Synthesis of highly functionalized fluorinated porphyrins
Tomas Briza, Robert Kaplánek, Vladimir Král

To cite this version:

Synthesis of highly functionalized fluorinated porphyrins

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Supramolecular Chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>GSCH-2006-0074.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Full Paper</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>06-Nov-2006</td>
</tr>
</tbody>
</table>
| Complete List of Authors: | Briza, Tomas; ICT - Prague
Kaplánek, Robert; ICT-Prague
Král, Vladimír; ICT Prague, Analytical Chem |
| Keywords: | fluorinated dendritic structure, polyfluoroalkylated porphyrin, fluorous, porphyrin core |
Synthesis of highly functionalized fluorinated porphyrins

TOMÁŠ BŘÍZAab*, ROBERT KAPLÁNEKab*, MARTIN HAVLÍKA, BOHUMIL DOLENSKÝa, ZDENĚK KEJÍKA, PAVEL MARTÁSEKb and VLADIMÍR KRÁLA

aDepartment of Analytical Chemistry, Institute of Chemical Technology in Prague, Technická 5, Prague 6, 16628, Czech Republic
bFirst Faculty of Medicine, Charles University in Prague, Kateřinská 32, Prague 2, 12108, Czech Republic

*corresponding authors: ftor@seznam.cz (T. Bříza), robert.kaplanek@vscht.cz (R. Kaplánek);
fax: (+420) 224 310 352

Highly functionalized fluorinated porphyrins were synthesized by a convergent strategy. Nucleophilic substitution using fluorinated branched unit and 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin afforded highly functionalized fluorinated porphyrin 8 containing twenty-four fluorinated chains in the peripheral region.

Keywords: fluorinated dendritic structure, polyfluoroalkylated porphyrin, fluorous, porphyrin core
INTRODUCTION

Fluorinated highly branched structures are a specific class of highly functionalized compounds possessing remarkable properties. Several fluorinated dendrimers have been synthesized to date [1]. These fluorinated macromolecules can be utilized, for example, as surfactants in biphasic systems [2], phase transfer catalysts [3], and nanoreactors [4]. In the field of material science they have been used as electron transport materials for organic light-emitting diodes [5], materials for non-linear optic [6] and, in the field of biomedical chemistry, as drug delivery systems [7]. Known fluorinated highly branched structures reported previously contain core such as aryls [8], alkylsilanes [9], aminoalkylmethanes [2], azacrowns [10], thiophosphates [11], fluorophenyls [12], cations of transition metals [13], etc. To the best of our knowledge, there are only a few polyfluoralkylated porphyrins.

In 1997 Pozzi et al. prepared highly fluorinated porphyrin [14]. It contained eight polyfluorinated chains and was used as a ligand for fluorous biphasic catalysis [14]. In 2002 we prepared porphyrin substituted with four polyfluorinated chains, which showed complexation ability for fluorinated aromatic compounds [15]. Thus, our aim is to develop synthetic routes for the preparation of highly functionalized fluorinated porphyrins which could serve in novel investigations.

RESULTS AND DISCUSSION

Our strategy for preparation of highly functionalized fluorinated porphyrins is based on, analogous to syntheses of dendrimers, convergent approach. Suitable dendrons are synthesized and then connected to the porphyrin skeleton. The design utilizes highly functionalized benzene derivatives.
Initially, we looked for a suitable building block for the construction of the branched fluorinated unit. We chose methyl gallate, because it enables the connection of three fluorinated units via hydroxyl groups. Moreover, it bears an ester moiety, which can be employed after another transformation (reduction) as a focal site for monomer connectivity.

As a model dendritic unit we chose a gallate substituted with three 3-(perfluorohexyl)propyl chains. Similar gallates with three fluorinated chains was already prepared [16], but the fluorinated chains were separated from the gallate group by a four carbon spacer. Our method enables one to prepare dendrons whereby perfluoralkylated chains are insulated by three carbon spacers only. As a fluoroalkylating agent we used 3-(perfluorohexyl)propyl triflate prepared under similar conditions to those of 2-(perfluorohexyl)ethyl triflate [17], [18]. The triflate was reacted with the trisodium salt of gallate and the reaction afforded corresponding polyfluorinated gallate 2. The gallate ester 2 was reduced to alcohol 3 by LiAlH₄. The alcohol 3 was oxidized by mangan (IV) oxide to aldehyde 4. Figure 1
For final synthesis to attain dendritic fluorinated porphyrins we chose two synthetic approaches. In the first approach we tried to utilize the common method for the construction of porphyrins from an aldehyde and pyrrole [19]. Thus, we reacted aldehyde 4 with pyrrole under conditions for preparation of the porphyrins [19]. Unfortunately, the reaction afforded only a complex and intractable mixture of unidentified compounds.

Therefore, we applied the second approach, based on the nucleophilic substitution of 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin by fluorinated alcohol 3. Alcohol 3 was converted to corresponding sodium salt with NaH and reacted with the porphyrin in DMF. The reaction afforded polyfluorinated porphyrin 5 with twelve perfluorohexyl chains in the peripheral region. Figure 2.

![Diagram of synthesis of porphyrin 5]

FIGURE 2 Synthesis of porphyrin 5

Because the model synthesis of fluorinated porphyrin 5 was successful, we decided to utilize this approach for the construction of larger fluorinated dendritic porphyrins with double the number of fluorinated chains. Initially, it was necessary to prepare a suitable dendron with the required number of fluorinated chains. At this point, we were able use to great advantage our recently published branched fluorinated triflate [20]. According to our published results we prepared corresponding fluorinated gallate 6 with six fluorinated chains from gallate 1 and branched triflate. The ester group was reduced with LiAlH₄ to alcohol 7.
Alcohol 7 was used according to the model reaction with compound 3 described above, for the construction of a fluorinated porphyrin 5. Compound 7 was transformed to the sodium salt with NaH and reacted with 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin. The reaction afforded highly functionalized fluorinated porphyrin 8 with twenty-four fluorinated chains in the peripheral region. Figure 3.

![Reaction Scheme](image)

FIGURE 3 Synthesis of porphyrin 8

The solubility of both porphyrins 5 and 8 is dramatically different. The porphyrin 5 is soluble in common organic solvents as dichloromethane, chloroform, diethyl ether, acetone etc. On the other hand, porphyrin 8 with twofold number of fluorinated chains dramatically decreased its solubility in common organic solvents with the exception of diethyl ether in which it is surprisingly well soluble. The solubility of porphyrin 8 can be enhanced by adding freon CCl3F (F 113) to common solvents. Thus, NMR spectra were successfully obtained in a mixture of CDCl3 and F 113.
The detailed structure of porphyrin 8 is shown below. Figure 4.

FIGURE 4 Porphyrin 8 (C_{321}H_{206}F_{328}N_{4}O_{16})

CONCLUSION

We have synthesized fluorinated highly functionalized porphyrins 5 and 8 by a convergent synthesis. The synthesis was based on a nucleophilic substitution between dendritic units 3, 7 and 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin. Porphyrins 5 and 8 will be studied as a potential ligands, drug delivery systems, and as a possible shuttle for the transport of gases.
EXPERIMENTAL

Measurements and materials

All chemicals were purchased from Aldrich and used without further purification. All reactions required anhydrous conditions were performed using dried solvents and under argon atmosphere. NMR spectra were recorded on a Varian Gemini 300 HC (FT, 1H at 300MHz, 13C at 75 MHz, 19F at 281 MHz) instrument using TMS and CFCl$_3$ as the internal standards. Chemical shifts are quoted in ppm (δ-scale; s-singlet, bs-broad singlet, d-doublet, t-triplet, q-quadruplet, m-multiplet), coupling constants J in Hz, solvents CDCl$_3$. IR spectrometry analyses were performed on a Bruker IFS 66v/S instrument. Mass spectrometry analyses were performed on a Hewlett-Packard GC HP5890 instrument.

Compound 2

A flask was charged with sodium hydride (60% suspension in mineral oil, 160 mg, 3.96 mmol) and THF (3 mL). The mixture was cooled to 0 °C and solution of methyl gallate 1 (220 mg, 1.19 mmol) in THF (5 mL) was slowly added. When addition was complete, next portion of THF (30 mL) was added to the mixture. Then cooling bath was removed and the mixture was stirred at laboratory temperature for 30 min. After this time, solution of [3-(perfluorohexyl)propyl] triflate (2.00 g, 3.92 mmol) in THF (12 mL) was dropped to the reaction mixture. When addition was complete, the mixture was refluxed for 1 h. After this time, the mixture was diluted with water (10 mL) and brine (50 mL). The mixture was extracted with diethyl ether (3×50 mL). The organic phase was dried over MgSO$_4$. Drying agent was removed by filtration and solvent was evaporated by means of vacuum rotary evaporator. The product was separated by column chromatography on silica (2.5×25 cm,
eluent – dichloromethane). The product 2 was obtained as yellowish viscous oil (1.210 g, 80 %).

1H NMR (CDCl$_3$) $\delta = 2.01$ (m, 2H), 2.14 (m, 4H), 2.38 (m, 6H), 3.89 (s, 3H), 4.59 (t, 2H, 3J$_{HH}$ = 5.6), 4.12 (t, 4H, 3J$_{HH}$ = 5.9), 7.29 (s, 2H); 13C NMR (CDCl$_3$) $\delta = 20.6$ (s, 2C), 21.5 (s, 1C), 27.8 (t, 3C, 2J$_{CF}$ = 22), 52.0 (s, 1C), 67.2 (s, 2C), 71.9 (s, 1C), 108.2 (s, 2C), 107.0-120.0 (m, 18C), 125.7 (s, 1C), 141.6 (s, 1C), 152.3 (s, 2C), 166.4 (s, 1C); 19F NMR (CDCl$_3$) $\delta = -81.3$ (m, 9 F), -115.2 (m, 6F), -122.5 (m, 6F), -123.5 (m, 6F), -124.4 (m, 6F), -126.8 (m, 6F). Anal. Calcd for C$_{35}$H$_{23}$F$_{39}$O$_5$: C, 33.25; H, 1.83; Found: C, 33.74; H, 2.34.

Compound 3

A flask was charged with gallate 2 (100 mg, 79 μmol) and diethyl ether (5 mL). The mixture was cooled to −78 °C and LiAlH$_4$ (1 M solution in diethyl ether, 9 mg, 237 μmol) was slowly added. Then, the cooling bath was removed and the mixture was stirred at laboratory temperature for 1 h. The reaction was quenched with MeOH (2 mL), diluted with water (50 mL) and mixture was extracted with diethyl ether (3×50 mL). The organic phase was dried over MgSO$_4$. Drying agent was removed by filtration and solvent was evaporated by means of vacuum rotary evaporator. The product was separated by column chromatography on silica (2.5×20 cm, eluent – diethyl ether). The product 3 was obtained as yellowish viscous oil (91 mg, 93 %).

1H NMR (CDCl$_3$) $\delta = 2.00$ (m, 2H), 2.12 (m, 4H), 2.35 (m, 6H), 3.95 (t, 2H), 4.08 (t, 4H), 4.62 (s, 2H), 6.60 (s, 2H); 13C NMR (CDCl$_3$) $\delta = 20.6$ (s, 2C), 21.3 (s, 1C), 27.8 (t, 2C, 2J$_{CF}$ = 22), 27.9 (t, 1C, 2J$_{CF}$ = 22), 65.1 (s, 1C), 67.5 (s, 2C), 71.8 (s, 1C), 105.3 (s, 2C), 107.0-122.0 (m, 18C), 136.7 (s, 1C), 137.1 (s, 2C), 152.6 (s, 1C); 19F NMR (CDCl$_3$) $\delta = -81.4$ (m, 9 F), -114.9 (m, 6F), -122.5 (m, 6F), -123.4 (m, 6F), -124.1 (m, 6F), -126.8 (m, 6F). Anal. Calcd for C$_{34}$H$_{23}$F$_{39}$O$_4$: C, 33.03; H, 1.87; Found: C, 33.54; H, 2.49.
Compound 4

A flask was charged with gallate 3 (1.01 g, 0.82 mmol), dichloromethane (20 mL) and mangan (IV) oxide (248 mg, 2.85 mmol). The mixture was stirred under reflux for 4 h and then next portion of mangan (IV) oxide (250 mg, 2.88 mmol) was added, heating bath was removed and the mixture was stirred at laboratory temperature overnight. Then the mixture was evaporated to dryness, diluted with diethyl ether and filtered. The product was separated by column chromatography (2.5×25 cm, eluent – dichloromethane). The isolation afforded product 4 as viscous colorless oil (260 mg, 26 %) and starting alcohol (430 mg).

1H NMR (CDCl$_3$) δ = 2.03 (m, 2H), 2.15 (m, 4H), 2.35 (m, 6H), 4.11 (t, 2H, 3J$_{HH}$ = 5.8), 4.14 (t, 4H, 3J$_{HH}$ = 5.8), 7.16 (s, 2H), 9.84 (s, 1H); 13C NMR (CDCl$_3$) δ = 20.6 (s, 2C), 21.5 (s, 1C), 27.8 (t, 2C, 2J$_{CF}$ = 22), 67.7 (s, 2C), 72.0 (s, 1C), 108.1 (s, 2C), 107.5-121.7 (m, 18C), 132.1 (s, 2C), 143.0 (s, 1C), 153.0 (s, 1C), 190.7 (s, 1C); 19F NMR (CDCl$_3$) δ = -81.58 (t, 6F, 3J$_{FF}$ = 10), -81.64 (t, 3F, 3J$_{FF}$ = 10) -115.0 (m, 6F), -122.5 (m, 6F), -123.5 (m, 6F), -124.1 (m, 6F), -126.8 (m, 6F). Anal. Calcd for C$_{34}$H$_{21}$F$_{39}$O$_4$: C, 33.08; H, 1.71; Found: C, 33.31; H, 1.92.

Porphyrin 5

A flask was charged with compound 3 (50 mg, 40 µmol), anhydrous DMF (2 mL) and sodium hydride (60 % suspension in mineral oil, 2 mg, 84 µmol). The mixture was stirred at laboratory temperature for 20 min. The 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin was added and the mixture was heated to 90 ºC overnight. Then the mixture was evaporated to dryness and product was separated by column chromatography on silica (2×20 cm, eluent – dichloromethane/petroleum ether 1:1). The product 5 was obtained as dark red wax (7 mg, 11 %).
Compound 7

A flask was charged with compound 6 (880 mg, 0.36 mmol) and THF (40 mL). The mixture was cooled to 0 °C and LiAlH₄ (1 M solution in diethyl ether, 20 mg, 0.53 mmol) was slowly dropped under vigorous stirring. Then the mixture was stirred for 30 minutes at this temperature and then was slowly warmed to laboratory temperature within 15 min. The reaction was quenched with MeOH (3 mL), diluted with water (50 mL) and mixture was extracted with diethyl ether (3×50 mL). The organic phase was dried over MgSO₄. Drying agent was removed by filtration and solvent was evaporated by means of vacuum rotary evaporator. The product was separated by column chromatography on silica (2.0×20 cm, eluent – hexane/dichloromethane – 1:1). The product 7 was obtained as yellowish viscous oil (760 mg, 87%).

1H NMR (CDCl₃) δ 1.50 – 1.74 (m, 24H), 1.82-1.90 (m, 3H), 1.98-2.14 (m, 12H), 3.83 (d, 1H, J₃HH = 5.49), 3.92 (d, 2H, J₃HH = 4.94), 4.63 (s, 2H), 6.59 (s, 2H). **13C NMR (CDCl₃)** δ 17.7 (s, 12C), 30.9 (t, 6C, JCF = 26), 38.2 (s, 2C), 38.9 (s, 1C), 65.4 (s, 1C), 70.6 (s, 2C), 75.2 (s, 1C), 104.9 (s, 2C), 107.4-121.7 (m, 36C), 136.7 (s, 2C), 136.9 (s, 1C), 152.9 (s, 1C).

19F NMR (CDCl₃) δ -81.6 (m, 18F), -115.1 (m, 12F), -122.6 (m, 12F), -123.6 (m, 12F), -124.3 (m, 12F), -126.9 (m, 12F). MS (LRMS): for C₁₈₀H₉₈F₁₇₂Na₄O₁₆ Calculated: 2401, Found: 2400.
Porphyrid 8

A flask was charged with compound 7 (270 mg, 0.11 mmol), anhydrous DMF (10 mL) and sodium hydride (60 % suspension in mineral oil, 10 mg, 0.25 mmol). The mixture was stirred at laboratory temperature for 20 min. The 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin (10 mg, 0.01 mmol) was added and the mixture was heated to 90 °C overnight. The mixture was diluted with water (10 mL) and was extracted with trifluoromethyl toluene (2 ×10 ml). The organic phase was dried over MgSO₄. Drying agent was removed by filtration and solvent was evaporated by means of vacuum rotary evaporator. The product was separated by column chromatography on silica (2.5×20 cm, eluent – petroleum ether/dichloromethane 1:1). The product was obtained in a form of dark red semisolid wax (45 mg). The second purification was accomplished by preparative TLC on silica (20 × 20 cm, 2000 microns, eluent – petroleum ether/dichloromethane 3:1). The pure product 8 was obtained as red dark wax (30 mg, 28%).

1H NMR (CDCl₃/CCl₃F) δ -2.82 (s, 2H), 1.50 – 2.20 (m, 156H), 3.98 (d, 8H, 3J_HH = 5.23), 4.07 (d, 16H, 3J_HH = 4.95), 5.52 (s, 8H), 6.90 (s, 8H), 8.87 (s, 8H); 19F NMR (CDCl₃/CCl₃F) δ -81.6 (t, 72F, 3J_FF = 10), -115.1 (m, 48F), -122.6 (m, 48F), -123.6 (m, 48F), -124.3 (m, 48F), -126.9 (m, 48F), -138.9 (8F, dd, 3J_FF = 7.3, 4J_FF = 22.0), -156.9 (8F, dd, 3J_FF = 7.3, 4J_FF = 22.0); IR (KBr) cm⁻¹ 2924, 1499, 1368, 1241, 1206, 1145, 1121. MS (MALDI): for C₃₂₁H₂₀₆F₃₂₈N₄O₁₆ Calculated: 10498.61, Found: 10499.52.

Acknowledgement

The authors thank the Grant agency of Czech Academy of Science for financial support of this project, Grant No. KJB 401 280 501, and MSMT (CAG, 1M6837805002), MSMT (0021620806).
Reference

FIGURE 1 Synthesis of model dendritic units
FIGURE 2 Synthesis of porphyrin 5
FIGURE 3 Synthesis of porphyrin 8
FIGURE 4 Porphyrin 8 (C_{321}H_{206}F_{328}N_{4}O_{16})