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Dislocation bowing and passing in persistent slip bands 

 

L.M. BROWN 

Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE 

 

 

Abstract: In response to a recent paper by Mughrabi and Pschenitzka 

(2005), an estimate is given of the saturation stress in cyclic plasticity, 

assuming only the bowing of screw dislocations and the simultaneous 

passing of them at a critical separation determined by their cross-

section for mutual annihilation by cross-slip. Although, as Mughrabi 

and Pschenitzka show, the simple addition of the two stresses is a 

poor approximation, if the bowing stress is made equal to the passing 

stress, the equations governing the saturation stress and the associated 

average plastic strain in a persistent slip band are scarcely altered 

from earlier work (Brown 2004). A comparison between theory and 

experiment shows good quantitative agreement. Finally, an estimate is 

made of the alternating internal stress in a band, and reasons 

suggested for why it does not contribute to the saturation stress. 

 

 

1. Introduction 

 

In persistent slip bands formed by subjecting a ductile material to 

cyclic plastic strain, screw dislocations shuttle backwards and 

forwards between walls of densely-packed edge dislocation dipoles. 

The maximum stress achieved in any one hysteresis loop saturates 

after several hundred cycles, becoming constant with further cycling 

and defining the endurance limit in conventional fatigue tests. There 

are several possible contributions to the endurance limit: (i) the stress 

required to make screw dislocations of opposite sign pass one another, 

which is the same as the stress required to split apart screw 

dislocation dipoles stranded between the walls; (ii) the stress required 

to bow the screw dislocations between the walls; (iii) internal stress 

resulting from inhomogenous plastic deformation, caused by the 

resistance to plastic flow of the walls being much greater than that of 

the inter-wall, dislocation-free, material; (iv) friction stress which 
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might come from dislocation debris left between the walls by the 

shuttling screw dislocations. Brown [1] neglected all but the first two 

of these, and demonstrated that quantitative formulae could be found 

which correlate the observed wall spacing with both the saturation 

stress and the characteristic plastic strain carried by the persistent slip 

bands. The key assumptions made were that the bowing stress must 

equal the passing stress, and that the two contributions to the 

saturation stress should add together. Recently, Mughrabi and 

Pschenitzka [2] have queried the the latter assumption, and in a new 

calculation taking into account all four of the contributions listed 

above are able to reach agreement with data for the saturation stress 

of copper at room temperature. There is no doubt that they are right to 

insist that the simple additive assumption of Brown [1] must be 

modified. An attempt is made here to find improved analytical 

formulae which enable a quantitative account to be given of the 

saturation stress and the plastic strain amplitude in persistent slip 

bands. 

 

2. Combined Bowing and Passing of Screw Dislocations 

 

Fig 1(a) shows the configuration analysed by Brown [1]. Rigid screw 

dislocations of opposite sign must escape from one another while at 

the same time they deposit edge dislocations in the walls, between 

which they are confined. The stress required to accomplish this is 

 

h

b

bd

Eedge

π
µτ
4

2
+=         (1) 

 

The first term gives the contribution from bowing an isolated screw 

dislocation of Burgers vector b  between walls of spacing d , and the 

second the contribution from splitting an infinitely long screw 

dislocation dipole of height h  - that is to say, making the screw 

dislocations pass one another on slip planes of spacing h  

simultaneously with the bowing. The minimum value of h , 
c

h , at 

which the screw dislocations annihilate one another by cross-slip, 

determines the maximum stress achievable, and hence the endurance 

limit. Equation (1) can be easily derived by imagining the rigid screw 
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dislocations to move forward by a virtual displacement xδ . The work 

done by the total stress includes depositing edge dislocations of 

energy per unit length
1
 

edge
E  at the walls, as well as simultaneously 

overcoming the maximum splitting force of the straight screw dipole. 

However, the approximation of rigid dislocations has been rightly 

criticised by Mughrabi and Pschenitzka [2]. Fig 1(b) shows their 

proposed configuration. A truncated elliptical arc of dislocation αβγδ 

is pushed by the applied stress between two walls. Simultaneously its 

partner of opposite sign is pushed in the opposite direction. The two 

dislocations attract one another and if their curvature is not great can 

be thought of as forming a dipole of width x  and of height 

determined by the spacing between their two slip planes, h . As the 

stress is increased from zero, the elliptical segments become more and 

more curved, until they become tangent to the walls, whereupon they 

escape one another. This is the critical stress for flow. An equation 

can be written for the stress to maintain the separation x : 

 

 ( ) ( ) 22222 2

4

hx

xb

xdb

xT
x screw

+
+

+
=

π
µ

κ
τ  .    (2) 

 

The applied stress τ  acts both to bow the dislocation, whose line 

tension is 
screw

T , and to split the dipole. The ratio of major to minor 

axes of the ellipse is κ . As in equation (1), the first term in equation 

(2) is the bowing term, and the second the dipole-splitting (or screw-

passing) term. Equation (2) shows that as the separation between the 

screw dislocations increases, the stress required to maintain them in 

position goes through two maxima, one mostly due to the bowing, at 

κdx = , and the other mostly due to the passing, at hx = . The 

maximum passing stress occurs when the two screw dislocations are 

close enough to annihilate one another by cross-slip, which again 

defines a critical minimum dipole height, 
c

h . Mughrabi and 

Pschenitzka plot the stress as a function of separation and show that 

for equal maximum passing stress and bowing stress, using the 

experimentally observed values of bowing stress and 
c

h , the two 

                                                 
1
 Table 1 shows the formulae used for dislocation line energies and tensions. 
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maxima in the combined stress given by equation (2) are equal to one 

another and are only about 17% greater than the stress due to either 

bowing or passing acting alone. That is to say, in equation (1), only 

about 17% of the bowing resistance impedes the passing, or 

equivalently, only about 17% of the passing resistance impedes the 

bowing. 

 

Mughrabi and Pschenitzka’s pioneering calculation leading to 

equation (2) is a considerable improvement upon the rigid dislocation 

approximation leading to equation (1). However, despite allowing the 

passing dislocations to be curved, it allows them only one ‘degree of 

freedom’ – namely the separation x . The separation determines both 

the dipole interaction term and the bowing term. This limitation is 

particularly evident if one thinks of the bowing term, which if it were 

to act alone, must have a maximum value equal to the Orowan stress, 

and depend upon the energy - not the tension - of the trailing edge 

dislocations αβ and γδ in Fig. (1b). These dislocations pull the 

elliptical sections towards one another, but their effect is not taken 

into account. For this reason, it seems worthwhile to attempt a more 

elaborate calculation, in anticipation of accurate computer models 

which one hopes will produce a definitive solution to the problem. 

 

Fig. 1(c) shows a configuration with three degrees of freedom: the 

separation x , as before, but now allowed to depend upon position x′ 
in the channel, together with independently determined values of the 

radii of curvature of the dislocations near the walls and in the centre 

of the channel. A further refinement is to improve the model of the 

wall, which consists of edge dislocation dipoles. Consider the three 

regions separately under the action of the applied stress: 

 

(i) AB and EF: here, the edge dislocation which is part of the 

bowing configuration experiences zero force because its 

closely-spaced neighbour suffers an equal and opposite 

force, and the two dislocations comprising the dipole find 

an equilibrium, unsplittable, configuration. All dislocations 

AB and EF are straight. 

Page 4 of 24

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 5 

(ii) BC and DE: here, the crossing dislocations pull the edge 

dipoles apart and feel not only the applied stress, but 

attraction for each other. As shown inset in the diagram, this 

region is modelled by three touching circles, rather as in a 

dislocation node. One expects the radii of curvature 

DEBC
rr ,  to be very small. An estimate is given below. 

(iii) CD: here, because the dislocations are on the point of 

passing one another, they feel the applied stress pushing 

them forward, and the passing stress near its maximum 

pulling them back. Because they are screw dislocations, 

they are stiff and have a large radius of curvature, 
CD

r . An 

estimate is given below. As a result of the curvature, not all 

the length CD experiences the maximum passing stress, but 

some average passτ . 

 

At the position of unstable equilibrium, the variation of energy 

with respect to any variable defining the shape is zero; furthermore, 

its second derivative with respect to one of them is negative. The 

unstable dislocation thus advances at constant shape. We assume 

that the instability arises from a small displacement xδ . We have 

 

 ( ) xbdxrdbxE BCpassedge
δτδτδ =−+ 22 .   (3) 

 

We now estimate 
BC

r . It is very small, so it need not be calculated 

very carefully. Without other dislocations, the force maintaining 

the curvature is rTb =τ . The appropriate tension T  might be for 

a pure edge dislocation (that is, the one on the left-hand of the inset 

diagram) or for a mixed screw-edge ( 045 ) dislocation. We choose 

the latter. Let us imagine that the dislocations in the node-like 

triple-circle construction are distant on average from one another 

by the diameter of the inscribed circle, about 3BCr . The 

approximate equation for equilibrium including the dislocation 

interactions is now 
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 6 

 
( )

BC

eff

BC r

T
b

b
T

r
==












−
− τ

νπ
µ
12

31
2

45  .     (4) 

 

Table 1 shows values for these quantities. One finds that the 

effective line tension is very small indeed, 21.0 bT
eff

µ≈ . There is 

even the possibility that the effective tension is negative, pulling 

the circles into sharp cusps. However, what is certain is that the 

radius of curvature is very small, less than a few percent of the 

channel width. The ‘sharp corner’ approximation in Figs. 1(a) and 

(b) is very good indeed.  

 

We now estimate the average passing stress – the dipole splitting 

stress – felt by the curved screw segments. At the centre of the 

channel, they experience the maximum stress. Our aim is to find an 

approximate expression for the interaction stress between the two 

gently curved segments. If we expand the passing stress near its 

maximum as a function of the distance t  measured from where the 

screw would be if it were straight – see the inset to Fig. 1(c) – we 

find for the interaction stress 

 

 ( )
3

2

84 h

bt

h

b
t

π
µ

π
µτ −≈         (5) 

 

But the curved screw dislocations have a position given by 

 

 

CDr

x
t

2

2

1 ′
≈ ,         (6) 

 

where x′ measures the distance from the centre of the channel (see 

Fig. 1(c)). Our average passing stress is now given by 

 











−=′







 ′
−≈ ∫ 22

4
2

0
22

4

640
1

48
1

2
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d

h

b
xd

hr

x

dh

b

CD

d

CD

pass
π
µ

π
µτ (7) 
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The radius of curvature at the centre of the channel is given by 

 

 ( )
h

b

r

T

CD

screw

π
µτττ
4

0 −=−= .      (8) 

 

If equations (8), (7), and (4) are substituted into equation (3), we 

get an equation for the applied stress maintaining the dislocation in 

its position of unstable equilibrium: 

 

 τ
τ

π
µ

τ

π
µ =










−



























 −
−+

db

T

Th

h

b
db

h

b

bd

E eff

screw

edge
2

1
640

4
1

4

2
22

2
42

. (9) 

 

Although this equation looks formidable, the final bracket differs 

negligibly from unity, and we can write 

 

 
bd

E

h

b edge2

4
α

π
µτ +=        (10) 

 

to find 

 

 0
640

1

2
1

232
2 =

















−−
screw

edge

edge
T

E

h

d

E

b

π
µαα .  (11) 

 

Equation (11) makes a great deal of physical sense. If the screw 

tension is much greater than the edge energy, the screw dislocations 

are rigid and straight, giving 1=α , and the flow stress is the simple 

addition of the passing stress and the Orowan stress, as in equation 

(1). The approximations cannot work if the screw tension is much less 

than the edge energy. Putting in numerical values for copper from 
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Table 1, the ratio screwedge TE  is about equal to ½. The ratio of d  to 

h  is about equal to 30, perhaps somewhat less. One finds the 

coefficient of 2α  in equation (11) to be about 2, giving 5.0≈α . In 

fact, for values of the coefficient between ½ and 4, α  varies slowly 

from 0.7 to 0.4. It doesn’t depend strongly upon the assumed values 

of the parameters. 

 

If we return to equation (2), and the results of Mughrabi and 

Pschenitzka [2], we see that they have calculated the value 17.0=α . 

 

Now we shall write 

 

 ( )
passOrowan

edgeedge

bd

E

h

b

bd

E
ττα

π
µτ +=−−+=

2
1

4

2
 (12) 

     

 

where we recognise that the Orowan or bowing stress must always be 

overcome, but the passing stress can be reduced from its value for 

infinite straight screw dislocations by bowing: the reduction 

amounting to some 50% of the Orowan stress, if the calculation above 

is correct. 

 

The various models for combined bowing and passing thus produce a 

range of values for α. However, in all of them a bowing term can be 

recognised, and a passing term reduced from its value for rigid screw 

dislocations. 

 

3. Equations for persistent slip 

 

In cyclic plasticity, saturation is accompanied by the development of 

dislocation walls with an equilibrium spacing. Edge dislocation 

dipoles, a majority of them of vacancy type, are randomly disposed on 

their slip planes within the walls. The walls are thought to act as 

zones where intruder edge dislocations either annihilate with a partner 

of opposite sign, or become tightly bound into a dipole, while at the 
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same time releasing another which was, before its release, less well 

bound. 

 

Equilibrium of the wall spacing requires the bowing stress and the 

passing stress to be equal. This is a general argument relating to 

dissipative structures. The force causing the wall spacing to increase 

originates in bowing. When the dislocations are bowing, spacings 

slightly smaller than average are pulled together by line tension so the 

overall spacing increases. However, the force causing the wall 

spacing to decrease comes from screw dipoles straddling the walls 

and pulling all the walls, of whatever spacing, together. If the passing 

stress is larger than the bowing stress, the screw dipoles pull the walls 

together. But if the bowing stress is larger than the passing stress, the 

walls are on average pulled apart. They must be equal to produce an 

equilibrium wall spacing. At a certain minimum dipole height 
c

h  the 

screw dipoles vanish by mutual cross-slip. This produces the 

maximum passing stress, and hence the maximum bowing stress. The 

combination of the two is the saturation stress. 

 

Note that the vanishing of the screw dipoles is unlikely to occur 

exactly at peak load, when the screws are being forced apart by 

the applied stress, but in the course of unloading. The equilibrium 

wall structure is a product of the statistical exchange and 

shuffling of edge dislocations throughout the cycle, not just at its 

peak. 

 

If we equate 
Orowan

τ  with 
pass

τ  in equation (12), we find an equation 

relating the critical dipole height to the wall spacing: 

 

 
( ) c

edge
c

d
E

b
h

απ
µ

−
=

28

2

 .      (13) 

 

This equation, with 5.0=α , produces 46nm for the critical spacing. 

This value agrees satisfactorily with the experimental value of 55nm 

observed by Mughrabi, Ackermann and Herz [3] under conditions in 

which there is neutron damage which preserves the screw dislocations 

Page 9 of 24

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 10 

for observation by electron microscopy by contributing a friction 

stress to both the bowing and passing process
2
.  

 

Equations for the saturation stress and plastic strain amplitude 

become: 

 

 
( )απ

µτ
−

==
22

4

cc

edge

c
h

b

bd

E
.      (14) 

 

Because the bowing of the screws affects the minimum spacing 

they can have, the cross-section for annihilation by cross-slip, 
c

h as it 

appears in Brown [4], is replaced by ( )α−2
c

h  and the equation for 

the plastic strain amplitude 
p

e  in that paper is unchanged: 

 

 
( )

( ) µ
τπ

µ
τπ cc

wc

c
p

dd

d

p

p
e 4

3

3

1

1
2

2

≈
+−

+= ,    (15) 

 

where the probability of penetration of a wall is p , equal to 1/3 at 

saturation. The term involving the wall separation and width is an 

attempt to correct the equation for the partial permeability of the 

walls; it differs by only a few percent from unity. 

 

Thus the cross-section for cross-slip, calculable in principle from 

atomistic models, controls the critical slip plane spacing, which 

controls in turn the Orowan stress and the saturation stress. 

 

4. Comparison with Experiment 

 

Fig. 2 shows a plot of the observed saturation stress for a variety of 

materials as a function of the calculated Orowan stress. As shown by 

Tippelt, Bretschneider and Hähner [5], the wall-width 
w

d  is 

independent of temperature, and for both Ni and Cu is about equal to 

                                                 
2
 Equation (13) differs by 50% from the earlier equation of Brown [1]. 
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0.16 µm. The logarithm which appears in Table 1 is thus very nearly 

equal to π2 . To an excellent approximation we have 

 

 
( )d

b
Orowan ν

µτ
−

=
1

 ,      (16) 

 

and this is what is plotted as the abscissa in Fig. 2. The elastic 

constants which accurately give the energies of edge and screw 

dislocations are taken from those listed by Bacon [6]. The data for Mg 

and AgCl are taken from Kwadjo and Brown [7] and Ogin [8], as 

quoted by Brown [9]. The temperature dependence of the elastic 

constants, which produces something like a 10% reduction in the 

slope of the graph, is taken from the tables by Simmons and Wang 

[10]. 

 

The resulting best-fit line has a slope of 1.09.1 ± , to be compared 

with the expected value of 2.0. It has an intercept of 6.29.1 ±  MPa, 

consistent with zero. The most comprehensive data for a single metal 

are those for Ni presented in Fig. 6 of the paper by Bretschneider, 

Holste and Tippelt [11]. They find a small positive intercept of 5.6 

MPa, and a slope which agrees with Eq. (16) to within 4%. There can 

be no doubt that Eq. (14) gives very precise agreement with 

experiment, somewhat better than the earlier equations of Brown [1], 

which were based on the assumption of impenetrable walls.  

 

The small positive intercept for the Ni results perhaps comes from the 

data obtained at higher temperatures. This might be affected by the 

onset of sessile vacancy loop formation between walls, as observed at 

similar homologous temperatures in Mg by Kwadjo and Brown [7]. It 

seems unlikely that the saturation stress in the absence of diffusion 

can depend on a term arising from mobile interwall debris. According 

to Kratochvíl and co-workers [12, 13] (see also Kubin and Kratochvíl 

[14]), debris in the form of glissile dipole loops unconnected from 

the primary dislocations is swept into the walls by the bowing 

dislocations, leaving the channels clear. This process, together with 

the pulling into walls of edge dipoles connected to primary 
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dislocations, is the primary cause of pattern formation in cyclic 

plasticity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 

 

One cannot understand the phenomenon of persistent slip without an 

explanation for the limited plastic strain borne by the shuttling screw 

dislocations. Because this strain is limited, the volume fraction of 

persistent slip bands must increase in proportion to the imposed 

overall cyclic plastic strain: Winter’s law [15]. Although the local 

strain is very inhomogeneous, the mean strain is well-defined and if it 

is determined by the mean free path for annihilation of the screw 

dislocations by cross-slip, it is given by Eq. (15). Bretschneider et al. 

[11] in their Fig. 7 show all the data for Ni and Cu. It can be 

represented by 
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This result is practically identical to that found independently by 

Brown [1] on the basis of the Cu data alone. From Eq. (16), one 

expects a slope somewhat less than 6.124 ≈π . The agreement with 

experiment is adequate, although again there appears to be a small 

intercept. If one attempts to include an estimate of the full correction 

for the wall width one finds a somewhat increased slope of the line 

with a reduced intercept. At the moment, the work by Bretschneider et 

al. [11] seems to mark the limit of what one can sensibly do with the 

data. 

 

The important point here is that the simplest theory agrees with 

experiment to better than 10%. It provides an outline explanation for 

the endurance limit in fatigue and Winter’s law in cyclic plasticity. 

Although it is fascinating to see how closely more refined theories can 

be made to produce exact quantitative agreement with experiment, 

studies of cyclic plasticity are not the best way to determine the 

numerical value of π!  

 

 

5. Internal Stress 

 

It seems clear that the bowing and passing of screw dislocations in 

persistent slip bands can account for the saturation stress without a 

contribution from internal stress. Yet the walls impede many glide 

dislocations, so on average at the maximum forward plastic strain 

they must contain elastic shear stresses which promote forward flow, 

balanced by weaker back stresses in the channels. Why do these back 

stresses not contribute to the saturation stress? 

 

The answer can be given that if the walls are deformable, the resulting 

distribution of internal stress does not contribute to the flow stress. 

Recent authors – see Nabarro and Duesbery [16] – are in agreement 

that this is true for all composite models, whatever the detailed 

configuration of the deformable obstacles. However, one must be 

careful: is the inclusion of a bowing term consistent with the concept 

of a deformable dipole wall? How can a deformable wall exclude the 

bowing dislocations? 
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The concept of a statistically deformable wall [4] circumvents this 

problem. Dislocations encountering the wall may penetrate it, or be 

absorbed into the dipole structure. The wall does not have a well-

defined flow stress, but acts as a filter on dislocations which intrude 

into it. Consider dislocations AB and EF in Fig. 1(c). They are lodged 

in dipoles in the wall, and because they have entered it in a definite 

sense, driven by the applied stress, the dipoles produce an elastic 

polarisation and thus a long-range image stress. This can be calculated 

if we regard each dipole as a sheared inclusion whose interior cannot 

be penetrated: there is a large ‘forward’ stress inside the dipole (in the 

space between its dislocations) and a balancing ‘back’ stress 

elsewhere. The accommodation factor γ  for a sheared, ribbon-like 

inclusion of circular cross-section can be found from Brown and 

Clarke [17] and it is given by ( )νγ −= 141 . This also gives exactly 

the image stress due to a dipole at the centre of a cylindrical body. 

The dipoles have an effective width approximately equal to the wall-

width – these are the intruder dislocations stuck in the wall – and their 

spacing perpendicular to the slip plane, H , is determined by the 

engineering plastic strain amplitude per quarter cycle: Hbe
p

= . 

However, about 1/3 of them penetrate the wall and so do not 

contribute to the image stress. Thus the image stress due to the dipoles 

is given by  

 
( ) p

e
wall

f
averageHd

bw

M
µγ

ν
µτ =
−

=
143

2
,  18 

 

where ( ) ( )( ) 4114132 ≈−= νγ
average

. 

 

An electron microscopist, viewing the wall as an inclusion with 

volume fraction 
wall

f , will estimate the ‘mean stress in the matrix’ – 

that is, the internal stress between the walls – using the Eshelby 

equation with an average accommodation factor of about ¼, whereas 

an entirely equivalent view is that the wall produces an image stress 

because it is an assembly of dipoles due to the intruder dislocations 

stuck near its periphery. 
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The engineering plastic strain amplitude in the persistent slip band is 

related to the saturation stress by Eq. 15, so we have finally 

 

ccwall
f

averageM
ττπγτ 3.04 ≈= .    19 

 

The residual alternating back stress is thus about one-third of the 

saturation stress. This is in approximate agreement with a variety of 

results. For Cu, Mughrabi and Ungar [18] present data which support 

an internal stress about equal to ¼ the saturation stress. Work by 

Hecker and co-workers [19, 20, 21] and theoretical work by the same 

team [22] supports a value somewhat smaller, between 0.1 and 0.2. 

Lisiecki and Pedersen [23], on the basis of observations of wall 

configurations, suggest an average accommodation factor of about 

1/3. A further study by Pedersen and Winter [24] confirms this value, 

and suggests that a higher value – about 0.45 – is appropriate for the 

thicker bundles of dipoles in the matrix structure. The estimate given 

here does not depend upon the detailed arrangement of the dipoles in 

the wall, so the agreement with Lisiecki and Pedersen’s analysis is 

fortuitous. All one can say is that the dipoles exert very little elastic 

influence upon one another, so the walls can easily be wavey and 

slanted, as noted by them. In Ni, X-ray measurements suggest a value 

of 0.3 [21]. These authors also show beautifully how the internal 

stress builds up over one cycle. On reversal of the strain, it takes 

about a quarter of a cycle for the internal stress to reverse, after which 

it remains constant. This is exactly what one expects for Mughrabi’s 

model of a deformable wall, in which no work-hardening takes place. 

It is also what one expects for a statistically deformable wall in which 

the dislocation content comes into equilibrium, with as many intruder 

dislocations getting stuck in the wall as are liberated from it.  

 

Although the estimates given above for the magnitude of the internal 

stress at the end of a stroke seem very reasonable, nagging doubts 

remain about why these stresses seem to contribute nothing to the 

saturation stress. How can the wall be penetrable, yet offer resistance 

to the bowing dislocation? In part, this comes about because under the 

applied stress the dipoles AB and FE in Fig. 1(c) feel no force except 
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for that due to the line tension from the bowing and passing screws. 

But there is another possible reason, as follows. 

 

Consider a dispersion-hardened metal containing a random array of 

undeformable obstacles. In this case, the uncorrelated position of the 

obstacles precludes simultaneous bowing and passing of the 

dislocations: only bowing is important. The virgin flow stress is 

accurately equal to the stress required to bow single dislocations 

between the obstacles, without the addition of a term due to the mean 

stress in the matrix, often called the ‘back stress’. Yet once the first 

dislocations have swept through the field of obstacles, leaving 

Orowan loops around each one, the alloy has suffered a microstrain 

approximately equal to the Burgers vector divided by the diameter of 

the obstacle: this may be as large as a few percent strain if the 

obstacles are of nanometre size. Thus the microstrain establishes a 

back stress. But because the back-stress due to the obstacles is set up 

only when the Orowan loops around them are completed, it does not 

contribute to the flow stress. From the point of view of elasticity, the 

bowing dislocation produces a long-range stress field equal to that of 

a straight dislocation, together with a shorter range field due to its 

excursions from straightness. These excursions comprise uncompleted 

loops of both signs. Once the unstable position of the bowing 

dislocation has collapsed, there is the field of the straight dislocation, 

now forced against another array of obstacles, together with that of 

the Orowan loops left behind, systematically of one sign. The field of 

the loops, inversely proportional to the cube of the distance from each 

one, communicates with the external surfaces of the alloy to produce 

the image field and hence the long-range back stress. Until the loops 

are deposited, there is no back-stress. It is interesting to think about 

the effect of the bowing dislocation as it passes through its unstable 

configuration: it generates a violent pulse of lattice vibrations which 

after multiple reflections at the surfaces establish the image stress. 

Before the pulse, the external surface is scarcely affected by the 

plasticity about to occur; after the pulse its shape is changed by the 

long-range stress field of the internally stored Orowan loops. Another 

way of looking at this is to think about the energy storage per unit 

volume in the alloy. The back stress can be regarded as the derivative 
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of the irreversible elastic energy storage with respect to strain, or 

equally well as due to the average stress felt by a dislocation which 

cannot sample the obstacle interiors. Until the Orowan loops are 

completed, there is no irreversible elastic energy storage, nor is there 

an average back stress. 

 

If the saturated hysteresis loop of the metal undergoing cyclic 

plasticity is entirely in the microstrain region, then the back stress will 

not contribute to the saturation stress. The highly inhomogeneous 

microscopic behaviour of slip, resulting probably from the statistical 

nature of the penetration of the walls by intruder dislocations, is an 

important part of this picture. One must imagine that early in one 

cycle intense slip takes place on planes where the obstacles can be 

easily penetrated, followed by slip on the more difficult planes, until 

the cross-slip of the screw dislocations exhausts the available strain. 

 

The cross-slip of the screw dipoles of critical spacing is most likely 

to occur in the unloaded state, when the screw dislocations of 

opposite sign are not pushed apart by the applied stress [25]. 

Thus the completion of dipole formation will take place as the 

specimen is unloaded. On this view, the back stress, observed in 

the unloaded state, does not contribute to the saturation stress. 

 

There is scope for experiments on acoustic emission in the saturated 

state, and for further fascinating theoretical work to clarify the picture 

of how the pulse of lattice vibrations degenerates mostly into heat 

while at the same time communicates with the surfaces to establish 

the back stress and to store a small fraction of its kinetic energy. 

Theoretical developments on the statistical nature of the penetration 

of the walls are also badly needed. 

 

6. Conclusions 

 

(i) Details of the shape of the screw dislocations as they 

simultaneously bow between the walls and pass one another seem not 

to affect the basic equations (14) and (15) which accurately give the 

saturation stress and the average plastic strain in a persistent slip band 
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in terms of the equilibrium wall spacing. The picture proposed by 

Brown [4] of the annihilation of screw dislocation dipoles by the 

thermally activated migration of acute jogs along them, with an 

activation energy of about 100meV, is unaffected by the shape of 

the screws in the critical configuration, because the cross-slip 

occurs in the unloaded state. 

(ii) The saturation stress is the sum of the bowing stress and the 

passing stress reduced from that for infinite straight screws. The 

factor by which it is reduced can be written as ( )α−1  times the 

bowing stress, where estimates of α  are 1 ([1], no reduction); 0.17 

[2]; 0.5 (this work). We anticipate that detailed computer models will 

produce an accurate value. The value of α  determines the 

relationship between the smallest stable screw dislocation dipole and 

the wall spacing (equation 13). 

(iii) On the basis of the statistically deformable dipole model of a 

persistent slip band, reasonable estimates can be given of the residual 

alternating internal shear stress (the back stress, not the fibre stress) in 

it. 

(iv) It is suggested that the reason the back stress does not contribute 

to the saturation stress may be that the saturated hysteresis loop in 

cyclic plasticity is in the microstrain region, analogous to the 

microstrain leading to the flow stress in a dispersion-hardened alloy. 

Further work is required to clarify this. 
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Table 1. Formulae for dislocation line energies and line tensions used 

in the text. For Cu at room temperature, GPa1.42=µ  and 43.0=ν . 
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Captions for Figures: 

 

Figure 1. Solid lines represent dislocations in the plane of the paper; 

broken lines represent dislocations on a neighbouring slip plane 

displaced by h; dotted lines represent dislocations on yet another 

closely-spaced plane. The dislocations bow in a channel of width d. 

Arrows represent the forces on the lines due to the applied stress. 

 

(a) Combined bowing and passing according to Brown [1]. The 

screw dislocations are assumed to be rigid. 

 

(b) Combined bowing and passing according to Mughrabi and 

Pschenitzka [2]. The bowing screws are bent into arcs of an ellipse. 

 

(c) Combined bowing and passing in a configuration allowing three 

degrees of freedom. Circles show an enlarged view near CD and near 

the centre. Symbols are explained in the text. 
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