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A three-dimensional continuum theory of
dislocation systems: Kinematics and mean-field
formulation
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tUniversitat Karlsruhe (TH), Institut fiir Zuverléssigkeit von Bauteilen und
Systemen, Kaiserstr. 12, 76131 Karlsruhe, Germany
1The University of Edinburgh, Centre for Materials Science and Engineering,
King’s Buildings, Sanderson Building, Edinburgh EH93JL, United Kingdom
$Fraunhofer-Institut fiir Werkstoffmechanik IWM, Wohlerstr. 11, 79108
Freiburg, Germany

We propose a dislocation density measure which is able to account for
the evolution of systems of three-dimensionally curved dislocations. The
definition and evolution equation of this measure arise as direct generalisa-
tions of the definition and kinematic evolution equation of the classical dis-
location density tensor. The evolution of this measure allows to determine
the plastic distortion rate in a natural fashion and therefore yields a kine-
matically closed dislocation-based theory of plasticity. A self-consistent
theory is built upon the measure which accounts for both the long range
interactions of dislocations and their short range self-interaction which is
incorporated via a line tension approximation. A two-dimensional kine-
matic example visualises the definitions and their relations to the classical
theory.

Keywords: Dislocation densities; Conservation Laws; Mean field the-
ory

1 Introduction

It is a central aim of current materials modelling to build effective continuum
theories directly on averages of the corresponding discrete objects. In the case
of crystal plasticity the most important objects to be looked at are dislocations
and their dynamics. Recently averaging procedures adapted from the statisti-
cal mechanics of interacting many-particle systems have successfully been used
to deduce a continuum description for simplified dislocation systems consisting
of straight parallel edge dislocations of both signs and moving on a single slip
system [1]. This corresponds to dealing with the dynamics of signed point parti-
cles moving in a plane. The evolution equations for the corresponding densities
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p+ therefore have the form 9ipy = —div (prvy) with vy denoting the disloca-
tion velocity. These kinematic evolution equations, which in the present form
have the structure of conservation laws, are in fact the fundament upon which
the statistical mechanics methods are builtY. Consequently, in order to trans-
fer the statistical mechanics approach to three dimensional curved dislocations,
the definition of a mathematically sound dislocation density measure and the
formulation of its kinematic evolution law are essential.

The classical dislocation density tensor v as introduced by Kréner [2] consti-
tutes a three-dimensional dislocation density measure which considers the line
like character of the dislocations. In fact it yields a proper pseudo continuum
description for single dislocations and a continuum description of special dis-
location distributions. However, it is well known that upon averaging o often
only reflects a small fraction of all dislocations and that therefore no closed
plasticity theory can be built upon it. Indeed, already the above mentioned 2D
theory exceeds the scope of the dislocation density tensor which would in that
case correspond to the net-density xk = p; — p_. It is obvious that for a closed
description which is equivalent to the evolution of the two ‘signed’ densities the
evolution equation for x has to be accompanied by a second equation for the
total dislocation density p = p4 + p—.

A rather natural generalisation of the concept of two signed densities (for
straight parallel dislocations) to more general dislocation configurations is to
introduce a continuous directional space and a density function p on the sphere
of directions at each point of the crystal. This concept goes back to Kosevich
[3] and also yields the back-bone for the statistical mechanics theory of El-Azab
[4], who additionally classifies dislocations by their velocity. It was shown in
[5] that the associated dislocation density measures (in the following denoted as
‘statistical’ measures; the motivation for this terminology will become apparent
later) and their generalisations can yield a closed plasticity theory only in very
special situations.

In [6] we proposed a different, ‘deterministic’ generalisation of the classical
dislocation density tensor which is akin to the above mentioned statistical ones
but additionally considers the local average curvature of dislocations of a fixed
orientation. The main purpose of the current paper is to motivate the definition
and evolution equation of this dislocation density measure, and to relate them to
the classical theory and the cited statistical approaches. We will discuss why the
associated evolution equation constitutes an appropriate ‘continuity equation’
(conservation law) for curved lines. As a first step towards a dynamic theory we
will show how a fully three-dimensional self-consistent (or mean field) theory of
plasticity may be built upon the presented dislocation density measure. Finally
we give a detailed two-dimensional calculation to illustrate the definitions and
equations. A simple example problem is analysed, but we refer the
reader to [7] (this volume) for an application of the present theory to
size-effects in thin film plasticity.

A mathematically sound definition of the generalised dislocation density
measure requires to use the language of differential forms because higher dimen-

9TOnce a kinematic evolution equation is established, the crucial physical problem in sta-
tistical modelling is to determine the velocity v and establish its relation with the dislocation
densities. In the cited case it turns out that, under the assumption of overdamped dislocation
motion, the velocity can be written as a functional of the dislocation densities which encom-
passes several stress contributions accounting for different kinds of dislocation interactions.
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sional generalisations of the cross product x and the curl-operator are needed
(see [6] for a discussion of other motivations for the use of differential forms in
the present context). Consequently we will use the language of differential forms
throughout the whole paper, including the presentation of the classical theory,
but include for comparison the standard formulation where appropriate. As
the definitions and notations used are not widely known outside the differential
geometry community, we give a collection of definitions and standard results in
Appendix A. At the beginning of Appendix A we also discuss the understand-
ing of tangent vectors as differential operators acting on functions and introduce
the corresponding concepts, definitions and notations. However, we avoid in this
work the use of more elaborate concepts from differential geometry which are
in fact needed to formulate some of the results in a more precise and general
fashion, and refer the interested reader to [5] for a rigorous treatment. Instead
we rely, where ever possible, on geometrical and physical arguments to motivate
the use of a certain mathematical formulations and to explain the implications
of apparently formal mathematical choices.

2 Current dislocation density measures

In this section we first give a detailed review of the classical dislocation density
tensor and translate the classical results into the language of differential forms.
Afterwards we briefly discuss statistical dislocation density measures found in
the literature before we introduce the generalised deterministic dislocation den-
sity measure and its evolution equation. We will then recover the classical
theory from the generalised one and finally interpret the evolution equation as
a conservation law.

2.1 The classical dislocation density tensor

The classical dislocation density tensor was introduced independently and with
slightly different accents by Nye [8] and Kroéner [2] as well as in a much more
formal way by Kondo [9] and Bilby et al. [10]. In the following we use the
definitions and notations by Kréner [11].

It was set out in [6] why the classical dislocation density tensor e naturally
arises as a vector valued 2-form. This was already appreciated by Kréner [11].
Considering « as a 2-form means that we prefer to work with the third rank
tensor|l

a= ozijk dzt A dx’ @ Oy,

which is antisymmetric in the two lower indices, instead of the more commonly
used rank two tensor N
a=a"0;® 6j.
Both tensors are related via the totally antisymmetric symbols €;;; and €7k by
Oéijk = elijalk and Oéij = Gikl aklj .

As usual in the theory of Kroner we transfer differential operators from vector
calculus to tensor calculus by applying them only to specific indices of a tensor in

IHere and in the following we adopt the Einstein summation convention for automatically
contracting over pairs of upper and lower indices.
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Cartesian coordinates. For example the divergence of « is traditionally defined
by ’
divee := 9;a0;. (1)

Analogously the usual calculus of differential forms can be transferred to vector-
valued differential forms by applying them to the ‘lower’ indices as for example

do = daijk Adzt A da? @ O,

which is the equivalent to equation (1). We remark that both definitions in this
form rely on the use of standard coordinates.

Analogous to the understanding of o as a vector-valued 2-form, the plastic
distortion tensor 8P shall be viewed as a vector-valued 1-form gP' = P! i Tdr'®
0;. The classical definition of the dislocation density as curl of the plastic
distortion then reads in the notion of differential forms

o=culg? — a=dg". (2)
Similarly the fact that dislocations do not end inside the crystal is rewritten as
divae=0 +«— da=0. (3)

We remark that the conceptual difference between the vector-valued 1-form
BP' and the vector-valued 2-form o which does not clearly show up in the
traditional notation can be motivated from the fact that Bpl is meaningfully
integrated over curves (to yield the enclosed Burgers vector) while a can only
be meaningfully integrated over surfaces (to yield the net Burgers vector flux
through the surface). It was shown in [6] using the concept of currents that
this can be related to the fact that 3 may be seen as representing a density of
plastically sheared surfaces (where the direction and amount of slip is given by
the Burgers vector), while a represents a density of curves. It was furthermore
shown that equation (2) literally reflects the fact that dislocation lines emerge
as the boundaries of slipped surfaces, and that equation (3) is the continuum
version of dislocation lines being closed.

In the remainder of this paper, we for simplicity assume all dislocations to
have the same Burgers vector b. As a consequence, the vectorial part of the
vector-valued differential forms is constant and given by the Burgers vector.
Therefore the calculus effectively reduces to the usual calculus of differential
forms and the treatment of dislocations reduces to a theory of distributed curves.
Consequently the dislocation density tensor can be written as

a=piidV b, (4)

with a density function p and a unit vector field I which gives the local average
direction of the dislocation lines. Furthermore dV denotes the standard volume
element and ‘i’ is the operator of inner multiplication of a differential form with
a vector field, as introduced in Appendix A. In a standard Cartesian co-ordinate
system in three dimensions this reads

a = p (I'dz® Adz® — Pdz' A da® + Pdat A da®) @ b'0;

It is well known that the classical dislocation density tensor does —as an av-
eraged object— not carry enough information about the dislocation state to
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deduce the rate of plastic deformation 9,8 from it. As d,a = curld, B, or
equivalently in the notion of differential forms 0;a = dd, B, the absence of a re-
lation between a and the deformation rate implies that the evolution of a itself
cannot be formulated in closed form. In other words it is in general not possible
to build a closed theory of plasticity solely on the classical dislocation density
tensor. However, the classical formulation is suited for the treatment of sin-
gle dislocations as singular densities, as well as for the special situations where
dislocations form smooth line bundles (dislocations in the same volume
element are parallel and have the same orientation), which is e.g. exploited
by Sedldcek et al. in [12]. Only in these cases the density function p coincides
with the total dislocation density and the average line-direction [ actually gives
the true direction of the dislocation lines. Because of the latter fact it makes
in this case sense to assign to the dislocation density a smooth velocity field v,
which is at each point orthogonal to the line direction I of the dislocations. The
plastic distortion tensor can consequently be deduced from Orowan’s equation
as 0,08” = pun® b in traditional notation for conservative glide. Here v denotes
a pseudo scalar velocity and n the glide plane normal. The differential form
version of this looks virtually the same if we introduce the dual 1-form m’ to
n. This is defined by its action on a vector x by assigning the scalar product
with n, thus n° () = n-x. The plastic distortion rate as differential form then
reads
9,8 = pun’ @ b.

The corresponding closed evolution equation was first deduced by Mura [13].
We again compare the traditional notation to the differential form formulation
to find

Oa=—cul(vxa) «— Jgqa=-Lya,

with £ denoting the Lie-derivative introduced in Appendix A. It should be
noted that the velocity field may in this case originate from virtually any law
able to assign a velocity to a dislocation segment at any point.

In conclusion of our revision of the classical dislocation density measure,
we discuss its evolution equation as given in the form deduced by Sedlacek et
al. [12] for a single glide system. The special form of this equation fosters the
geometrical understanding of the evolution and will later serve as a reference
for the explicit calculation of the generalised evolution equation in section 6.

A family of dislocations with the same Burgers vector which are bound to
move conservatively within the glide plane is considered. The glide plane can be
parametrised with the Cartesian co-ordinates x and y. The line-direction field
1 =179, + Y0, has unit length ||I|| = 1 with respect to the standard Euclidean
norm. A velocity field v = v*0, + vY0, = vl¥0, — vI*0, is given that is always
orthogonal to I. Again v denotes a pseudo scalar velocity. Sedlacek et al. use an
illuminative notation in that they parametrise the line direction by an angle ¢,
thus I = cos 90, + sin ¢d,, and consider ¢ as a field variable. In this notation
the evolution equation for a = pi;dV ®b can be split into an evolution equation
for p and one for ¢ which are found as

Op = —div (pv) + pvk  and Oy =1 (v) — vdivl, (5)

where k denotes the curvature of the integral curves of I and hence of the
dislocations. Here [l (v) denotes the application of a vector field to a

http://mc.manuscriptcentral.com/pm-pml
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(pseudo) scalar by acting as directional derivative, as discussed in
Appendix A. We emphasise that the appearance of the curvature in a sort of
source term pvk for the density p reflects the change of total line length in the
system due to the expansion or shrinkage of curved dislocations.

2.2 Advanced dislocation density measures

Due to the fact that the classical dislocation density tensor in general gives only
a very incomplete picture of a dislocation distribution, several more refined
dislocation density measures have been proposed. A very appealing approach
was proposed by El-Azab [4], who took up a concept first introduced by Kosevich
[3], classifying dislocations at each point by their line direction**. This yields a
measure o, (r,w) = p (r,w) dVdS), where p reflects the number of dislocations
in a volume element dV around the point r with line direction contained in the
solid angle element df2 around the direction w. In accordance with the notation
introduced for a class of similar measures in [5] we call this measure a statistical
one. The term statistical refers to the fact that this measure gives only an
incomplete picture of the dislocation state in the sense that after averaging
essential information required for reconstructing the actual dislocation lines is
lost (except for the case when one is dealing with distributions of only straight
dislocations). It was pointed out earlier, see e.g. [14], that a draw-back of this
definition is the fact that dislocation populations of different curvatures may,
after averaging, be described by the same dislocation density. Consequently any
evolution equation solely built on this measure can not account for the change in
total dislocation line length due to expansion or shrinkage of dislocation loops
which is relying on the curvature. From a formal point of view the measure
furthermore suffers from the fact that the dislocation direction does not appear
as a vector quantity but solely as a part of the configuration space. This would
be needed to turn the spatial 3-form dV into a 2-form by inner multiplication. As
shown in [5], this technical problem can be resolved by using the formal definition
Qealy (P,w) = p(1,w) ij(,ydVdS2, which leaves the measure a statistical one.
However, this formal modification cannot overcome the deficiency explained
above.

The idea of a statistical dislocation density measure can be extended to de-
scriptions of higher order [5], for example by including the dislocation curvature
K into the configuration space. In the language of differential forms this yields
the measure

Qg (7", W, "{) =p (rv w, H) 1(l(w),k:(K),O)d‘/de]:( @b,

where k = k (k) is the curvature vector corresponding to the curvature x and
dK denotes the ‘volume element’ in curvature space. We refer to the next
section for more on the interpretation of the composed vector (I, k,0)
as a higher order tangent to the dislocations. This statistical measure
allows to reconstruct the dislocation lines only if all dislocations form circular
loops or straight lines (loops with infinite radius). Nevertheless it could be

**El-Azab additionally classifies the dislocations by their velocity. If the dislocation velocity
can be formulated as a function of the orientation and position in space of a dislocation, this
classification is redundant (it is needed, on the other hand, if dislocations possess inertia).
We will not consider the velocity-dependent classification within the present paper, as it
complicates the presentation without helping to clarify the basic geometrical ideas.
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shown in [5] that the evolution of a dislocation configuration may be described
by this measure if the dislocations are restricted to conservative motion within
their glide plane and if the absolute value of the velocity of a dislocation segment
only depends on the spatial point and not on the line direction or the curvature
of the segment. These are still serious restrictions as compared to more realistic
dislocation velocity laws (for instance segments of screw and edge orientation
may have very different mobilities) and it was shown in [5] that even statistical
approaches of higher order would not resolve this problem.

3 The new measure and its relation to the clas-
sical theory

As opposed to the statistical dislocation density measures discussed above, we
may denote the classical dislocation density tensor as a deterministic measure.
This notation results from the fact that from this tensor the dislocation lines
can be reconstructed as the flow lines (integral curves) of a vector field as long as
the dislocations form smooth line bundles. In fact, both ‘statistical’ and ‘deter-
ministic’ measures imply restrictions on the dislocation distributions for which
a reconstruction of the dislocation lines is possible; the classical dislocation den-
sity tensor needs the assumption that dislocations form smooth line-bundles for
which the orientation is unique at each point in space, whereas for the measure
introduced by El-Azab they may have different orientations at a single point but
the dislocation lines may be reconstructed only if the dislocations are straight.
These restrictions are, however, of very different character. In particular, the
restriction implicit in the deterministic measure will be conserved during the
evolution independently of the nature of the applied velocity field, whereas this
is not the case for the statistical measure as initially straight dislocations may
bend in inhomogeneous velocity fields.

The advantages of both measures, i.e. the absence of constraints on the appli-
cable velocity fields on the one hand, and the possibility of describing dislocation
arrangements with dislocations of different directions in the same spatial volume
element on the other hand, can be combined in a higher dimensional determin-
istic approach. This yields an object defined on the same configuration space as
the measure defined by El-Azab, i.e. a space which is made up of points r, and
of all directions w at each point; this configuration space will be denoted with
SM in the following. If we denote the crystal manifold, i.e. the set of spatial
points r, with M and the unit sphere in three dimensions with S? we obtain
SM = M x S?. Before we give the precise definition of the measure we shall
motivate it from the analogy to the classical theory.

For the classical case to be exact we assumed that dislocations are distributed
such that nearby dislocations have the same direction and orientation.
This makes it possible to describe the dislocation state via a vector field I.
Thus p (r) in this case gives the total density of dislocations (necessarily with
the corresponding line direction I (r)) at a certain point r. The integral curves
c of the vector field I correspond to the dislocation lines. If we take the curves
to be parametrised by the arc-length s and denote differentiation with respect
to s by a dot, we have ¢ = [ along each curve. In the yet to be defined de-
terministic measure we do not consider as constituting objects the dislocation

http://mc.manuscriptcentral.com/pm-pml
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Figure 1: Visualisation of the lift of a moving dislocation. The red curve rep-
resents a circular dislocation loop which expands with the angular dependent
velocity field depicted by black arrows orthogonal to the curve. The blue curve
is the lift of the dislocation with the vertical axis giving the angle between the
local line-direction and a fixed axis. Notice that the configuration space
is periodic in the vertical direction and hence that the lifted curve is
closed. The green arrows indicate the lifted velocity field. It should be noted
that the vertical component of the tangent to the lifted curve corresponds to
the curvature of the base curve and that similarly the rotational part i of the
lifted velocity shows up in the vertical component of the latter.

lines themselves but rather their so-called ‘lift’ to the configuration space SM.
The lift of a curve is defined via its tangent vector-field ¢. If ¢ : [0,L) — M
is a parametrisation of a dislocation line by the arc-length s, then ¢ is a unit
vector-field along the curve. For each s we can therefore assign a direction w (s)
which corresponds to ¢ (s). Therefore the map

c:[0,L) - SM

defines a curve in SM which is called the lift of c. As an example the lift of a
planar curve is shown in figure 1. Dislocations crossing the same spatial point in
different directions may as lifts be clearly distinguished because they are going
through different points in SM. For generalisation of the vector-field I we take
a look at the tangent of C. The tangent is found as C'(s) = (¢(s),é(s)) and
is a tangent vector to SM at the point C (s) = (c(s),¢(s)). The tangent in
its first part ¢ coincides with the point in SM while the second part ¢ is the
curvature vector k of the curve. As a consequence, a vector-field L on SM

http://mc.manuscriptcentral.com/pm-pml
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which corresponds to tangents of lifted curves must at the point (r,w) have the
form L (r,w) = (I (w),k (r,w)) where the first part, which is the spatial line-
direction, is determined by the considered point in SM. The curvature vector
k must be orthogonal to I because the same holds for ¢ with respect to ¢.

Considering this motivation we define a generalised ‘deterministic’ disloca-
tion density measure as

ag = p(r,w)igw)krw)dVd2® b, (6)

where k (r,w) is a curvature vector field which must at each orientation w be
orthogonal to I (w). If we introduce the volume element on SM as dV = dVdf}
the definition may be rewritten as

ag = pidV® b,

which clearly shows the analogy to the classical definition via @ = pi;dV ® b.

Also the fact that dislocations do not end inside a crystal displays in full
analogy to the classical theory in the requirement that a4 is closed, thus dog = 0
(lifts of closed curves are closed). This results in a coupling between the density
function p and the curvature vector field k because

dag = Div (pL)dV @ b = (L (p) + pDivL)dV ® b.

Here we denote with Div the divergence operator on the configuration space
SM.

The analogy to the classical case can also be extended to the evolution
equation. To this end we first have to define a generalised velocity V' = (v, 1)
which is capable of describing the motion of a lifted curve rather than just of
the curve itself. If the motion of a dislocation line ¢ is given by a velocity v
along the line, we find that the velocity of the lifted curve must additionally
account for the rotation velocity 9 of the line-direction 9 := 9yl = 8tﬁ. See
figure 1 for a visualisation of the concept. It is evident and can also be formally
shown [5] that the change of the local line direction during the motion of a
dislocation is determined by the derivative of the velocity along the dislocation
line — more precisely, that part of the derivative which is orthogonal to the
line direction. On the configuration space SM the dislocation line is charac-
terised by the generalised line-direction L (r,w) = (I (w), k (r,w)) and we define
9 (r,w) = (Vv (r,w))". We denote with V the (covariant) directional
derivative of a vector field. The use of the generalised line direction L
instead of just the spatial line direction I here is necessary to capture the con-
tinuation of the dislocation lines on SM correctly. We furthermore note that
the above given definition of v, which we motivate here from considerations
on a single dislocation, turns out to be necessary for a consistent continuum
formulation as will be explained in section 6.1 with reference to equation (13).

With the generalised velocity at hand, the evolution equation for the dislo-
cation density measure defined in (6) is given by

8tad = —Lvozd. (7)

It should be noted that the concepts presented in the present section heavily
rely on the formulation in terms of differential forms. While this is already

http://mc.manuscriptcentral.com/pm-pml
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important for the precise definition of ag, it is essential for the formulation of the
evolution equation. The latter could in general not be formulated in terms of the
curl-operator which is only defined in three (or two) dimensions. Furthermore,
the concepts of differential forms and currents are essential to understand the
relation between the motion of the single curve and the appearance of the Lie
derivative in the evolution equation for the density measure, as discussed in
more detail in [6].

3.1 Geometrical restrictions

We briefly discuss the question which dislocation states can be faithfully repre-
sented by the generalised measure defined in this section. Similar to the classical
case where all dislocations passing through a certain volume element must have
the same direction and orientation, we now have to assume that nearby dislo-
cations with nearly the same direction and orientation (i.e. those which are
passing the same volume element in SM = M x S?) have the same cur-
vature. This restriction is obviously much weaker than the classical one, even
though it is not easily visualised what this means for admissible distributions
globally. Locally, however, there are several arguments which make this assump-
tion seem not too restrictive. In a quasistatic picture the dislocation curvature
will essentially be a function of the local stress, as the corresponding force on the
dislocation would have to be compensated by the line-tension force which is pro-
portional to the curvature. It should be noted that in a coarse grained theory,
both the stress and the curvature have to be considered as coarse-grained quan-
tities which still allow for fluctuations on the microscale e.g. due to the nearby
dislocations. In a truely dynamic situation the above restriction will in
general not be fulfilled. But for this case another advantage compared to
the classical dislocation density tensor is striking. Even if one starts out from
a more general dislocation distribution than can be reflected by the measure
(i.e. from a distribution where different dislocations passing the same vol-
ume element in SM have different curvatures), an averaged curvature is still
a meaningful quantity which is not the case for the averaged line direction in
the classical case. A simple indication for this is that a dislocation arrangement
may have a zero net tangent vector such that the average orientation becomes
meaningless; a zero average curvature in contrast still has a well defined mean-
ing. Furthermore we consider the correspondence between averaged curvature
and actual curvature not as essential as the one between averaged direction and
actual line-direction; the latter is indispensable to be able to define a meaningful
velocity field, whereas it may be feasible to replace the actual curvature by the
averaged one.

3.2 Relation to the classical dislocation density tensor

Obviously it should be possible to recover the classical dislocation density and
its evolution from the generalised dislocation density measure. To this end we
introduce a concept which was already implicitly used in the preceding. Each
tangent vector to SM can be split into a spatial part and a rotatory part, as
seen for example from L = (I, k) and V = (v, d). Similarly, each tangent vector
x to the crystal manifold M may be formally ‘lifted’ to obtain a tangent vector
x" to SM by setting £ = (x,0). With the aid of this concept we define the
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dislocation density tensor from the generalised dislocation density measure by
its action on two tangent vectors  and y (tangent to a fixed point r which is
suppressed in the notation) as

a(z,y) = /32 fyn ighog = /52 p(w)det [l (w),x,y]d (w) @ b. (8)

This obviously defines a 2-form because it is antisymmetric in & and y and
linear in both arguments because the same holds true for aq. Before we justify
this definition by demonstrating that it yields the correct relation between the
dislocation density tensor and the plastic distortion, we at first check that a
indeed defines a closed differential form. It will be shown that this is a direct
consequence of the requirement that ayq is closed (daq = 0). We demonstrate
this in integral form and do refer to Appendix A for more on the integration of
differential forms and the generalised Stokes’ theorem. Let G be an open subset
of the crystal which allows to apply Stokes theorem. Then we find

ke 8 ke
/ do Stozes / o (:) / oy StO':es / dad _ 07
g ag G x S2 08%2=0 Jgx g2

which is equivalent to dax = 0 because it must hold for every admissible G.
To justify the definition of a we first define the 1-form of the plastic distor-
tion rate by

0,8" (m>:7/52 iwhivad:f/SQp(w)det[l(w),v(w),m]dQ(w)@b. 9)

That this definition recovers the classical definition of 8t,6'pl can be seen as
follows. If the dislocations are moving in a plane one finds I (w) X v (w) =
+v (w) n with the glide plane normal n and a signed scalar velocity v (w). The
actual sign on the right hand side is a matter of convention for the scalar velocity
v (or optional for the normal n) which we choose such that the minus sign holds.
As a consequence we find det [l (w),v (w),z] = (I (w) X v (W) - = —vn -z
For a fixed glide system we may therefore, in accordance to the classical case
(see section 2.1), characterise the plastic distortion rate by the dual 1-form n’
to the slip plane normal n as

o8P = /52 p(w)v(w) dQ (w) n’ @ b.

This obviously recovers the classical definition via the Orowan equation. In the
limit where only one orientation is present locally (i.e. , the dislocation lines
form parallel bundles) this expression reduces to the one discussed previously
in section 2.1.

We now ask whether the above definition of the classical dislocation density
tensor coincides with the classical relation between plastic distortion and plastic
deformation, a = d@P. In fact we can only check this equation in rate form
e = dO,B”'. We consider a surface F in the crystal which allows to apply
Stokes theorem and find

Bt/ 83 @ at/ aq (2 —/ divad Stges —/ ivad @ 8t/6p1.
F FxS2 FxS2 952=0  JaFrxs? oF
(10)
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Because this holds for every admissible F this constitutes the integral version
of the rate equation in question.

Obviously the curvature k does not appear in the definitions of
the classical objects. One may therefore ask whether or why the
curvature is needed to predict the evolution of the system. The reason
will become appearant in section 6 where we find the evolution of p
to be dependend on the curvature.

We summarise that from the generalised dislocation density measure aygq
and its evolution equation the classical dislocation density theory including the
plastic deformation can be recovered. The evolution of the plastic deformation
is thereby directly deduced from the evolution of the dislocation state even in a
fully three-dimensional formulation.

4 The conservation laws

The evolution equations both for the classical and for the generalised disloca-
tion density measure can be interpreted as conservation laws. For the classical
dislocation density the integral version of the evolution equation is determined
by integration over a surface F as

815/ a:—/ Iy = 0, B*.
F oF oF

This means that any change of the net Burgers vector content of 7 may only be
due to the flow of net Burgers vector across the boundary dF of the surface. The
1-form i, may be viewed as the dislocation flux corresponding to a density
of infinitesimal swept surfaces. We remind that in classical vector notation this
1-form would in accordance with o = pi;dV be written as pv x I, which makes
the interpretation of v x I as infinitesimal swept surface obvious.

The corresponding conservation law for the generalised measure is obtained
via integrating over a so-called hypersurface § in the configuration space SM:

8t/ad:—/ ivad (11)
3 0%

A hypersurface is a subspace of co-dimension one, which means it has one di-
mension less than the surrounding space. In our case, SM will for a three-
dimensional crystal have five dimensions (three spatial and two directional) and
therefore § is supposed to be a smooth four-dimensional subspace. The inter-
pretation of the generalised conservation law is analogous to the classical one,
although our visualisation struggles with the extra dimensions. But a special
case was already treated at the end of the last subsection. There, the hyper-
surface § arose as a product of a spatial surface F with the full directional
space S?, thus § = F x S2. For this case the generalised conservation law (11)
reproduces the classical one, as was seen in the calculation (10).

As a concluding remark we note that both conservation laws show that the
conserved quantity in either case is the total number of dislocation loops and
not the total line length.

12

http://mc.manuscriptcentral.com/pm-pml

Page 12 of 22



Page 13 of 22

©CoO~NOUTA,WNPE

Philosophical Magazine & Philosophical Magazine Letters

5 Mean field approximation

We already saw that the generalised deterministic dislocation density measure
allows for a closed theory of plasticity in the sense that the evolution of the
dislocation state uniquely determines the plastic deformation of the crystal.
However, until this point we only gave a purely kinematic picture and assumed
the velocity distribution which is needed to deduce the evolution of the den-
sity measure as given. A physically sound derivation of the dislocation velocity
as a functional of the dislocation density measure, as it was obtained in [15]
and [1] by statistical averaging for simplified two-dimensional systems, will be a
challenging future task in three dimensions; but the first step towards a physi-
cally based modelling, namely the mean field approximation, can also easily be
determined for the generalised measure. This simplest statistical approxima-
tion neglects the spatial correlations of the dislocations and assumes that the
probability p(r,w) to find a dislocation with line direction I (w) at the point
r does not depend on the arrangement of the surrounding dislocations (local
density approximation). This implies that short-range interactions between the
dislocations are neglected while long range interactions are still described cor-
rectly. One particular kind of short range interaction, namely the short range
self-interaction of a dislocation, can however easily be included into the theory
by using a line tension approximation.

5.1 Internal stresses

Long range interactions of dislocations are a topic of the classical continuum
theory of dislocations and were extensively discussed by Kroner in [2] and [11].
There it is shown how the internal stress oiy (@) can be determined from the
classical dislocation density tensor . As was shown in subsection 3.2 the clas-
sical dislocation density tensor ax can be determined from cgq. Therefore the in-
ternal stress can be determined from the current dislocation state characterised
by aq by simple recourse to the classical theory. If additionally an external
stress ooyt is applied, both stresses add up to ¢ = Fext + Tint-

This allows for a simple self-consistent model when for example overdamped
conservative dislocation motion is assumed. Consequently the dislocation ve-
locity is taken to be proportional to the projection of the Peach-Koehler force
Fox = 0 - b x 1 onto the glide plane. The mobility of the dislocations is taken to
be the inverse of the so-called drag coefficient B (1) which will in general depend
on the line direction I explicitly. If we denote the projection operator of the
glide plane as P we thus find

v(1)=B ()P (Fo) =B (1) P ((0ext + Oing) -b x 1) .

5.2 Line tension

The line tension T is formally defined as the change of stored energy due to an
infinitesimal increase in length of the dislocation. For dislocations in contrast
to taut elastic strings this concept may imply several subtleties; for example,
the line-tension may be depend on the character of the dislocation and also,
though weakly (logarithmically), on the arrangement of surrounding disloca-
tions. Within the present qualitative discussion we avoid to specify the exact
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form of the line-tension. For us, the important characteristic of the line-tension
approximation is that it produces a force F; on the dislocation. This force lo-
cally points in the direction opposing the direction of maximal possible increase
in line length when the dislocation moves. This means that it points in the
direction of the curvature vector, thus Fy = Tk. Consequently the dislocation
velocity would be modified as

v(l) =B (1) P ((Oext + 0int) - b x L+ TE).

6 Explicit formulation in two dimensions

The following example is a generalisation of the two-dimensional case treated
by Sedldcek et al. in [12], which was sketched at the end of section 2.1. Ac-
cordingly, we assume a system that is homogenous in the z direction such that
the evolution of the dislocation system is completely specified by their motion
in the z-y-plane. Different from Sedlacek et. al. however, we allow for dis-
locations with different directions at each point. (This obviously implies that
our volume element is large enough to contain dislocations moving on different
glide planes such that the dislocations do not necessarily intersect each other.)
We parametrise the directional space at each point by an angle ¢ and therefore
work on the configuration space SM = R? x S' = R? x [0,27). Please note
that the angle ¢, as a constituent of the configuration space, plays in this case
a very different role than in the notion of Sedlacek et al. [12] (see end of section
2.1), where it was considered as field-variable. A role similar to that of the angle
¢ in [12] will, however, be taken by the (pseudo) scalar field-variable & which
represents the curvature.

We have to make a sign convention in order to define the generalised line-
direction L. In general this takes the form

L = cos 0, + sin 0, + kO,

with a (pseudo) scalar field k. The sign of k is a matter of convention and we
consider a circular loop oriented counter-clockwise as positively curved, k& > 0.
The definition of ag via interior multiplication necessitates the choice of
a volume element dV on SM. We chose to work with the volume element
dV = dx A dy A dp, which facilitates the calculations. Every other choice of
the volume element would yield an equivalent theory if p would be adjusted
accordingly. With the current choice the dislocation density measure reads

ag = pipdV =p(cospdy Ndp —sinpdzr Adp + kdx ANdy) ®b.
For later use we introduce a vector field R = pL which reads
R = pcos p0, + psinpdy, + pkd, =: R*0, + RY0y + R¥0,,.

We can recapture the field variables p and k which characterise the dislocation
state from this vector field as

p=1/(R*)’+ (RY)®> and k= (7) .
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The continuity equation dag = 0 is equivalent to the requirement that DivR =
0, because ag = irdV ® b. For the current example we find

dog = {170, + Y0y + kO,) p + pOyk}dV @ b =0,

as the necessary coupling between p and k.

6.1 Kinematic evolution equation

The evolution of the above defined measure can clearly be described through the
evolution of p and k. In order to deduce the corresponding equations we first
analyse the generalised velocity for which we make a further sign convention.
We will regard the velocity of a positively oriented loop as positive if the loop
expands. This fixes the sign of the pseudo scalar velocity v in the representation
of the vectorial velocity as v (¢) = vsinpd, — v cos pd,. The rotation velocity,

in general given by 9 = (VL'U)J‘, is then found as
¥ = (L (vsin pd; — v cos gpay))l
= (L (v) sin 0y + vk cos 0, — L (v) cos 0, + vk sin ¢0,

= —L (v) (—sin 0y + cos pdy)
= —L (v)0, =:00,.

)J_

Therefore the generalised velocity reads
V =wvsinpd, —vcos pdy — L (v) 0,,.

For the further analysis we recall a general fact resulting from the product rules
for the Lie-derivative given in Appendix A. They yield

Orag = —Lyvay
={-V (p) iLdV — pijy )dV — pDiv (V) iLdV} @ b (12)
The Lie-bracket appearing on the right hand side of the last equation is ex-
plicitely calculated as
VL] = (V (cos ) — L (vsin)) 0,
+ (V (sing) + L (vcos)) 0y + (V (k) — L (9)) 0,
= (—Usinp — L (v) sinp — vk cos ¢) 0y
+ (dcosp + L (v) cosp — vksinp) 0y + (V (k) — L (9)) 0,
= —vk cos 0, — vksindy + (V (k) — L (V)) 0. (13)
This result is used to obtain the evolution equation of the vector-field R = pL

using the fact that d;aq = is, rdV ® b. By inserting equation (13) into (12) we
therefore find

OtR = (—Div (pV') + pvk) cos 90y + (—Div (pV') + pvk) sin 0,
+ (=Div (V) — p(V (k) — L(9))) . (14)
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It should be noted that the spatial part of R stays a multiple of the canonical
direction I (¢) = cos @0, + sinpd,, and that this results from the definition
¥ = —L (v), as can be seen from the derivation of equation (13). In fact this is
the reason why the definition of 1 as given in section 3 is a necessary condition
for the evolution equation to be consistent with the definition of g4 in equation
(6).

From equation (14) we easily obtain the evolution of the density as

Oip = D\ (R*)* + (Rv)* = —Div (pV') + puk, (15)
and the evolution of the curvature as

@ 0, _ Py
ok = 8, (i) _ OuR?p— R%0ip

p?
_ p(=Div(pV) k= p(V (k) = L (¢))) = pk (=Div (pV') + pvk)

02
=0k’ 4+ L) -V (k). (16)

We emphasise the close formal analogy with the evolution equations found by
Sedldcek et al. as given in equation (5). The evolution equation of the density
function (15) is formally analogous to the result cited above (note, however, that
the Div-operator is operating on a higher-dimensional space which includes the
orientation), and the role of the curvature for the increase in total line length
is the same. The correct evolution of the curvature therefore is essential and
the corresponding equation (16) shall be analysed in more detail. The first two
terms in the last line are easily seen to represent the Lagrangian time-derivative
of the curvature. The first term, —vk?, is the change of curvature like found for
a circular loop of radius » = 1/k, which expands (or shrinks) with velocity v.
In this case we have 7 (t) = r + vt and therefore

1 —
atk‘ = at () = 721} = —Uk’z.
r r

The second term, L () = —L (L (v)), accounts for the second derivative of the
velocity along the dislocation line, which clearly yields a proportional change
in curvature. The third term, —V (k), accounts for changes of the curvature in
the direction of motion.

We conclude the explicit calculations by deducing the classical dislocation
density tensor and the plastic deformation rate for this case. We assume a spatial
vector = x*0; +xY0, as given. This is canonically lifted to the configuration
space as " = (z,0) := x%0, + xY0, + 00,,. The interior multiplication of aq
with 2" is found as

ignag = {—pkx¥dx + pkx"dy + p (x¥ cos p — x“sinp) dp} ® b.

=det[l,z]

Therefore holds izuoq (0,) = p (@) det[l (¢),x] b and we obtain for the clas-
sical dislocation density tensor in analogy to (8):

a<w>=/51 imhadm:/o”p«o)det[t«o),w]dgo@b
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1
2
3
4
5
6
7
8 Accordingly we have a, = a(9,) = ffozﬂpsin pdpb and o, = a(9y) =
20 fozﬂ pcospdpb. If in turn we want to represent a by a density p and a line-
11 direction l as a = pijdV @b we find p = (a2 + a§)1/2 andl = p~! (a0, — a,0y).
12 Analogously and in accordance with (9) we define the plastic deformation
13 rate via
14 27
15 atﬁpl = 7/ ivad = 7/ ivad (a@) ng
16 51 0

2T
17 = - | e)aetiie) v ags
18 0
19 2w
20 = / p(p)v(p)deb.
21 0
22 We again note that this is the common definition of the plastic distortion rate
23 as determined from Orowan’s equation.
24
gg 6.2 Example
27 A very simple example which is not accessible to the other dislocation density
28 measures mentioned in this paper is obtained from assuming an homogeneous
29 distribution of circular dislocation loops with fixed radius r as initial state. If
30 a denotes the average spacing between the centres of these loops, the density
31 function is constant on the configuration space and given by p = r/a? within
32 the two-dimensional model introduced above. Let furthermore the velocity v
33 be such that the scalar velocity v is constant and consequently r (t) = r + vt.
34 Considering that k = 1/r the evolution equations then reduce to 9;p = pvk =
35 v/a? and O;k = —vk? = —v/r2. This obviously complies with what is obtained
36 when the time dependent radius is inserted directly to the definition of p and k.
37 In this example the Kroner tensor vanishes identically and the plastic dis-
38 tortion rate is given by 0;3 = 2mpv b.
39
40
41 7 Summary and Outlook
42
43 We defined a dislocation density measure as a differential form on the space
44 made up of all directions at each point of a crystal. It was shown that this mea-
45 sure and its evolution equation are in every respect natural generalisations of the
46 classical dislocation density and its evolution. The evolution of the generalised
47 dislocation density measure is able to reflect in a kinematically precise fashion
48 the evolution of a dislocation system where dislocations passing the same
49 volume element in SM have the same curvature. The plastic distortion
50 rate and its relation to the classical dislocation density tensor can be recovered
51 from the generalised evolution equation in a mathematically consistent and rig-
52 orous manner. As a first step towards a physically based three-dimensional the-
53 ory of plasticity we presented a mean-field theory of curved dislocations built
54 upon the introduced dislocation density measure. In a two-dimensional example
55 the abstract notions were animated and the curvature of the dislocations was
56 shown to play a crucial role for the correct evolution of the dislocation density.
57 The presented approach includes several restrictions and simplifying assump-
gg tions: The geometrical restriction on faithfully representable dislocation distri-
60
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butions was already mentioned in the last paragraph. A proper understanding
of the consequences of this restriction will have to be addressed in future work.
No dislocation sources or annihilation are included into the model. The inherent
change of total line length due to bowing of dislocations partly compensates for
these effects — note, for instance, that the annihilation of two dislocation seg-
ments can be interpreted as the formation and subsequent motion of a segment
with initially infinite negative curvature upon encounter of two loops. Further-
more the approach was restricted to one active glide system. From a mathe-
matical point of view the extension to several glide systems does not introduce
new fundamental problems but would require to work with several similar dis-
location density measures. From a physical viewpoint, however, the treatment
of the mutual interactions between the dislocations on different glide systems is
likely to complicate things a lot. Mathematical ideas for the modelling of some
of these interactions have been presented by El-Azab in [4].

For a numerical implementation of the present theory the extra dimensions
from the directional space together with the inherent non-locality form a major
challenge. Otherwise the obtained evolution equations together with the Orowan
equation may substitute the constitutive rules used to determine the plastic
deformation in usual Finite Element schemes in the same fashion like discrete
dislocation simulations were used in the so-called discrete-continuum simulations
by Lemarchand et al. [16]. We remark that with this procedure the long-range
internal stresses needed for a mean-field theory emerge directly from the elastic
distortions which have to compensate for inhomogeneous plastic distortions.
Simple numerical examples based on the presented approach can be
found in [7].
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A Differential Forms

Differential forms are a standard tool in differential topology and differential
geometry as well as in different branches of physics. Accordingly there is a
huge number of standard text-books dealing with differential forms. A good
introduction is given in [17], whilst [18] serves as reference for the results shown
and notations used in the following. We consistently use the Einstein summation
convention.

A.1 Vector fields and differential 1-forms

Before we introduce differential forms we revisit some notations commonly used
in differential geometry. An important concept is the understanding of tangent
vectors x|, (vectors annexed to a spatial point r) as differential operators which
act on functions f at r by x|, (f) =% azi .. (f). The underlying space is con-
sidered n-dimensional and for the above notion it makes no difference whether

we think of it as a general n-dimensional manifold in a chart or simply of R"
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1

2

3

4

5

6

7

8 with standard co-ordinates. The 8‘2,- , = 0;|,. can be considered as elements of
9 a local basis for tangent vectors.

10 In addition to tangent vectors we define co-vectors or 1-forms (sometimes
11 also called Pfaffian forms) as locally linear mappings from a tangent space to the
12 real numbers. Each 1-form w is locally given by n functions w; (r) (similar to a
13 vector) by setting w; (r) = w (8l,). Formally we can define a local basis dx*|
14 for co-tangent vectors by demanding dmi‘r (aj |T) = (5;», with the Kronecker delta
ig (5; Then obviously holds w = w;dx?. Best known example of 1-forms are those
17 arising as differentials of a function f denoted by df = 0; fdxz’. They act on a
18 vector « in a dual way to the vector acting on the function f by df (x) = x*0; f.
19

20 A.2 Higher-order differential forms

g;’ A (differential) p-form is a co-variant tensor A = A;,...; da" ®---®@dz'» of order
23 p which obeys for each permutation 7 of order p the relation A (mﬂ(l), ey a:ﬂ(p)) =
24 signm A (@1,...,@,). The integer p is called the degree of the form; functions
25 are considered as O-forms. We define the alternating ‘wedge’ product A of a
26 p-form w and a g-form 6 as the (p + ¢)-form given by

27 1

28 w/\0(w1,...,mp+q) = ﬁZsignﬂw@ﬂ(a:,r(l),...,w,r(“q)) . (17)
59 plg! =

30 . . -

31 This product is associative, thus (w A @) Am = w A (0 Am), and for w and 0
32 like in (17) holds w A @ = (—1)""@ A w. We receive a basis for the space of
33 differential 4p—f0rms from the alternating products dx** A--- Adz'» of the basis of
34 1-forms dx* by requiring the indices to be sorted by i1 < -+ < i,. Each p-form
35 w can then be written as w = w;,...;, dz’* A--- Adz'».

36 For a p-form w the inner multiplication with « is the (p—1)-form izw defined
37 by igw (®1,...,2p—1) = w(x,T1,...,xp_1). In standard tensor notation this
38 is a contraction of & with the first index of w.

39

40 A.3 Calculus on differential forms

j; The exterior derivative d of a p-form w is a (p 4+ 1)-form defined by

43 _ ) Ows.

44 dw = dw;,..;, Ndz™ A Adxtr = 0 gyt Adat A A dae

45 ’ o'

46 In standard three-dimensional space d corresponds to the grad-, curl- and div-
a7 operator on 0-, 1- and 2-forms, respectively. As a simple consequence from
48 standard calculus it is obtained d o d = 0 (compare curl grad = 0 and div curl =
49 0). Differential forms w with dw = 0 are called ‘closed’.

50 Another important differential operation in the theory of differential forms
ol is the so-called Lie-derivative. The Lie-derivative of a differential form in the
52 direction of a vector-field x leaves the degree of a differential form fixed. It can
gj be defined by combining the exterior derivative and the inner multiplication as
gg Low=digw + iy dw.

57 The Lie-derivative of differential forms emerges as generalisation of the Lie-
gg derivative defined on vector fields, which is usually written with the so-called
60
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Lie-brackets [ -, - ]. In local co-ordinates the Lie-derivative of a vector field y in
the direction of @ reads

Lo (y) =[xyl = (x0; (v') - ¥70; (x')) 0.
This allows to formulate the fact that
Laiyw = g yw + iylaw,
for each p-form w. Furthermore holds for every smooth function f:
La (fw) = (f)w + fLaw

If a standard volume density dV is defined on the underlying space (thus each
n-form w can be written as w = pdV'), the divergence of a vector-field & with
respect to this volume density is defined by

LodV = d (ipdV) = diva dV.

A.4 Integration of differential forms

Maybe the most important property of differential p-forms is that they can be
invariantly integrated over sub-spaces of dimension p. For reasons of space we
shall only give four examples in standard three dimensional space. A 0-form f is
‘integrated’ over a point r as fr f = f(r); alform e is integrated over a curve
c:[0,T) = R®/t— c(t) via [ e = fOT €ler) (%) dt; a 2-form ¢ is integrated
over a surface. Let F be a surface parameterised by amapa : O — R3 / (z,y) —
a (x,y), with an open subset O C R?, such that F = a (O). Then it is [-¢ =
15 Clage.y) (fl—‘;, %‘;) dzdy; A 3-form § is integrated over a suitable domain G C
R* as [0 = [[[; 0l(ny.z) (De, 0y, 0z) drdydz if G is parametrised by standard
co-ordinates. If we write § = pdV with a density function p this yields the
common form fg 6 = fg pdV . The term ‘invariantly’ used above refers to the
fact that the transformation law for differential forms automatically includes
the change of variables formula as known for the integration of functions.

A.5 Stokes Theorem

The integral theorems of Gauss and Stokes turn out to be special cases of the
general Stokes’ theorem which says that for a differential (n — 1)-form on a
n-dimensional manifold M with boundary dM holds

/dw:/ w.
M oM
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