Synthesis of Chiral Phenolic 1,1’-Binaphthocrown Ethers
and Some Proton-Ionisable Chromogenic Derivatives

Eva Köszegi, Alajos Grün, Istvan Bitter

To cite this version:

HAL Id: hal-00513514
https://hal.archives-ouvertes.fr/hal-00513514

Submitted on 1 Sep 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Synthesis of Chiral Phenolic 1,1'-Binaphthocrown Ethers and Some Proton-Ionisable Chromogenic Derivatives

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Supramolecular Chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>GSCH-2007-0072.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Full Paper</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>29-May-2007</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Köszegi, Eva; Budapest University of Technology and Economics Grün, Alajos; Budapest University of Technology and Economics Bitter, Istvan; Budapest University of Technology and Economics, Organic Chemistry and Technology</td>
</tr>
<tr>
<td>Keywords:</td>
<td>BINOL, Crowned azophenols, Amine recognition, UV-vis spectroscopy</td>
</tr>
</tbody>
</table>

Note: The following files were submitted by the author for peer review, but cannot be converted to PDF. You must view these files (e.g. movies) online.

- scheme1.cdx
- scheme2.cdx
- scheme3.cdx
Synthesis of Chiral Phenolic 1,1’-Binaphthocrown Ethers and Some Proton-Ionisable Chromogenic Derivatives

Éva Kőszegi, Alajos Grün and István Bitter*

Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1521, Budapest, Hungary

Abstract—Synthesis of mono-and bis(1,1’-bi-2-naphthocrown)ethers containing bis(2,6-methylene)anisyl subunit in the crown ring were developed. These chiral macrocycles are suitable precursors to introduce chromogenic function, as exemplified by two novel crowned azophenol chromoionophores. Their coloration process induced by various achiral and chiral amines was studied by UV-vis spectrophotometry.

INTRODUCTION

Over the last decades 1,1’-bi-2-naphthyl derivatives have received constantly growing interest as chiral catalyst, mediators and chelators in asymmetric syntheses and chiral recognition processes [1]. BINOL (1,1’-bi-2-naphthol) has become one of the best known and utilized atropisomer possessing axial chirality due to its easy availability and versatile chemical modifications on the aromatic core and on the phenolic OH groups as well [1b,c]. The replacement of the latter with C, S, N-and P functionalities further expand the versatility of chiral ligands based on BINOL. The O,O-cyclized derivatives and related macrocycles also represent an important family of chiral receptors [2]. (S,S)-bis(1,1’-Bi-2-naphtho)-22-crown-6, reported first by Cram et al. in 1973 [3], was disclosed to exhibit remarkable chiral discrimination between the enantiomers of organic ammonium salts since the receptor possesses C_{2v} axis of symmetry due to the steric

*Corresponding author. Tel: 36-1-4631379, fax: 36-1-463-3648; e-mail: ibitter@mail.bme.hu
effect between the naphthalene rings. So far the choice of binaphthocrowns have scarcely been widened, only modifications on the crown ether ring size and some combination with calix[4]arenes were reported [4,5]. In the meantime, the number of chiral crown ethers based on natural chiral sources or constructed by introduction of asymmetric elements in the crown rings, have significantly increased [6]. However, some recent publication revealed that binaphthocrowns with auxiliary binding sites attached to the crown ether ring may have potential in various recognition processes [7-9]. Another way to modify the binding characteristics of binaphthocrowns is to insert a bis(2,6-methylene)anisyl subunit in the crown ring (I), which provides an easy access to proton-ionisable chromogenic chelators (type II) (Fig. 1). This approach has been frequently used for the synthesis of chiral phenolic crown ethers capable of discriminating amine enantiomers by UV-vis spectroscopy [10-12], but hitherto this attractive way of detection has been limited to one example in the binaphthocrown series ((R,R- and S,S)-III) for the optical recognition of chiral amines [13].

FIGURE 1. Anisyl-appended crown ethers and proton-ionizable chromoionophores

As part of our ongoing program to synthesize chromoionophores for developing optical sensors, we have studied the optical properties of different chromophore groups (2,4-dinitrophenylazo, indophenol, etc.) introduced to various calix[4]arenes including bridged derivatives [14]. Recently, we published a facile method to prepare binaphthomonoazacrowns [15] and some novel photochromic conjugates thereof [16]. Herein, we report on the synthesis, characterization and recognition properties of novel binaphthocrown ethers 1, 2 (Fig. 2), which can be utilized as precursors for the synthesis of chromoionophores type II and III, e.g. by dealkylation and subsequent nitration or oxidation to quinones followed by condensation with hydrazines [11,12]. In this paper,
the latter route is demonstrated by the preparation of novel chromogenic azophenols (S)-3a and (S,S)-3b and their optical recognition ability toward achiral and chiral amines is also presented.

FIGURE 2. Mono-and bis(binaphthocrown)ether target molecules 1 and 2 and chromoionophores 3a,b derived from them

RESULTS AND DISCUSSION

The synthesis of 1a-c consists of three steps: first, bis(2,6-bromomethyl)anisols 4a [17], b,c [18] were condensed with diethylene glycol under strongly basic conditions [19] affording diols 5a-c, which were then tosylated to give the cyclizing agents 6a-c. The ring closure reaction was carried out with (R) or (S)-BINOL promoted by K$_2$CO$_3$ in boiling MeCN to give binaphthocrowns 1a-c in yields of 30-70% (Scheme 1).

SCHEME 1. Synthesis of binaphthomonocrowns 1a-c. Reagents and conditions: (i) diethylene glycol, powdered NaOH, 100°C (5a-c), (ii) TsCl, THF, powdered KOH, 0°C, (iii) BINOL, K$_2$CO$_3$, MeCN, 80°C

The synthesis of bis(binaphthocrown)ethers 2a-c required first the protection of one OH group of BINOL, which was easily achieved by acylation with pivaloyl chloride to give monoester 7 [20]. This compound was then smoothly alkylated with 4a and 4c to give 8a and 8b, respectively, followed by deprotection with aq. NaOH furnishing the precursors 9a,b. The cyclizations were then performed with tri- and tetaethylene glycol ditosylates (route A) and 2a-c were obtained in 20-25% overall yields. Another approach, when intermediate 11a,b were cyclized with 4a using Cs$_2$CO$_3$ base as
described in ref. [13] (route B), was also successful giving the same products in comparable yields (Scheme 2).

SCHEME 2. Synthesis of bis(binaphtho)crowns 2a-c. Reagents and conditions: (i/1) 4a.d, K$_2$CO$_3$, MeCN, 80°C (8a.b), (i/2) TsO(CH$_2$CH$_2$O)$_{3,4}$Ts, K$_2$CO$_3$, MeCN, 80°C (10a.b), (ii) aq. NaOH, EtOH, 80°C (9a.b 11a.b); (iii) TsO(CH$_2$CH$_2$O)$_{3,4}$Ts, K$_2$CO$_3$ (2a.b) or Cs$_2$CO$_3$ (2c), MeCN, 80°C (route A); (iv) 4a, Cs$_2$CO$_3$, MeCN, 80°C (route B)

Synthesis and Spectroscopic Characterization of Chiral Crowned Azophenols

To demonstrate a way of chromogenization of anisyl-appended crown ethers 1 and 2, proton ionisable receptors (S)-3a and (S,S)-3b were synthesized. The former was obtained from 1b by oxidation with ammonium cerium(IV) nitrate (CAN) to quinone 14 followed by condensation with 2,4-dinitrophenylhydrazine (2,4-DNPH). Essentially this route was used for the preparation of (S,S)-3b, but the allyl protecting group of 2c was removed prior to oxidation affording phenol 2d, which was then treated in the same way (Scheme 3).

SCHEME 3. Synthesis of chromogenic (S)-3a and (S,S)-3b. Reagents and conditions: (i) Pd/C, p-TsOH, EtOH/THF, Δ (2d); (ii) Ce(NH$_4$)$_2$(NO$_3$)$_6$, aq. MeCN, rt; (iii) 2,4-DNPH, EtOH/CHCl$_3$, H$^+$, rt.

UV-vis spectroscopic investigation of (S)-15 and (S,S)-17 upon addition of amines

The visible spectrum of (S)-3a and (S,S)-3b taken in chloroform and MeCN exhibited absorption maxima around 380-390 nm, which were significantly red-shifted in both solvents (180-230 nm) upon addition of achiral 1°-3° amines (1000 equiv.). The
coloration process is due to the amine-based deprotonation of the azophenol moiety, affording a photoinduced charge transfer (PCT) [21]. The polar aprotic acetonitrile stabilizes the ammonium-phenolate ionpair more strongly than chloroform, accordingly band shifts to the lower energy region result, but without noteworthy discrimination in respect of the order of amines. In chloroform, however, 3a responds to 1° and 2° amines, but a tertiary amine (Bu₃N) gives no coloration. Ligand 3b behaves similarly with remarkably reduced discrimination (Fig. 3). The selectivity of 3a toward 1°, 2° versus 3° amines is related to H-bonding interactions between the crown ring and the protons of ammonium ion formed. At the same time, none of ligands can discriminate among primary and secondary amines as reflected by the λ_max values of the new bands centered around 570-580 nm (CHCl₃) indicating complex stabilities irrespective of the number of NH⁺ protons. Primary ammonium ions are enabled to form three-pointed H-bonds with the oxygen atoms of 18-crown-6, therefore their complexes are more stable than those of the secondary ammonium counterparts capable of only two-pointed H-bonding interactions [22]. Accordingly, BuNH₂ would have been expected to show larger red-shift than Bu₂NH or piperidine. We suppose, the lack of selectivity may be attributed to the less flexible conformation of the binaphthocrown ring that prevents all NH₃⁺ protons to participate in binding. Obviously, the complexation selectivity is affected by other factors, e. g. interactions (steric, CH-π, hydrophobic, etc.) between the substituents of the amine and the ligand. Recently, a selectivity enhancement of n-octylamine vs. di-n-octylamine was reported for an azophenol-crown ether ligand linked with permethylated α-cyclodextrin [23]. The critical role of the adjacent α-CD capable of interaction with the lipophilic alkyl chain by hydrophobic forces was emphasized.
The larger absorbances measured for BuNH$_2$, Bu$_2$NH and piperidine as compared to benzylamine and morpholine are in accord with the different basicities (the latter are ca. 2-3 order of magnitude weaker bases). Nevertheless, the weak if any coloration with a strongly basic 3° amine (Bu$_3$N) underlines the role of the crown ring in the complexation-induced stabilization of the ammonium-phenolat ion pair possessing at least two NH$^+$ protons.

FIGURE 3. Spectral changes of (S)-3a upon addition of 1°-3° amines. [3a] = 10$^{-4}$ M, [amine] = 10$^{-1}$ M, solvent: chloroform and acetonitril

FIGURE 4. Spectral changes of (S,S)-3b upon addition of 1°-3° amines. [3b] = 10$^{-4}$ M, [amine] = 10$^{-1}$ M, solvent: chloroform and acetonitril

Preliminary measurements on the chiral discrimination ability of (S)-3a and (S,S)-3b were performed in chloroform and acetonitrile at 25°C with α-phenylethylamine (PEA), ephedrine and D-threo-2-amino-1-p-nitrophenyl-1,3-propanediol (D-bases) enantiomers (Table 1).

TABLE 1. Absorption maxima of the coloured species of (S)-3a and (S,S)-3b with chiral amines

D-bases effected very weak coloration of each ligand, while (S,S)-3b did not show enantiomeric discrimination among any guests ($\Delta\lambda_{\text{max}} = 0$ nm). For chiral crown ether- appended azophenol-amine diastereomers, the blue-shift is indicative of the better host-guest complementarity. This prediction is consistent with the binding model, where hydrogen bonding between the phenolate oxygen of the host and an NH$^+$ hydrogen of the guest stabilizes the energy of the polar ground state more than the less polar excited
state, thereby leading to a blue-shift [24]. Accordingly, (S)-3a exhibits some enantioselective coloration with (R)-PEA vs. (S)-PEA in MeCN ($\Delta\lambda_{\text{max}} = 2$ nm), in turn (+)-(1S,2R)-ephedrine is significantly discriminated over the (-)-(1R,2S)-enantiomer in both solvent ($\Delta\lambda_{\text{max}} = 8/12$ nm). This relatively high enantioselectivity can be ascribed to the (1S)-OH group of ephedrine which is supposed to be H-bonded with an oxygen atom of the ring, thereby providing an additional stability for this diastereomer complex.

This preliminary results encourage us to continue our studies with other chiral amines and aminoalcohols performing the spectroscopic measurements at 0°C to achieve better enantioselections [13].

CONCLUSIONS

A series of 1,1’-bi-2-naphthyl-appended mono-and biscrown ethers containing anisyl subunit in the crown ring have been synthesized, which are considered to be useful precursors for the development of various chiral chromogenic receptors, as demonstrated by the synthesis of ligands (S)-3a and (S,S)-3b containing 2,4-dinitrophenylazo chromophore. The optical characteristics of the two azophenol ligands were studied by UV-vis spectroscopy, in addition the coloration process induced by various achiral and chiral amines was also investigated. Ligand (S)-3a was found to exhibit significant enantioselective coloration toward (+)-(1S,2R)-ephedrine over the (-)-(1R,2S)-enantiomer.

EXPERIMENTAL

Melting points are uncorrected. NMR spectra were taken in CDCl$_3$ at 500/125 MHz on a Bruker Avance DRX-500 spectrometer. UV-vis spectra of the chromoionophores were...
recorded on a HP 8452A spectrophotometer. Precoated silica gel plates (Merck 60 F254) were used for analytical TLC and Kieselgel 60 for column chromatography. All chemicals were reagent grade and used without further purification. Compounds 4a-c [17,18], 5a-c, 6a-c [19], and 7 [20] were prepared as reported. Deallylation of 2c to 2d was carried as described in ref. [25]. Quinones (S)-14 and (S,S)-15 were prepared following literature analogy [11].

General procedure for the synthesis of 1,1’-binaphthocrown ethers 1a-c and 2a-c

The mixture of BINOL (0.57g, 2 mmol), ditosylate 6a-c (2.2 mmol) and K₂CO₃ (1.12 g, 8 mmol) in MeCN (20 ml) was vigorously stirred under reflux for 20 h. The reaction mixture was evaporated to dryness and the residue was dissolved in CHCl₃ (20 ml), washed with water and dried. The volatile was distilled off in vacuo and the residue was purified by column chromatography on silica to give 1a-c as white amorph solids.

The same procedure was used for the alkylation of BINOL-monopivalate 7 (2 mmol) with 4a,d or tri-and tetraethylene glycol ditosylates (1 mmol each) in the presence of K₂CO₃ (2 mmol) followed by basic deprotection of 8a,b and 10a,b thus formed, according to ref. [20], affording bis-BINOL precursors 9a,b and 11a,b, respectively.

The ring closure of 9a,b (1 mmol) with ditosylates (1.1 mmol) was carried out similarly but 10-fold excess of K₂CO₃ was required in 48 h reaction (route A) affording bis(binaphthocrowns) 2a-d as white solids after column chromatography.

Compound (S)-1a (79%, eluent: AcOEt), [α]D²⁰ = - 118.0 (c 1, THF); ¹H NMR δ 7.80 (m, 4H, ArH), 7.27-7.37 (m, 6H, ArH), 7.18 (t, 2H, J = 8.0 Hz, ArH), 7.12 (d, 3H, J = 6.0 Hz, ArH), 4.54 (d, 2H, J = 11.0 Hz, ArCH₂O), 4.47 (d, 2H, J = 11.0 Hz, ArCH₂O), 3.96 (m, 2H, OCH₂), 3.83 (m, 2H, OCH₂, OCH₃), 3.46 (m, 2H, OCH₂), 3.39 (m, 4H, OCH₂), 3.27 (m, 4H, OCH₂); ¹³C NMR δ 158.75, 154.92, 134.21,
131.95, 131.63, 129.78, 129.45, 128.02, 126.29, 125.71, 123.90, 123.82, 121.18, 117.38, (Ar), 70.79, 70.70, 69.88, 69.43 (OCH$_2$), 68.80 (ArCH$_2$O), 63.97 (OCH$_3$); Anal. calcd. for C$_{37}$H$_{38}$O$_7$ (594.69): C 74.73, H 6.44, found C 74.52, H 6.41%.

Compound (S)-1b (39%, eluent: hexane-AcOEt = 1:1), mp:112-116°C, [α]$_D^{20}$ = - 113.5 (c 1, THF); 1H NMR δ 7.82 (m, 4H, ArH), 7.36 (d, 2H, J = 9.0 Hz, ArH), 7.29 (t, 2H, J = 6.5 Hz, ArH), 7.18 (t, 2H, J = 7.0 Hz, ArH), 7.12 (d, 2H, J = 8.5 Hz, ArH), 6.88 (s, 2H, ArH), 4.55 (d, 2H, J = 11.5 Hz, ArCH$_2$O), 4.45 (d, 2H, J = 11.5 Hz, ArCH$_2$O), 3.97 (m, 2H, OCH$_2$), 3.84 (m, 2+3H, OCH$_2$, OCH$_3$), 3.73 (s, 3H, OCH$_3$), 3.47-3.37 (m, 6H, OCH$_2$), 3.31 (m, 2H, OCH$_2$), 3.26 (m, 2H, OCH$_2$), 3.19 (m, 2H, OCH$_2$); 13C NMR δ 155.6, 154.9, 151.9, 134.2, 132.7, 129.7, 129.4, 128.0, 126.3, 125.7, 123.9, 121.1, 117.2, 116.1, (Ar), 70.8, 10.6, 69.8, 69.4, 68.6, (OCH$_2$), 63.8, 55.9, (OCH$_3$); Anal. calcd. for C$_{38}$H$_{40}$O$_8$ (624.72): C 73.06, H 6.45, found C 72.87, H 6.51%.

Compound (S)-1c (34%, eluent: hexane-AcOEt = 1:1), mp 136-139°C (CH$_3$OH), [α]$_D^{20}$ = - 98.2 (c 1, THF); 1H NMR δ 7.82 (m, 4H, ArH), 7.47 (s, 2H, ArH), 7.36 (d, 2H, J = 9.0 Hz, ArH), 7.30 (t, 2H, J = 7.5 Hz, ArH), 7.18 (t, 2H, J = 8.0 Hz, ArH), 7.12 (d, 2H, J = 8.5 Hz, ArH), 4.51 (d, 2H, J = 11.5 Hz, ArCH$_2$O), 4.42 (d, 2H, J = 11.5 Hz, ArCH$_2$O), 3.97 (m, 2H, OCH$_2$), 3.83 (m, 2H, OCH$_2$), 3.75 (s, 3H, OCH$_3$), 3.45 (m, 2H, OCH$_2$), 3.38 (m, 4H, OCH$_2$), 3.28 (m, 4H, OCH$_2$), 3.17 (m, 2H, OCH$_2$); 13C NMR δ 157.4, 154.9, 134.3, 134.2, 133.7, 129.8, 129.5, 128.0, 126.3, 125.7, 123.9, 121.2, 117.3, 116.5, (Ar), 70.8, 70.7, 69.9, 69.6, 68.2, (OCH$_2$), 63.8 (OCH$_3$); Anal. calcd. for C$_{37}$H$_{37}$BrO$_7$ (673.59): C 65.97, H 5.54, found C 66.12, H 5.62%.

Compound (S,S)-9a (98%), [α]$_D^{20}$ = - 62.0 (c 1, THF); (R,R)-9a (90%), [α]$_D^{20}$ = + 62.3 (c 1, THF); 1H NMR δ 7.94 (d, 2H, J = 9.0 Hz, ArH), 7.84 (m, 4H, ArH), 7.80 (d, 2H, J = 8.0 Hz, ArH), 7.44 (d, 2H, J = 9.0 Hz, ArH), 7.35 (t, 2H, J = 7.5 Hz, ArH), 7.25 (m, 6H, ArH), 7.18 (d, 2H, J = 8.5 Hz, ArH), 7.11 (t, 2H, J = 8.0 Hz, ArH), 6.97 (d, 2H, J = 8.5 Hz, ArH), 6.77 (d, 2H, J = 8.0 Hz, ArH), 6.63 (t, 1H, J = 7.5 Hz, ArH), 5.05 (d, 2H, J = 12.5 Hz, ArCH$_2$O), 4.99 (d, 2H, J = 12.5 Hz, ArCH$_2$O), 3.20 (s, 3H, OCH$_3$); 13C NMR δ 155.56, 155.09, 151.49, 134.287, 134.04, 131.10, 130.03, 129.96, 129.30, 129.20, 128.34, 128.20, 127.49, 126.58, 125.25, 125.07, 124.66, 124.50, 123.41, 117.69,
117.04, 116.12, 115.34 (Ar), 66.22 (ArCH₂O), 62.38 (OCH₃); Anal. calcd. for C₄₉H₃₆O₅
(704.81): C 83.50, H 5.15, found C 83.29, H 5.12%.

Compound (S,S)-9b (91%), [α]D²⁰ = - 59.0 (c 1, THF); ¹H NMR δ 7.97 (d, 2H, J = 9.0 Hz, ArH), 7.86 (d, 2H, J = 8.0 Hz, ArH), 7.83 (d, 2H, J = 9.0 Hz, ArH), 7.78 (d, 2H, J = 8.0 Hz, ArH), 7.45 (d, 2H, J = 9.0 Hz, ArH), 7.35 (t, 2H, J = 7.0 Hz, ArH), 7.29-7.20 (m, 6H, ArH), 7.16 (d, 2H, J = 8.5 Hz, ArH), 7.1 (t, 2H, J = 8.5 Hz, ArH), 6.98 (d, 2H, J = 8.5 Hz, ArH), 6.31 (s, 2H, ArH), 5.79 (m, 1H, =CH), 5.19 (dd, 1H, J = 17.5, 1.5 Hz, =CH₂), 5.14 (dd, 1H, J = 10.5, 1.0 Hz, =CH₂), 5.05 (d, 2H, J = 12.5 Hz, OCH₂Ar), 4.97 (d, 2H, J = 13.0 Hz, OCH₂Ar), 3.81 (dd, 1H, J = 13.0, 5.5 Hz, OCH₂), 3.18 (s, 3H, OC₂H), 3.15 (s, 3H, OCH₃); Anal. calcd. for C₅₂H₄₆O₆ (760.87): C 82.08, H 5.30, found C 81.55, H 5.38%.

Compound (R,R)-2a (85%, eluent: hexane-AcOEt = 6:4), [α]D²⁰ = + 156.8 (c 1, THF); ¹H NMR δ 7.92 (m, 4H, ArH), 7.85 (m, 4H, ArH), 7.46 (d, 2H, J = 9.0 Hz, ArH), 7.42 (d, 2H, J = 9.0 Hz, ArH), 7.31 (m, 4H, ArH), 7.24-7.11 (m, 8H, ArH), 6.90 (d, 2H, J = 7.5 Hz, ArH), 6.76 (t, 1H, J = 7.5 Hz, ArH), 5.04 (d, 2H, J = 12.0 Hz, ArCH₂O), 4.90 (d, 2H, J = 12.5 Hz, ArCH₂O), 4.08 (m, 2H, OCH₂), 3.84 (m, 2H, OCH₂), 3.40 (m, 2H, OCH₂), 3.15 (m, 2H, OCH₂), 3.02 (s, 3H, OCH₃), 2.85 (d, 2H, J = 7.0 Hz, OCH₂), 2.77 (d, 2H, J = 7.0 Hz, OCH₂); ¹³C NMR δ 156.07, 154.18, 154.02, 134.25, 134.17, 130.37, 129.62, 129.50, 129.31, 129.22, 129.16, 129.08, 127.79, 126.30, 125.44, 123.86, 123.78, 123.63, 121.02, 120.29, 116.25, 115.71, (Ar), 70.21 , 69.73, 68.72 (OCH₂), 66.65 (ArCH₂O), 61.92, (OCH₃); Anal. calcd. for C₅₃H₄₆O₇ (818.95): C 80.66, H 5.66, found C 80.48, H 5.60%.

Compound (R,R)-2b (35%, eluent: hexane-AcOEt = 4:6), [α]D²⁰ = + 143.6 (c 1, THF); ¹H NMR δ 7.94 (d, 2H, J = 9.0 Hz, ArH), 7.86 (m, 6H, ArH), 7.44 (d, 2H, J = 9.0 Hz, ArH), 7.33 (m, 6H, ArH), 7.24-7.12 (m, 8H, ArH), 6.99 (d, 2H, J = 7.5 Hz, ArH), 6.81 (t, 1H, J = 7.5 Hz, ArH), 5.07 (d, 2H, J = 13.0 Hz, ArCH₂O), 4.94 (d, 2H, J = 12.5 Hz,
ArCH\(_2\)O), 4.12 (m, 2H, OCH\(_2\)), 3.95 (m, 2H, OCH\(_2\)), 3.50 (m, 2H, OCH\(_2\)), 3.31 (m, 2H, OCH\(_2\)), 3.18 (s, 3H, OCH\(_3\)), 3.10 (m, 8H, OCH\(_2\)); \(^{13}\)C NMR \(\delta\) 155.74, 154.56, 154.34, 134.43, 130.68, 129.69, 129.60, 129.49, 129.38, 129.25, 128.04, 126.57, 126.48, 125.70, 125.66, 124.25, 123.95, 123.89, 121.11, 120.58, 116.62, 115.85 (Ar), 70.66, 70.45, 69.97, 69.51 (OCH\(_2\)), 66.86 (ArCH\(_2\)O), 61.99 (OCH\(_3\)); Anal. calcd. for C\(_{57}\)H\(_{80}\)O\(_8\) (863.00): C 79.33, H 5.84, found C 79.02, H 5.88%.

Compound (S,S)-2c (32%, eluent: hexane-AcOEt = 7:3), [\(\alpha\)]\(^{20}\)D = -96.1 (c 1, THF); \(^1\)H NMR \(\delta\) 7.93 (d, 2H, \(J = 9.0\) Hz, ArH), 7.90 (d, 2H, \(J = 9.0\) Hz, ArH), 7.84 (t, 4H, \(J = 7.5\) Hz, ArH), 7.47 (d, 2H, \(J = 9.0\) Hz, ArH), 7.41 (d, 2H, \(J = 9.0\) Hz, ArH), 7.31 (t, 4H, \(J = 6.5\) Hz, ArH), 7.23-7.14 (m, 6H, ArH), 7.09 (d, 2H, \(J = 8.5\) Hz, ArH), 6.45 (s, 2H, ArH), 5.46 (m, 1H, =CH), 5.01-4.92 (m, 4+2H, OCH\(_2\)Ar, =CH\(_2\)), 4.2-4.09 (m, 2H, OCH\(_2\)CH), 4.04 (m, 2H, OCH\(_2\)), 3.81 (m, 2H, OCH\(_2\)), 3.39 (m, 2H, OCH\(_2\)), 3.21 (s, 3H, OCH\(_3\)), 3.13 (m, 2H, OCH\(_2\)), 2.88 (m, 2H, OCH\(_2\)), 2.82 (m, 2H, OCH\(_2\)); \(^{13}\)C NMR \(\delta\) 155.52, 154.38, 154.01, 148.62, 134.37, 133.98, 131.77, 130.03, 129.64, 129.59, 129.54, 129.34, 128.06, 128.01, 126.62, 126.57, 125.68, 125.60, 123.97, 123.94, 120.82, 120.69, 116.63, 116.13, 115.87, 114.32, (Ar), 75.54 (OCH\(_2\)CH), 70.49, 69.86 69.17 (OCH\(_2\)), 66.59(ArCH\(_2\)O), 55.31 (OCH\(_3\)); Anal. calcd. for C\(_{58}\)H\(_{80}\)O\(_8\) (875.01): C 79.61, H 5.76, found C 79.32, H 5.80%.

Compound (S,S)-2d (67%), [\(\alpha\)]\(^{20}\)D = -111 (c 1, THF); \(^1\)H NMR \(\delta\) 7.97 (d, 2H, \(J = 9.0\) Hz, ArH), 7.92 (d, 2H, \(J = 9.0\) Hz, ArH), 7.86 (d, 2H, \(J = 8.0\) Hz, ArH), 7.84 (d, 2H, \(J = 9.5\) Hz, ArH), 7.47 (d, 2H, \(J = 9.0\) Hz, ArH), 7.43 (d, 2H, \(J = 9.0\) Hz, ArH), 7.32 (m, 4H, ArH), 7.19 (m, 6H, ArH), 7.10 (d, 2H, \(J = 8.5\) Hz, ArH), 6.31 (s, 2H, ArH), 5.07 (q, 4H, OCH\(_2\)Ar), 4.11 (m, 2H, OCH\(_2\)), 3.89 (m, 2H, OCH\(_2\)), 3.44 (m, 2H, OCH\(_2\)), 3.20 (m, 2H, OCH\(_2\)), 3.13 (s, 3H, OCH\(_3\)), 2.80 (s, 4H, OCH\(_2\)); \(^{13}\)C NMR \(\delta\) 154.10, 153.43, 152.81, 146.09, 134.13, 134.11, 129.91, 129.57, 129.47, 129.43, 128.02, 127.95, 126.56, 126.49, 125.53, 125.41, 125.08, 123.91, 123.83, 120.26, 120.09, 115.75, 114.79, 112.58, (Ar), 70.76, 70.38, 69.54, 69.45, 69.26, 68.82 (OCH\(_2\)), 68.01 (ArCH\(_2\)O), 55.25 (OCH\(_3\)); Anal. calcd. for C\(_{55}\)H\(_{46}\)O\(_8\) (834.95): C 79.12, H 5.55, found C 78.87, 5.52%.
Compound (S)-14 (52%, eluent: hexane-AcOEt = 1:1); 1H NMR δ 7.92 (d, 2H, $J = 9.0$ Hz, ArH), 7.84 (d, 2H, $J = 8.5$ Hz, ArH), 7.39 (d, 2H, $J = 9.0$ Hz, ArH), 7.31 (t, 2H, $J = 8.0$ Hz, ArH), 7.2 (t, 2H, $J = 8.0$ Hz, ArH), 7.15 (d, 2H, $J = 8.0$ Hz, ArH), 6.73 (s, 2H, ArH), 4.39 (d, 2H, $J = 15.5$ Hz, ArC$_2$H$_2$O), 4.21 (d, 2H, $J = 15.5$ Hz, ArC$_2$H$_2$O), 4.02 (m, 2H, ArOC$_2$H$_2$), 3.88 (m, 2H, ArOC$_2$H$_2$), 3.46 (m, 4H, OC$_2$H$_2$), 3.29 (m, 2H, OC$_2$H$_2$), 3.21 (m, 4H, OC$_2$H$_2$), 3.05 (m, 2H, OC$_2$H$_2$); 13C NMR δ 188.1, 186.9, 154.8, 146.0, 134.2, 132.3, 129.8, 129.7, 128.0, 125.8, 124.0, 121.1, 117.0, (Ar), 71.2, 71.1, 70.8, 70.3, 67.1, (OCH$_2$); Anal. calcd. for C$_{36}$H$_{34}$O$_8$ (594.65): C 72.71, H 5.76, found C 72.56, H 5.71%.

Compound (S,S)-15 (94%); 1H NMR δ 7.95 (t, 4H, $J = 10.0$ Hz, ArH), 7.86 (d, 4H, $J = 7.5$ Hz, ArH), 7.40 (d, 4H, $J = 9.0$, 3.5 Hz, ArH), 7.33 (m, 4H, ArH), 7.21 (t, 4H, $J = 8.0$ Hz, ArH), 7.15 (d, 2H, $J = 8.5$ Hz, ArH), 7.09 (d, 2H, $J = 8.5$ Hz, ArH), 6.27 (s, 2H, ArH), 4.82 (d, 2H, $J = 16.5$ Hz, ArC$_2$H$_2$O), 4.66 (d, 2H, $J = 16.5$ Hz, ArC$_2$H$_2$O), 4.10 (m, 2H, OCH$_2$), 3.93 (m, 2H, OCH$_2$), 3.48 (m, 2H, OCH$_2$), 3.32 (m, 2H, OCH$_2$), 3.18 (s, 4H, OCH$_2$); 13C NMR δ 186.94, 185.66, 153.92, 153.89, 153.84, 134.07, 133.94, 132.97, 131.76, 130.01, 129.81, 129.75, 129.46, 129.30, 127.92, 127.88, 126.60, 126.38, 125.52, 125.17, 124.24, 123.84, 121.86, 119.67, 117.61, 115.17 (Ar), 70.66, 70.46, 69.93, 69.17, 68.93, 68.72, 66.26 (OCH$_2$); Anal. calcd. for C$_{52}$H$_{42}$O$_8$ (818.91): C 79.20, H 5.17, found C 79.04, H 5.25%.

Synthesis of crowned azophenols (S)-3a and (S,S)-3b

Quinone (S)-14 or (S,S)-15 (0.2 mmol) and 2,4-DNPH (0.042 g, 0.21 mmol) were dissolved in EtOH-CHCl$_3$ = 1:1 mixture (5ml), one drop of 37% HCl was added and stirred overnight at ambient temperature. The solution was then diluted with CHCl$_3$ (10 ml), washed with dilute aq. HCl and dried. After removal of the solvent, the residue was chromatographed on silica to give 3a,b as orange solids.

Compound (S)-3a (59%, eluent: hexane-AcOEt = 6:4); 1H NMR δ 8.76 (d, 1H, $J = 2.0$ Hz, ArH), 8.48 (dd, 1H, $J = 9.0$, 2.5 Hz, ArH), 7.84 (m, 7H, ArH), 7.41 (d, 2H, $J = 9.0$ Hz, ArH), 7.21 (t, 2H, $J = 8.0$ Hz, ArH), 7.15 (d, 2H, $J = 8.5$ Hz, ArH), 6.73 (s, 2H, ArH), 4.39 (d, 2H, $J = 15.5$ Hz, ArC$_2$H$_2$O), 4.21 (d, 2H, $J = 15.5$ Hz, ArC$_2$H$_2$O), 4.02 (m, 2H, ArOC$_2$H$_2$), 3.88 (m, 2H, ArOC$_2$H$_2$), 3.46 (m, 4H, OC$_2$H$_2$), 3.29 (m, 2H,OC$_2$H$_2$), 3.21 (m, 4H, OC$_2$H$_2$), 3.05 (m, 2H, OC$_2$H$_2$); 13C NMR δ 188.1, 186.9, 154.8, 146.0, 134.2, 132.3, 129.8, 129.7, 128.0, 125.8, 124.0, 121.1, 117.0, (Ar), 71.2, 71.1, 70.8, 70.3, 67.1, (OCH$_2$); Anal. calcd. for C$_{36}$H$_{34}$O$_8$ (594.65): C 72.71, H 5.76, found C 72.56, H 5.71%.

Compound (S,S)-15 (94%); 1H NMR δ 7.95 (t, 4H, $J = 10.0$ Hz, ArH), 7.86 (d, 4H, $J = 7.5$ Hz, ArH), 7.40 (dd, 4H, $J = 9.0$, 3.5 Hz, ArH), 7.33 (m, 4H, ArH), 7.21 (t, 4H, $J = 8.0$ Hz, ArH), 7.15 (d, 2H, $J = 8.5$ Hz, ArH), 7.09 (d, 2H, $J = 8.5$ Hz, ArH), 6.27 (s, 2H, ArH), 4.82 (d, 2H, $J = 16.5$ Hz, ArC$_2$H$_2$O), 4.66 (d, 2H, $J = 16.5$ Hz, ArC$_2$H$_2$O), 4.10 (m, 2H, OCH$_2$), 3.93 (m, 2H, OCH$_2$), 3.48 (m, 2H, OCH$_2$), 3.32 (m, 2H, OCH$_2$), 3.18 (s, 4H, OCH$_2$); 13C NMR δ 186.94, 185.66, 153.92, 153.89, 153.84, 134.07, 133.94, 132.97, 131.76, 130.01, 129.81, 129.75, 129.46, 129.30, 127.92, 127.88, 126.60, 126.38, 125.52, 125.17, 124.24, 123.84, 121.86, 119.67, 117.61, 115.17 (Ar), 70.66, 70.46, 69.93, 69.17, 68.93, 68.72, 66.26 (OCH$_2$); Anal. calcd. for C$_{52}$H$_{42}$O$_8$ (818.91): C 79.20, H 5.17, found C 79.04, H 5.25%.
Hz, ArH), 7.32 (t, 2H, J = 6.5 Hz, ArH), 7.21 (t, 2H, J = 8.0 Hz, ArH), 7.17 (d, 2H, J = 8.0 Hz, ArH), 4.60 (d, 2H, J = 12.0 Hz, ArCH₂O), 4.56 (d, 2H, J = 11.5 Hz, ArCH₂O), 4.10 (m, 2H, ArOCH₂), 4.03 (m, 2H, ArOCH₂), 3.55 (m, 4H, OCH₂), 3.44 (m, 2H, OCH₂), 3.37 (m, 2H, OCH₂), 3.28 (m, 4H, OCH₂); ¹³C NMR δ 160.95, 154.71, 149.21, 147.19, 146.74, 146.13, 134.25, 129.77, 129.49, 128.03, 127.82, 126.43, 126.22, 125.84, 125.74, 123.99, 121.11, 120.32, 120.27, 116.80, (Ar), 70.40, 70.09, 70.03, 70.00, 69.86, (OCH₂); Anal. calcd. for C₄₂H₃₈N₄O₁₁ (774.77): C 65.11, H 4.94, N 7.23, found C 64.89, H 5.01, N 7.12%.

Compound (S,S)-3b (40%, eluent: hexane-AcOEt = 7:3); ¹H NMR δ 8.77 (d, 1H, J = 2.0 Hz, ArH), 8.50 (dd, 1H, J = 8.5, 2.0 Hz, ArH), 7.98 (d, 2H, J = 9.0 Hz, ArH), 7.88 (m, 5H, ArH), 7.82 (d, 2H, J = 8.0 Hz, ArH), 7.64 (m, 2H, ArH), 7.51 (d, 2H, J = 9.0 Hz, ArH), 7.37-7.29 (m, 6H, ArH), 7.24-7.19 (m, 4H, ArH), 7.12 (m, 4H, ArH), 5.18 (d, 2H, J = 12.5 Hz, ArCH₂O), 5.07 (d, 2H, J = 12.0 Hz, ArCH₂O), 4.06 (m, 2H, OCH₂), 3.87 (m, 2H, OCH₂), 3.44 (m, 2H, OCH₂), 3.26 (m, 2H, OCH₂), 2.99 (q, 4H, OCH₂); ¹³C NMR δ 158.44, 154.22, 153.75, 149.23, 147.19, 146.50, 146.04, 134.26, 134.22, 129.99, 129.79, 129.62, 128.13, 128.10, 127.73, 126.79, 126.71, 125.80, 125.64, 125.11, 124.85, 124.32, 124.03, 121.17, 120.58, 120.32, 119.79, 115.94, 115.50, (Ar), 70.63, 69.87, 69.34 (OCH₂), 68.70 (ArCH₂O); Anal. calcd. for C₆₀H₄₆N₄O₁₁ (999.03): C 72.13, H 4.64, N 5.60, found C 71.97, H 4.62, N 5.50%.

Acknowledgements

Financial support from the Hungarian Scientific Research Found (OTKA No. T 046055) is gratefully acknowledged. One of the authors (É. K.) thanks the Varga József Foundation for fellowship.

References

Caption of Figures and Schemes

FIGURE 1. Anisyl-appended crown ethers and proton-ionizable chromoionophores

FIGURE 2. Mono- and bis(binaphthocrown)ether target molecules 1 and 2 and chromoionophores 3a,b derived from them

FIGURE 3. Spectral changes of (S)-3a upon addition of 1°-3° amines. [3a] = 10^{-4} M, [amine] = 10^{-1} M, solvent: chloroform and acetonitril

FIGURE 4. Spectral changes of (S,S)-3b upon addition of 1°-3° amines. [3b] = 10^{-4} M, [amine] = 10^{-1} M, solvent: chloroform and acetonitril

SCHEME 1. Synthesis of binaphthomonocrowns 1a-c. Reagents and conditions: (i) diethylene glycol, powdered NaOH, 100°C (5a-c), (ii) TsCl, THF, powdered KOH, 0°C, (iii) BINOL, K$_2$CO$_3$, MeCN, 80°C

SCHEME 2. Synthesis of bis(binaphtho)crowns 2a-c. Reagents and conditions: (i/1) 4a,d, K$_2$CO$_3$, MeCN, 80°C (8a,b), (i/2) TsO(CH$_2$CH$_2$O)$_{3,4}$Ts, K$_2$CO$_3$, MeCN, 80°C (10a,b), (ii) aq. NaOH, EtOH, 80°C (9a,b 11a,b); (iii) TsO(CH$_2$CH$_2$O)$_{3,4}$Ts, K$_2$CO$_3$ (2a,b) or Cs$_2$CO$_3$ (2c), MeCN, 80°C (route A); (iv) 4a, Cs$_2$CO$_3$, MeCN, 80°C (route B)

SCHEME 3. Synthesis of chromogenic (S)-3a and (S,S)-3b. Reagents and conditions: (i) Pd/C, p-TsOH, EtOH/THF, Δ (2d); (ii) Ce(NH$_4$)$_2$(NO$_3$)$_6$, aq. MeCN, rt; (iii) 2,4-DNPH, EtOH/CHCl$_3$, H$^+$, rt.
Graphical abstract

Figures and Schemes

FIGURE 1. Anisyl-appended crown ethers and proton-ionizable chromoionophores.
FIGURE 2. Mono-and bis(binaphthocrown)ether target molecules 1 and 2 and chromoionophores 3a,b derived from them.

FIGURE 3. Spectral changes of (S)-3a upon addition of 1°-3° amines. [3a] = 10⁻⁴ M, [amine] = 10⁻¹ M, solvent: chloroform and acetonitrile.
FIGURE 4. Spectral changes of (S,S)-3b upon addition 1°-3° amines. $[3b] = 10^{-4}$ M, [amine] = 10^{-1} M, solvent: chloroform and acetonitrile

SCHEME 1. Synthesis of binaphthomonocrowns 1a-c. Reagents and conditions: (i) diethylene glycol, powdered NaOH, 100°C (5a-c), (ii) TsCl, THF, powdered KOH, 0°C, (iii) BINOL, K$_2$CO$_3$, MeCN, 80°C
SCHEME 2. Synthesis of bis(binaphtho)crowns 2a-c. Reagents and conditions: (i/1) 4a,d, K$_2$CO$_3$, MeCN, 80°C (8a,b), (ii) TsO(CH$_2$CH$_2$O)$_3$Ts, K$_2$CO$_3$, MeCN, 80°C (10a,b), (ii) aq. NaOH, EtOH, 80°C (9a,b, 11a,b); (iii) TsO(CH$_2$CH$_2$O)$_3$Ts, K$_2$CO$_3$ (2a,b) or Cs$_2$CO$_3$ (2c), MeCN, 80°C (route A); (iv) 4a, Cs$_2$CO$_3$, MeCN, 80°C (2a) (route B).

SCHEME 3. Synthesis of chromogenic (S)-3a and (S,S)-3b. Reagents and conditions: (i) Pd/C, p-TsOH, EtOH/THF, Δ (2d); (ii) Ce(NH$_4$)$_2$(NO$_3$)$_6$, aq. MeCN, rt; (iii) 2,4-DNPH, EtOH/CHCl$_3$, H$^+$, rt.
Table 1. Absorption maxima of the coloured species of (S)-3a and (S,S)-3b with chiral amines

<table>
<thead>
<tr>
<th>Host</th>
<th>Amine</th>
<th>λ_{max}/nm (ε)</th>
<th>Δλ_{max} (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CHCl₃</td>
<td>MeCN</td>
</tr>
<tr>
<td>(S)-3a</td>
<td>(R)-PEA</td>
<td>576 (18310)</td>
<td>600 (24020)</td>
</tr>
<tr>
<td>(S)-3a</td>
<td>(S)-PEA</td>
<td>576 (16550)</td>
<td>602 (25240)</td>
</tr>
<tr>
<td>(S,S)-3b</td>
<td>(R)-PEA</td>
<td>576 (7740)</td>
<td>610 (33230)</td>
</tr>
<tr>
<td>(S,S)-3b</td>
<td>(S)-PEA</td>
<td>576 (9150)</td>
<td>610 (33340)</td>
</tr>
<tr>
<td>(S)-3a</td>
<td>(+)-E</td>
<td>548 (20750)</td>
<td>592 (18260)</td>
</tr>
<tr>
<td>(S)-3a</td>
<td>(-)-E</td>
<td>556 (18000)</td>
<td>604 (28200)</td>
</tr>
<tr>
<td>(S,S)-3b</td>
<td>(+)-E</td>
<td>572 (15360)</td>
<td>610 (36380)</td>
</tr>
<tr>
<td>(S,S)-3b</td>
<td>(-)-E</td>
<td>572 (16470)</td>
<td>610 (35510)</td>
</tr>
</tbody>
</table>

* t = 25°C, PEA: phenylethylamine, E: ephedrine, (+): 1S,2R; (-): 1R,2S
FIGURE 1. Anisyl-appended crown ethers and proton-ionizable chromoionophores

\[\text{Ind} = \text{nitro, (d)nitrophenylazo, etc. chromophores} \]

203x79mm (600 x 600 DPI)
FIGURE 2. Mono- and bis(binaphthocrown)ether target molecules 1 and 2 and chromoionophores 3a, b derived from them

R1 = H, R2 = Me, n = 2 (a), 3 (b)
R1 = MeO, R2 = allyl, n ≈ 2 (c)
R1 = MeO, R2 = H, n = 2 (d)

190x170mm (600 x 600 DPI)
Spectral changes of (S)-3a upon addition of 1°-3° amines. [3a] = 10^{-4} M, [amine] = 10^{-1} M, solvent: chloroform and acetonitril

150x44mm (600 x 600 DPI)
Spectral changes of (S,S)-3b upon addition of 1°-3° amines. [3b] = 10⁻⁴ M, [amine] = 10⁻¹ M, solvent: chloroform and acetonitril
152x44mm (600 x 600 DPI)