108 (0.334) 0.186 (0.347) 0.243 (0.318) 0.277 (0.340)

wh 0.094 (0.025) 0.196 (0.025) 0.296 (0.027) 0.399 (0.027) 0.449 (0.026)
0.087 (0.024) 0.165 (0.027) 0.242 (0.031) 0.333 (0.032) 0.379 (0.032)

T=2000 d 0.1 0.2 0.3 0.4 0.45

rs 0.110 (0.084) 0.196 (0.092) 0.279 (0.096) 0.369 (0.110) 0.407 (0.117)
0.069 (0.072) 0.052 (0.066) 0.058 (0.060) 0.091 (0.065) 0.112 (0.062)

av 0.074 (0.067) 0.159 (0.068) 0.232 (0.065) 0.304 (0.065) 0.333 (0.059)
0.041 (0.065) 0.044 (0.065) 0.054 (0.067) 0.095 (0.072) 0.120 (0.069)

hi 0.083 (0.104) 0.182 (0.109) 0.273 (0.106) 0.361 (0.105) 0.414 (0.092)
0.028 (0.112) -0.046 (0.115) -0.095 (0.076) -0.093 (0.069) -0.085 (0.071)

gph 0.110 (0.113) 0.198 (0.108) 0.303 (0.117) 0.396 (0.120) 0.479 (0.112)
0.093 (0.111) 0.117 (0.112) 0.099 (0.121) 0.063 (0.126) 0.018 (0.122)

r-gph 0.088 (0.355) 0.144 (0.348) 0.218 (0.365) 0.263 (0.331) 0.332 (0.341)
0.086 (0.355) 0.140 (0.347) 0.206 (0.364) 0.240 (0.337) 0.300 (0.358)

wh 0.097 (0.018) 0.198 (0.017) 0.298 (0.018) 0.399 (0.018) 0.450 (0.017)
0.093 (0.018) 0.185 (0.018) 0.280 (0.019) 0.378 (0.019) 0.428 (0.019)
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