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Dispersion energies for small organic molecules:
First row atoms

By Alston J. Misquitta∗†,‡ and Anthony J. Stone,†

†University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, U.K.
‡University College London, 20 Gordon Street, London, WC1H 0AJ, U.K.

May 27, 2008

Accurate atom–atom dispersion coefficients are needed if we are to be able to successfully model
the intermolecular interactions between organic molecules. To go beyond the usual C6 description we
have to resort to accurate ab initio methods, and we use the Williams–Stone–Misquitta methodology
to obtain anisotropic distributed dispersion coefficients to C12 on each atomic site. Comparisons with
SAPT(DFT) energies show that the resulting descriptions are very accurate, even for molecular con-
tacts, where the asymptotic series is thought to be invalid. The complexity of our most accurate models
limits their applicability, so we explore simplifications that are more suitable for use in calculations of
the condensed phase, in particular, we describe a means of calculating optimized isotropic C6 models
that can be readily used in conventional programs.

1 Introduction
The dispersion energy plays a fundamental role in the bonding of gases, liquids and many solids. Of particular
importance is the role of the dispersion in biological systems and organic crystals, where it is perhaps second in
importance only to the electrostatic and polarization interactions found in hydrogen-bonding systems, but of pri-
mary importance where π-stacking is important. But it must not be forgotten that while the electrostatic, induction
(also called polarization) and dispersion are all long-range interactions, the dispersion is always present between
every pair of atoms and always attractive, so its cumulative effect can be very high, particularly in the condensed
phase.

It is often argued that the dispersion is fairly isotropic and consequently can be considered to be a correction to
the more anisotropic electrostatic and induction interactions. This is only partly true. For many systems the disper-
sion is indeed less sensitive to orientation, but in systems exhibiting π-stacking the anisotropy can be considerable,
for here, besides the geometric anisotropy associated with a planar molecule, the atomic polarizabilities exhibit
an intrinsic anisotropy that is reflected in strongly anisotropic atom–atom dispersion coefficients. The geometric
anisotropy can be described using an isotropic atom–atom description, but the intrinsic anisotropy should require
the explicit inclusion of anisotropy in the atom–atom terms.

Anisotropic atom–atom dispersion models are bound to be complex, and they will not always be needed. After
all, the missing anisotropy can be at least partially absorbed in the anisotropic short-range part of the potential, as
is done in many ab initio potentials1–3. Even in empirical potentials that include the dispersion only through an
isotropic −C6/R6 term a partial inclusion of the anisotropy is possible through the anisotropy in the electrostatic
term, if present. For example, one of the important anisotropic R−6 dispersion terms has the same angular depen-
dence as the quadrupole–quadrupole (R−5) electrostatic interaction4, and the radial behaviour is very similar over
a short distance close to contact.

To decide quantitatively on the importance of the anisotropy, we need a means of calculating anisotropic atom–
atom dispersion coefficients accurately and in a computationally efficient manner. Empirical methods cannot be
used in the construction of anisotropic models due to the large number of parameters involved. Rather we must
rely on theoretical methods. Further, if we are to achieve a new level of accuracy in the description of the dispersion
energy, we need to go beyond the −C6/R6 term and include contributions from the C7, C8, and higher-order terms.
Once again, only theoretical methods can provide us with these terms.

Until recently, there were very few theoretical methods for obtaining atom–atom dispersion coefficients of
organic molecules, and none of them were really suitable for small organic molecules. One of the approaches
used has been to fit an atom–atom model to dispersion energies calculated either from a perturbation theory like
symmetry-adapted perturbation theory (SAPT)5–7, or the more modern version based on density functional theory
(SAPT(DFT))8–14 or from dispersion energies calculated from a single-centre asymptotic expansion. This method
∗Corresponding author: phone +44 1223 763874; fax +44 1223 336362; email am592@cam.ac.uk.
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has been used to obtain distributed dispersion coefficients for the water dimer2 and the benzene dimer3, but has
many serious limitations. First of all, the resulting description may be unphysical, as the parameters are always
strongly coupled, and may be ill-defined if the atoms are ‘buried’ under other atoms. Second, anisotropic dispersion
coefficients cannot be obtained using this method because of the large number of parameters involved. Lastly,
for a well-defined fit, a large number of dispersion energies need to be calculated; if calculated with SAPT or
SAPT(DFT), this can be a computationally expensive step, and if calculated using a single-centre asymptotic
expansion, the resulting energies will be nearly useless for even the smallest of organic molecules owing to the
large sphere of divergence15 associated with such an expansion.

The more successful methods for calculating atom–atom dispersion models have been based on a distribution
of molecular polarizabilities which have been recently reviewed16,17. Methods based on real-space partitioning,
such as that proposed by Hattig et al.18 seem to be slowly convergent, and are not ideal for practical use; while
those based on fitting distributed polarizability models to point-to-point polarizabilities calculated on a grid around
the molecule, such as that proposed by Williams & Stone19, require considerable effort to avoid the presence of
unphysical terms, and this can make the calculation of higher-rank polarizabilities very tedious. Arguably the most
successful method for calculating distributed polarizabilities is the Williams–Stone–Misquitta (WSM) method20,21,
which is a combination of the constrained density-fitted distribution of Misquitta & Stone16 and the Williams &
Stone method. There are a number of features of the WSM method that make it ideal for calculating dispersion
models:

• It can be applied to frequency-dependent polarizabilities, which is essential for calculating dispersion coef-
ficients.

• There are no known basis set restrictions. This is quite important as fairly large and diffuse basis sets are
needed to calculate accurate polarizabilities.

• High ranks are possible. At present, this method has been used to calculate polarizabilities to rank 3.

• The polarizabilities are calculated using linear response DFT using the same functional as used in a standard
SAPT(DFT) calculation. Therefore, the polarizabilities, and consequently, the dispersion coefficients are
consistent with SAPT(DFT) energies. This is an essential requirement when building an analytic potential.

• The atomic polarizabilities are physically reasonable, and the very few instances of loss of positive-definiteness
occur mainly in the high-rank terms.

• The WSM polarizability model can be chosen to suit the problem. This has the advantage of allowing us to
create a dispersion model as simple or complex as needed. Further, exact or approximate symmetries can be
trivially imposed on the model, which can significantly simplify the resulting dispersion description.

• Additionally, the WSM polarizabilities can be calculated for small organic molecules at relatively modest
computational expense.

In this paper we have set out to describe the dispersion models that can be calculated using the WSM polariz-
abilities and provide quantitative answers to the questions that arise when setting out to perform such a calculation.
These include questions of the basis sets that must be used, the order of terms that must be included for accurate
energies, and whether we can do without the explicit anisotropy in the dispersion description. These are important
questions when high-accuracy benchmarks are needed, but are probably of little concern in practice owing to the
relatively large computational cost of evaluating energies using our most complicated description. So we will also
explore isotropic models — in particular, the popular isotropic C6 model. Such models could herald a new gener-
ation of accurate atom–atom potentials that are derived from first principles alone, but are no more complex than
conventional empirical potentials. These models could also benefit the dispersion-corrected DFT methods such as
those of Grimme and colleagues22, which currently rely on empirical dispersion terms but are otherwise derived
ab initio.

We will limit our investigations to molecules containing atoms from the first row of the periodic table. Molecules
containing atoms from the second and third rows, in particular the halogens, are expected to exhibit a large intrinsic
anisotropy. We will explore such systems in a subsequent paper.

This paper is organised as follows. In sec. 2 we present the basic theoretical background of the WSM method,
the dispersion models and SAPT(DFT). The numerical details of the calculations are described in sec. 3, and in
sec. 4 we describe the methods we have used to display our results. In secs. 5 and 6 we discuss the important topics
of damping and the basis sets to be used for calculations of the models. The main body of our results is in sec. 7,
where we explore a range of dispersion models of different order and complexity for a variety of systems. Isotropic
C6 models are discussed in sec. 8, and we summarize our results in sec. 9.
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2 Theory

2.1 The Williams–Stone–Misquitta (WSM) method
The WSM method for calculating distributed (frequency-dependent) polarizabilities has been described in detail
elsewhere17,20,21, so we will provide only a brief outline of the method here. There are three main steps in this
procedure:

• First we obtain a distributed polarizability model that includes non-local polarizabilities and charge-flow
terms. This description is based on a partitioning of the density susceptibility function using a constrained
density-fitting algorithm16.

• Next, we use a localization scheme to transform away the non-local and charge-flow terms. We have usu-
ally used the localization scheme proposed by LeSueur & Stone23, but have recently adopted the method
proposed by Lillestolen & Wheatley24.

• The localization step results in a degradation of the convergence properties of the polarizability description.
To remedy this, we use the method of Williams & Stone19 to refine the local polarizability description to
reproduce a few million point-to-point polarizabilities computed on a grid around the molecule; typically
between the vdW×2 and vdW×4 surfaces (that is, surfaces at twice or 4 times the van der Waals radius from
each atom). The standard Williams & Stone method would result in unphysical terms in the description. In
order to prevent this, the refinement is done with quadratic constraints imposed with the values calculated
in the localization step used as anchors. Since we are dealing with frequency-dependent polarizabilities, we
have modified the coefficients of these constraints, the gkk′ of eq. 36 in ref. 20, to be

gkk′ (ω) = 0 if k , k′

gkk(ω) =

10−5/(1 + |ω|2) if k ∈ {10, 10c, 10s}
0 otherwise.

(1)

That is, only the dipole–dipole polarizabilities are constrained to remain close to the anchor values, with
weights that decrease with increasing magnitude of the frequency.

2.2 Dispersion models
Having obtained the localized frequency-dependent polarizabilities, we can now write the site-site dispersion en-
ergy in the form25

Easymp
disp = −

~

π

∑
a∈A,b∈B

T ab
tu T ab

t′u′

∫ ∞
0
αa

tt′ (iν)α
b
uu′ (iν)dν

= −
∑

a∈A,b∈B

Cab
6 (Ω)

R6
ab

+
Cab

7 (Ω)

R7
ab

+
Cab

8 (Ω)

R8
ab

+ · · ·

 , (2)

where a and b are sites on molecules A and B respectively, T ab
tu are the T -functions that contain the distance and

orientation information15, Rab is the distance between the two sites, and t, u, etc. are the angular momentum labels
and take on values 00, 10, 11c, 11s, · · · . The dispersion coefficients depend on the relative orientation Ω, and can
be described by a series in the orientational S functions15. The general formulation in terms of spherical tensors is
given by Stone & Tough4 and specific examples are given in refs. 19 and 26.

The dispersion coefficients depend on integrals of the form∫ ∞
0
αa

tt′ (iν)α
b
uu′ (iν)dν, (3)

where rank-l1 – rank-l′1 and rank-l2 – rank-l′2 polarizability tensors contribute to a Cn coefficient with n = l1 + l′1 +
l2 + l′2 + 2. At present, we are able to calculate WSM polarizabilities to rank 3, so while we can calculate C10 and
C12 terms, they will lack the contributions from the hexadecapole and higher-rank polarizabilities. As we shall see,
this is probably not a serious limitation. In any case, the present dispersion description is already cumbersome, and
the inclusion of terms of even higher order could make it almost unusable.

The integration in eq. 3 is performed numerically using Gauss–Legendre quadrature with the now standard
transformation ν = β(1 + t)/(1 − t) with β = 0.5 and a grid of 10 points.
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A word about the notation and terminology used: the dispersion energy calculated with an anisotropic model
in which Cn is the highest order term will be denoted by E(2)

disp,d(n) and described as a model of ‘order n’. Likewise,

if the model used includes only isotropic terms, the energy will be denoted by E(2)
disp,d(n, iso). We use ‘rank’ to

refer to the maximum rank of polarizabilities included in the model. The C10 and C12 models will generally be
calculated with a polarizability description of maximum rank 3, but the C10 model may also be calculated with
polarizabilities of maximum rank 2. The corresponding dispersion energies will be indicated by E(2)

disp,d(10(L2))

(E(2)
disp,d(10, iso(L2)) for the isotropic models).

2.3 SAPT(DFT) dispersion energies
Reference dispersion energies are calculated using SAPT(DFT)9,27. These energies are arguably some of the most
accurate possible for small organic molecules. Within SAPT(DFT), the dispersion has two components: E(2)

disp,pol is
the second-order dispersion energy defined through the polarization expansion5. Exchange effects are missing in
E(2)

disp,pol. These are included in the term E(2)
disp,exch, the exchange-dispersion energy. We will denote by E(2)

disp,tot the
sum of these two terms, that is

E(2)
disp,tot = E(2)

disp,pol + E(2)
disp,exch. (4)

The multipole-expanded dispersion energy (eq. 2) is formally obtained from E(2)
disp,pol by expanding the interac-

tion operator using the multipole expansion4,15, so we should expect E(2)
disp,pol to be well approximated by Easymp

disp

(suitably damped). This is indeed the case. However it is important to bear in mind that because E(2)
disp,exch decays

exponentially with intermolecular separation R, it has no multipole expansion, so that E(2)
disp,tot has the same multi-

pole expansion as E(2)
disp,pol.

3 Numerical details
It is well known that the dispersion energy is difficult to converge using standard basis sets28. Consequently,
SAPT(DFT) calculations are usually performed using monomer basis sets augmented with basis functions placed
in the bonding region between the two molecules and on the atomic sites of the partner monomer, resulting in the
so-called ‘monomer-centred-plus’, or MC+ basis sets. The basis functions in the bonding region (so-called bond
functions) are needed to converge the dispersion energy, while the functions on the partner monomer sites are
needed for the induction energy28. The latter are not needed in this work, but are retained for consistency. We have
used either the aug-cc-pVTZ or the Sadlej-pVTZ basis sets for the monomer parts of the MC+ basis sets, and a
3s2p1d basis set for the bond functions, which have been placed at a position determined by a generalization of the
weighting scheme described in ref. 29. Dispersion energies calculated in such a basis are very close to convergence
with respect to basis set.

All SAPT(DFT) calculations have used the molecular orbitals and energies obtained from the asymptotically-
corrected PBE0 exchange-correlation functional. The linear-response DFT calculations needed for the second-
order SAPT(DFT) energies and the frequency-dependent polarizability calculations used a hybrid adiabatic LDA
and coupled Hartree–Fock kernel. For details see ref. 11. The SAPT(DFT) calculations were performed using the
CCASP30 and S200631 programs.

The vertical ionization potentials (IPs) of the interacting molecules are used in the asymptotic correction and
for calculating the damping coefficients (see below). They were obtained either from a ∆DFT calculation using the
PBE0 functional16 or from experimental results reported in ref. 32. For water, urea and benzene we have used IPs
of 0.464, 0.367 and 0.340 a.u. respectively, obtained from ref. 32, and for formamide and N-methyl propanamide
we have used IPs of 0.375 and 0.345 respectively, obtained using the ∆DFT method16.

Rather than select dimers at just their minimum energy configurations, we have used the algorithm described
in ref. 33 to generate dimers randomly so as to get a uniform coverage of the space of physically important
geometries. In brief, this is done by first obtaining a dimer configuration using a Sobol pseudo-random sequence
and Shoemake’s uniform distribution algorithm34. Next the intermolecular separation is adjusted so as to bring
the dimers into van der Waals contact, and finally, 2 to 4 dimer separations are chosen randomly to lie around the
contact distance. This algorithm has been implemented in the CCASP program.

4 Displaying the energies
One of the problems we frequently encounter is the analysis of multi-dimensional data. One solution is to simply
abandon the dimensionality information and present the data as a scatter plot, with the model energies plotted

4
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against a suitable reference energy. We shall make use of such plots in the paper. While there is a correlation of
the intermolecular separation with the energy scale, such a plot contains no information about the nature of the
atoms in contact, or the angular configuration of the molecules. At least some of this data can be obtained through
an energy map on a suitable surface around the molecule17,21. Such a map can be constructed by calculating the
required energy, here the dispersion energy, using a suitable probe placed at various points on the chosen surface.
At present, we use an energy probe with spherical symmetry, which for the dispersion energy is taken to be a
neon atom. This has the advantage of allowing the dispersion energy maps to be made with a reasonable amount of
computational effort. However, the small polarizability of the neon atom results in a rather small range of dispersion
energies. Typical dispersion energies of organic molecules will be about 5 times larger than those between a neon
atom and an organic molecule.

We have used the vdW×2 surface defined in ref. 21 with van der Waals radii prescribed by Bondi35, except for
hydrogen atoms capable of forming hydrogen bonds, which have their radii set to zero. This is sometimes referred
to as the ‘water accessible’ surface.

5 Damping to reproduce E(2)
disp,tot or E(2)

disp,pol?

Like any multipole expansion, the dispersion series must be damped at short-range. Damping is particularly impor-
tant when terms above C6 are included. Even the C6/R6 term will diverge as R → 0, and although its divergence
can often be ignored, since it manifests itself at rather small R, it can be a problem for Monte Carlo simulations.
We have used the Tang–Toennies36 damping functions fn(βR), which are based on incomplete Gamma functions.
In general, the damping function should probably be anisotropic, but the description would then become very com-
plicated, and in any case the form of any anisotropy is unknown. Besides, the anisotropy, if needed, can probably
be absorbed in an anisotropic short-range term in the potential, such as the Born–Mayer term used to represent the
exchange-repulsion and penetration terms.

The damping coefficients used in the Tang–Toennies functions will generally have to depend on the atom types.
In accurate ab initio potentials, the damping parameter is often taken to be the same as the exponent in the Born–
Mayer potential, because the repulsion and damping both arise from the overlap of the molecular wavefunctions.
Therefore a natural method for obtaining the atom–atom damping parameter would be to fit the exchange-repulsion,
penetration and damping terms simultaneously. Instead, we have chosen to use a single damping parameter β that
depends only on the interacting molecules. As we shall see, this can work very well. The small residual errors can
then be absorbed in the fit to short-range energies.

It then remains to determine what the damped expansion is to reproduce: E(2)
disp,tot or E(2)

disp,pol? There are many

good reasons for damping Easymp
disp to match E(2)

disp,tot rather than E(2)
disp,pol. First of all, E(2)

disp,pol is evaluated using wave-
functions that are not antisymmetrized with respect to electron exchange between the interacting monomers, so it is
unphysical at short-range, where the effects of electron exchange become important. It seems far more satisfactory
to consider the total dispersion energy E(2)

disp,tot as the physically important quantity. Taken individually, E(2)
disp,pol and

E(2)
disp,exch are artefacts of the symmetrized Raleigh–Schrödinger perturbation theory on which SAPT(DFT) is based.

A more pragmatic reason is that for our most accurate dispersion models, the damped asymptotic expansion, when
taken to high order, is found to agree with E(2)

disp,tot as well as or better than with E(2)
disp,pol in an energy range from 0

to −50 kJ mol−1, for all dimers considered in this paper. In particular, for the physically important dimer configura-
tions the r.m.s. errors made by either choice are between 0.2 and 0.8 kJ mol−1 only. A further reason for comparing
with E(2)

disp,tot concerns the damping coefficient (β in fn(βR)). When comparing with E(2)
disp,pol, β has to be obtained

numerically, by a least-squares fit, but when comparing with E(2)
disp,tot, we find that for all systems investigated here,

we can use the same damping factor as for the induction energy, which is determined solely from the molecular
vertical ionization energies IA and IB:

β =
√

2IA +
√

2IB. (5)

As we shall see below, this damping, which is motivated by the asymptotic form of the overlap between the
ground-state wavefunctions of the two monomers, is near-optimal for all systems and dispersion models we have
considered.

6 Basis sets
It may seem strange to question which basis set should be used to calculate the dispersion coefficients. After all,
should we not use the same basis as was used in calculating the reference SAPT(DFT) energies? The problem
is that the basis set used for the SAPT(DFT) energies is of the MC+ type and therefore not only depends on the

5
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Figure 1: Dispersion energies for the formamide···water dimer. Scatter plot of E(2)
disp,tot and E(2)

disp,d(12) dispersion
models calculated using a variety of basis sets.

dimer geometries, but consists of a standard molecular basis augmented with functions in the bonding region and
elsewhere. Because of the augmentation, the effective size of the MC+ basis is larger than that of the standard
molecular basis set that forms the main part of the MC+ basis type. For example, the effective size of the aug-cc-
pVTZ basis of the MC+ type is probably that of the aug-cc-pVQZ or larger. For consistency with the SAPT(DFT)
energies, the dispersion coefficients need to be calculated in a basis that is the equivalent of the MC+ basis used in
the SAPT(DFT) calculations.

This problem was realised in earlier work10, where it was suggested that the criterion for equivalence should
be that the (damped) expanded and non-expanded dispersion energies should match at the dimer minimum energy
configuration. This is a reasonable requirement, as it is at the important geometries that we need the highest
accuracy. For systems larger than those considered in ref. 10, such as clusters and crystals, it is not only the global
minimum energy dimer configuration that is important; rather we need to generalise this requirement to include
dimers at and near all of a variety of important intermolecular contacts. This is done using the algorithm described
in sec. 3.

Fig. 1 shows energies calculated using the damped asymptotic expansion E(2)
disp,d(12) plotted against the total

dispersion energy E(2)
disp,tot. The SAPT(DFT) energies were calculated using the aug-cc-pVTZ basis of the MC+

type. The trend is obvious: the larger and more diffuse the basis set, the closer the agreement between the expanded
and non-expanded energies. The aug-cc-pVDZ basis (abbreviated to ‘aDZ’ in Fig. 1) is clearly inadequate, with an
r.m.s. error of 1.17 kJ mol−1 for energies in the range −15 to −1 kJ mol−1. The r.m.s. error is more than halved, to
0.52 kJ mol−1, with the aug-cc-pVTZ basis, which is the monomer part of the MC+ basis used for the SAPT(DFT)
calculations. The aug-cc-pVQZ and d-aug-cc-pVTZ basis sets yield dispersion models with r.m.s. errors of only
0.40 and 0.38 kJ mol−1 respectively. This is very good given the large range of energies. Of the last two basis sets,
the d-aug-cc-pVTZ basis (‘daTZ’) not only yields slightly more accurate dispersion models, but is smaller than the
aug-cc-pVQZ basis. Therefore, unless otherwise specified, all dispersion models presented in this work have been
calculated using this basis set.

In an earlier study of the induction energy21, we recommended using the Sadlej pVTZ37,38 basis sets for
calculations of molecular moments and polarizabilities. This basis was optimized for molecular properties and
despite its small size, was shown to yield induction energies comparable to those from the much larger aug-cc-
pVTZ basis. Unfortunately, it fares rather poorly for calculations of the dispersion energies, with an r.m.s. error
of 0.86 kJ mol−1, intermediate between the aug-cc-pVDZ and aug-cc-pVTZ bases. This is unfortunate as the small
size of this basis set (the same size as aug-cc-pVDZ) makes it very attractive for calculations on organic molecules.
The large errors are almost certainly due to the lack of sufficiently high angular momenta in the basis set: for the
first row atoms, the Sadlej basis includes functions of at most d symmetry. It is possible that the augmentation of
this basis with an additional diffuse shell would result in significantly more accurate dispersion models, while still
keeping it smaller than the aug-cc-pVTZ basis. We are currently exploring this possibility.
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7 Order and anisotropy
The WSM polarizability models allow us to construct dispersion models that are very detailed and accurate, but
they can be quite unwieldy, because they may comprise a large number of terms, and the resulting computational
costs can limit their applicability severely. Consequently, we need to examine the relationship between complexity
and accuracy in some detail. The questions we would like to answer here are, first, at what order can we truncate the
expansion in eq. 2? And secondly, how important is the anisotropy in the dispersion coefficients? That is, can we
construct isotropic dispersion models of sufficient accuracy? For the purposes of this paper, we will take the target
to be an r.m.s. error of a few tenths of a kJ mol−1 over an energy range of between 15 to 25 kJ mol−1, depending on
the complex.

These are not the only questions we are interested in. The WSM method allows great flexibility in the choice
of dispersion model. For example, we could retain anisotropic terms for some atom–atom interactions and not
others, or we could truncate the expansion at low order for interactions involving hydrogen atoms, and retain the
higher-order terms for the heavier atom pairs. Once the model is chosen, the WSM procedure ensures that the
resulting polarizability description, and hence the dispersion description, will be the most accurate possible within
the constraints of the model. We already use some of this flexibility by limiting the polarizability description on
the hydrogen atoms to rank 1, but apart from this, we shall not consider hybrid models in this paper.

Fig. 2 shows the dispersion energy of the formamide···neon system, mapped onto the vdW×2 surface of for-
mamide. The SAPT(DFT) energies have been calculated using a d-aug-cc-pVTZ basis without bond functions.
Ideally we should have displayed E(2)

disp,tot rather than E(2)
disp,pol, but due to a current limitation of the CCASP pro-

gram30, this was not possible. In any case, E(2)
disp,exch is not expected to be large in the absence of bond functions.

All dispersion models have been calculated using the d-aug-cc-pVTZ basis.
As mentioned in sec. 4, the energy range for E(2)

disp,pol from SAPT(DFT) is quite narrow (it is only 2 kJ mol−1)
because of the small polarizability of neon. The strongest dispersion interaction occurs at the hydrogen atoms in
the amide group, because of the close contacts involved. The dispersion models are presented as difference maps
against the SAPT(DFT) energies. For simplicity of the discussion, none of the models is damped. We see that the
C6 model clearly underestimates the dispersion energy, but the underestimation is not uniform: it is highest near
the amide group and smallest near the –CH hydrogen. The C8 model is substantially better, and the C10 model is
excellent except at the –NH2 hydrogen atoms, where the dispersion energy is over-estimated. This is due to the
lack of damping, and on damping (not shown), the agreement of the C10 model and the SAPT(DFT) energies is
near perfect. From fig. 3 we see that the same holds true for the benzene and N-methyl propanamide molecules.

These observations are supported by results for the formamide···water complex, shown in fig. 4, in which we
have plotted the damped model dispersion energies against the SAPT(DFT) total dispersion energies E(2)

disp,tot. The
damping coefficient β = 1.83 a.u. was calculated using eq. 5. Ideally we would like the energies from the damped
dispersion models to lie close to the line in fig. 4, preferably with only a small scatter. That is, a fit of the form
y = mx should have the slope m = 1. As expected, the C6 model underestimates E(2)

disp,tot quite substantially with
slope m = 0.62 and a rather large r.m.s. error of 2.19 kJ mol−1. Interestingly, this model also exhibits a fairly large
scatter of energies throughout the energy range, even for small energies where it is often assumed that the C6 model
is reasonably accurate. As the rank of the models used increases, the slope tends to 1 and the scatter decreases.
The damped C8, C10 (L2), C10 and C12 models have slopes of 0.83, 0.87, 0.95 and 0.97 respectively, and repro-
duce E(2)

disp,tot with r.m.s. errors of 0.98, 0.79, 0.37 and 0.38 kJ mol−1 respectively. The C8 model is clearly a big
improvement on the C6 model. The C10 (L2) model, which includes C10 coefficients calculated with polarizabil-
ities of maximum rank 2, is not much of an improvement over the C8 model, but the C10 model, which includes
polarizabilities of rank 3, is substantially better, being as good as the more complex C12 model. Both of these
result in dispersion energies that agree with the SAPT(DFT) reference energies across the entire energy range of
15 kJ mol−1. This energy range includes dimers with total interaction energies as much as 16 kJ mol−1; that is, these
models are valid even in the repulsive region. This excellent agreement continues even below −15 kJ mol−1 (not
shown), where the damped C10 and C12 models have r.m.s. errors of 0.54 and 1.72 kJ mol−1 respectively, for dimers
with total interaction energy as much as 45 kJ mol−1.

In figs. 5, 6 and 7 are shown similar comparisons for the formamide, urea and benzene dimers. All SAPT(DFT)
energies have been calculated with the Sadlej pVTZ basis37,38 in the MC+ format. The dispersion models for the
formamide and urea dimers have been calculated using the d-aug-cc-pVTZ basis, but due to a technical problem
in the DFT calculation, we have used the aug-cc-pVTZ basis for the benzene dimer. Using eq. 5, the damping
coefficients for the formamide, urea and benzene dimers are determined to be 1.73, 1.71 and 1.65 a.u. respectively.

The damped C10 and C12 models for the formamide and urea dimers are in excellent agreement with E(2)
disp,tot,

with r.m.s. errors of 0.28 & 0.24 kJ mol−1 for formamide and 0.33 & 0.32 kJ mol−1 for urea. Once again, there is
little to choose between the C10 and C12 models, but since the C10 model is simpler, it would be the model of choice
for accurate calculations.
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Figure 2: Dispersion energy maps of formamide with neon as a probe. The SAPT(DFT) dispersion energy E(2)
disp,pol

is displayed using an absolute scale in kJ mol−1. The model dispersion energies are displayed as differences taken
against E(2)

disp,tot from SAPT(DFT). The models are not damped. The d-aug-cc-pVTZ basis has been used for all
calculations.

−4.0
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−1.0
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−2.1
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Figure 3: Dispersion energy maps of benzene and N-methyl propanamide with neon as a probe. See the caption of
fig. 2 for a description. The description of benzene has been obtained using the aug-cc-pVTZ basis.

While the C10 and C12 models are certainly quite good for the benzene dimer, the r.m.s. errors are somewhat
larger at 0.83 kJ mol−1 in each case. These larger errors could be in part because the dispersion models for this
system were calculated using the aug-cc-pVTZ basis, which, from the discussion in sec. 6, has been shown to
underestimate the total dispersion energy. But there is also the possibility that the large anisotropy of the benzene
molecule requires the use of an anisotropic damping. This needs to be investigated. In any case, even for the this
system, the errors made by the damped C10 and C12 models in recovering E(2)

disp,tot are small. This is true even for
the particularly difficult and important stacked configurations, which are highlighted in fig. 7.

7.1 Isotropic models
We now turn to the question of anisotropy: is it really needed, or can we construct isotropic models of compara-
ble accuracy? We need to explore this issue, because although the dispersion models with anisotropic terms are
accurate, they are too complex to be used in most kinds of calculation.

We have previously constructed isotropic dispersion models from the models with anisotropy by simply re-
taining only the isotropic terms from the final dispersion coefficient calculation17,33. However we can do better by
restricting the WSM polarizability models so that the refinement stage includes only isotropic atomic polarizabili-
ties. These isotropic polarizabilities can then adjust to absorb some of the effects of polarizability anisotropy. For
example, this method leads to an r.m.s. error of 0.45 kJ mol−1 for the formamide···water complex, compared with
0.55 kJ mol−1 by retaining the isotropic part of the anisotropic C12 model.

In fig. 2 we display the dispersion energy difference maps for the isotropic dispersion models of the formamide
molecule. The results are almost indistinguishable from the difference maps obtained with the models that include
anisotropy. In fact, the C10,iso model seems to be better than the C10 model, but this is only because these models

8

Page 8 of 24

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
−15 −10 −5 0

E
(2)

disp,tot
 / kJ mol

-1

−15

−10

−5

0

E
(2

)

di
sp

,d
(n

) 
/ k

J 
m

ol
-1

C
6

C
8

C
10

(L2)

C
10

C
12

Figure 4: Dispersion energies for the formamide···water dimer. Scatter plot of various anisotropic, damped dis-
persion models plotted against E(2)

disp,tot. All dispersion models have been calculated with the d-aug-cc-pVTZ basis
set.

have not been damped. On damping, the isotropic models generally tend to underestimate the dispersion energy
slightly, while the agreement is rather good with the anisotropic models (not shown). The same holds true for the
N-methyl propanamide and benzene molecules.

The real differences between the anisotropic and isotropic dispersion models becomes visible in the scatter plots
of model energies against E(2)

disp,tot from SAPT(DFT). In fig. 8 we present such a scatter plot for the damped isotropic
dispersion models for the formamide···water complex. Compare this with fig. 4. One difference that stands out quite
dramatically is the increased scatter of the dispersion energies calculated using the damped isotropic models, with
the exception of the C6,iso model. The r.m.s. errors made by the C6,iso, C8,iso, C10,iso (L2), C10,iso and C12,iso models
in reproducing E(2)

disp,tot are 2.12, 1.02, 0.85, 0.45 and 0.45 kJ mol−1 respectively. It is interesting that the C6,iso model
has a slightly smaller r.m.s. error than the C6 model. Apart from this anomaly, the errors are larger than those in the
corresponding anisotropic models, but they are not very large and could well be acceptable for many situations.

These observations are also true for the formamide and urea dimers (not shown). For the benzene dimer the
C10,iso and C12,iso models do describe the dispersion energies reasonably well, but errors are non-negligible at the
stacked geometries, where these models underestimate the total dispersion energy. For the stacked dimer with
molecules separated by 3.8 Å the underestimation with these models is 2.01 and 1.51 kJ mol−1. This error is large
compared with the total interaction energy, which is only −7.6 kJ mol−1 21. However, as we shall see, the errors
made by the even simpler scaled C6,iso model are even larger.

Therefore, the damped C10,iso model in particular is a good alternative to the more complex C10 model. The
price to pay is a larger scatter in dispersion energies and an underestimation of the dispersion energies at the stacked
configurations of benzene. However, it is possible that at least some of these deficiencies could be compensated by
using an anisotropic short-range potential. We are currently investigating this possibility.

8 Isotropic C6 models
The small scatter of the damped C6,iso model naturally leads us to the ask whether this model could be scaled to
reproduce E(2)

disp,tot better. This scaling could be done during the refinement step of the WSM procedure by biasing
the point-to-point polarizabilities to points close to the molecule, for example by choosing the points to lie between
the vdW×1.8 and vdW×3.0 surfaces, or by scaling the C6,iso model to reproduce the SAPT(DFT) energies as well
as possible. The former method has the advantage of being unbiased by orientation, but the latter allows us to
choose selectively those configurations at which we require higher accuracies. We will adopt the latter method
here.

In general, the scaling coefficient would depend on the atom pairs; that is, we would minimize a function of
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Figure 5: Dispersion energies for the formamide dimer. Scatter plot of dispersion energies calculated using the
damped anisotropic C10 and C12 models and the isotropic scaled C6 model plotted against E(2)

disp,tot calculated using
SAPT(DFT). Also shown are undamped dispersion energies calculated using the C6 parameters from the Williams
’01 potential39,40. All dispersion models have been calculated using the d-aug-cc-pVTZ basis set.
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Figure 6: Dispersion energies for the urea dimer. See the caption of fig. 5 for a description. All dispersion models
have been calculated using the d-aug-cc-pVTZ basis set.

10

Page 10 of 24

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

−25 −20 −15 −10 −5 0
E

(2)

disp,tot
 / kJ mol

-1

−25

−20

−15

−10

−5

0

E
(2

)

di
sp

,d
(n

) 
/ k

J 
m

ol
-1

Williams ’01 (undamped)
C

6
,iso (scaled by 1.35)

C
10

C
12

Stacked dimers

Figure 7: Dispersion energies for the benzene dimer. See the caption of fig. 5 for a description. In contrast to
the other dispersion models calculated in this paper, the models for this system have been calculated with the
aug-cc-pVTZ basis set.
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models plotted against E(2)

disp,tot. All dispersion models have been calculated with the d-aug-cc-pVTZ basis set.
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the form:

∆ =
∑

i

w(i)

E(2)
disp,tot(i) +

∑
a∈A,b∈B

ξab
Cab

6 , iso

R6
ab

2 (6)

where i labels the configurations, the coefficients ξab are determined by a least squares fit and w is a weight,
which will generally be energy-dependent. Here we have considered the simplest possible fit: all configurations
are weighted equally and a single constant of proportionality ξ is used. This constant has been determined to be
1.60, 1.44, 1.43 and 1.35 for the formamide···water complex and formamide, urea and benzene dimers respectively.

The scatter plots of the damped scaled C6,iso models are shown in figs. 9, 5, 6 and 7. On the whole, the re-
sults are very encouraging. The r.m.s. errors for the scaled models are 0.49, 0.52, 0.62 and 0.94 kJ mol−1 for the
formamide···water complex and the formamide, urea and benzene dimers respectively. These errors are quite tol-
erable, but there are large errors at configurations with total dispersion energies less than −15 kJ mol−1, where the
dispersion is underestimated in magnitude. Likewise, the dispersion energy is overestimated (in magnitude) above
−10 kJ mol−1.

These errors are inevitable: the scaled C6 model is too simple to describe the dispersion energy across the entire
range of energies and contacts. What we get is a compromise model that may be adequate for some purposes, but
seriously inadequate for others. One such failure occurs at the stacked geometries of the benzene dimer. Because
of the importance of this configuration in organic crystals and biological systems, it is important that we get it
right. However, the scaled C6 model under-binds one stacked configuration, with molecules separated by 3.8 Å,
by 2.8 kJ mol−1. Compare this to the underestimation by 2.01 and 1.51 kJ mol−1 made by the C10,iso and C12,iso
models (above). In this particular case, the stacked configurations were not included in the data set used to obtain
the scaling parameter, so we could have obtained a better fit at this configuration, but it would be at the cost of an
even larger over-estimation of the dispersion energies at other geometries.

For the sake of comparison, we have also included energies calculated using the C6 coefficients taken from the
Williams ’01 potential parameters39,40. These parameters have been obtained by a simultaneous fit of the short-
range and long-range parameters to a range of crystal structures and heats of sublimation. Strictly, the long-range
parameters cannot be isolated from the short-range parameters, as they will be coupled, but the comparison does
give us an idea of how experimentally derived dispersion models compare with ours. The Williams potentials were
fitted with undamped dispersion, so damping has not been used. Additionally, the potential specification requires
the effective centre of the hydrogen in the C—H and O—H bonds to be foreshortened by 0.1 Å. We have not done
this, so the resulting dispersion energies for the formamide and benzene dimers will be slightly overestimated.
These results are presented in figs. 5, 6 and 7. The most noticeable feature of these energies is their large scatter,
which is much more than any of our models. Additionally, the Williams parameters and our scaled damped C6
models both fail at configurations with dispersion energies that are large in magnitude. However, for configurations
with energies smaller in magnitude than −15 kJ mol−1, our scaled model is considerably better.

Interestingly, for the benzene system our scaled C6 coefficients and those from the Williams ’01 potential differ
by only 5 to 8%, yet the dispersion energies calculated using these models differ quite considerably around the
−15 kJ mol−1 energy. This is due to the lack of damping in the Williams potential. However, damping makes little
difference to the scatter in the Williams ’01 energies for the urea and formamide dimers.

9 Summary
We have presented a method for calculating dispersion models for small organic molecules that is based on the the-
oretically well-founded and ab initio Williams–Stone–Misquitta method. Using a theoretically motivated damping
factor that depends on the vertical ionization potentials of the interacting molecules, we have demonstrated an ex-
cellent agreement between the dispersion energies from our most advanced damped models, including anisotropic
terms up to C12, and the total dispersion energies from SAPT(DFT). Our best and most complex models reproduce
the benchmark SAPT(DFT) energy E(2)

disp,tot with r.m.s. errors of only 0.2 to 0.8 kJ mol−1 across an energy range of
15 to 25 kJ mol−1, depending on the complex.

Though accurate, these models are probably too complex to be used in practice, so we have made use of the
inherent flexibility of the WSM method to construct isotropic polarizability models from which we have calculated
isotropic dispersion models, which have proved only slightly less accurate than their anisotropic counterparts. In
particular, using a large sample of configurations of the formamide···water complex and the formamide, urea and
benzene dimers, we have shown the isotropic C10,iso model to result in r.m.s. errors between 0.45 and 1.06 kJ mol−1,
making this model ideal for reasonably accurate calculations on a variety of systems. However, we emphasise that
the isotropic models can be deficient for molecules like benzene which exhibit a large anisotropy. In particular,
there are undoubted shortcomings at the important stacked configurations of benzene. This is the price we may
have to pay for simplicity.

12

Page 12 of 24

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
−15 −10 −5 0

E
(2)

disp,tot
 / kJ mol

-1

−15

−10

−5

0

E
(2

)

di
sp

,d
(n

) 
/ k

J 
m

ol
-1

C
6
,iso (scaled by 1.60)

C
10

C
12

Figure 9: Dispersion energies for the formamide···water dimer. Scatter plot of dispersion energies calculated using
the damped anisotropic C10 and C12 models and the isotropic scaled C6 model plotted against E(2)

disp,tot calculated
using SAPT(DFT). All dispersion models have been calculated using the d-aug-cc-pVTZ basis set.

Simple though the C10,iso models are, many existing programs are not in a position to use them, as they are
limited to isotropic C6 models only. Therefore we have investigated scaled C6,iso models, and have shown that
they can be constructed to be of reasonable accuracy, but at the cost of larger errors at potentially important dimer
configurations, like the stacked geometry of the benzene dimer. Additionally, the scaled C6,iso models tend to over-
bind at configurations with total dispersion energies less than about −7 kJ mol−1 in magnitude. Since the bulk of
the dispersion interactions occur in this energy range, these models could over-bind denser and more compact
structures over the more open ones. Interestingly, the scaling parameter is not a constant, but varies from 1.35 to
1.60 across systems. This has implications about the transferability of the derived atomic dispersion coefficients
and seems to suggest that we will have to look at the transferability of larger groups instead.

All of these models have been constructed using the CCASP30 program. Such calculations are now quite
routine on a modest workstation. But we should point out that these accurate dispersion models cannot be used
with repulsion parameters derived empirically. Each system requires a dedicated set of parameters derived from
first principles. We are working on developing an efficient route to obtaining these parameters.

10 Programs
Many of the theoretical methods described in this paper are implemented in programs available for download.
Some of these, together with their main uses in the present work, are:

• S200631: E(2)
disp,exch calculations.

• CCASP 5.1.0230: Calculation of WSM polarizabilities, the dispersion models and the SAPT(DFT) dis-
persion energies.

• O 4.641: Localization of the distributed polarizabilities, calculation of dimer energies using the disper-
sion models and visualization of the energy maps.

• D 2.042: DFT and CKS calculations. A patch31 is needed to enable D 2.0 to work with CCASP.
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