

Anharmonic Force Fields of Bromofluoromethane Alberto Gambi

▶ To cite this version:

Alberto Gambi. Anharmonic Force Fields of Bromofluoromethane. Molecular Physics, 2008, 105 (19-22), pp.2829-2837. 10.1080/00268970701684590. hal-00513146

HAL Id: hal-00513146 https://hal.science/hal-00513146

Submitted on 1 Sep 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Molecular Physics

Anharmonic Force Fields of Bromofluoromethane

Journal:	Molecular Physics				
Manuscript ID:	TMPH-2007-0151.R1				
Manuscript Type:	Full Paper				
Date Submitted by the Author:	11-Sep-2007				
Complete List of Authors:	Gambi, Alberto; University of Udine, of Chemical Science and Technology				
Keywords:	Anharmonic force field, internal quartic force costants, spectroscopic parameters, bromofluoromethane, vibration-rotation constants				
Note: The following files were submitted by the author for peer review, but cannot be converted to PDF. You must view these files (e.g. movies) online.					
gmbtMPHrev.tex					

 16:20 Molecular Physics

gmbtMPHrev Molecular Physics

Molecular Physics, Vol. 00, No. 00, DD Month 200x, 1-7

Anharmonic Force Fields of Bromofluoromethane

ALBERTO GAMBI*

Dipartimento di Scienze e Tecnologie Chimiche, Università di Udine, Via Cotonificio 108, I-33100 Udine, Italy

(Received 00 Month 200x; in final form 00 Month 200x)

High-level *ab initio* calculations with relatively large basis sets are reported for bromofluoromethane, CH_2BrF . Correlated harmonic and anharmonic force constants are obtained from several levels of theory including second-order Møller-Plesset perturbation and coupled cluster CCSD(T). Density functional theory and to be more precise the B3LYP functional, is also employed. Results are used to determine a number of anharmonic molecular properties, including vibration-rotation interaction constants, vibrational anharmonicity constants, fundamental vibrational frequencies, sextic centrifugal distortion constants and rotational constants which include zero-point corrections. Good agreement with available experimental data is found combining coupled cluster CCSD(T) optimised geometry and harmonic force field with cubic and quartic force constants obtained at MP2 level of theory, a cost-effective computation in terms of time. Moreover, transformations of the force fields in mass-independent internal coordinates force constants suitable for other isotopologues of CH_2BrF , are also investigated.

Keywords: Anharmonic force field; internal quartic force costants; spectroscopic parameters; bromofluoromethane; vibration-rotation constants

1 Introduction

Recently bromofluoromethane (CFC-31B1), a dihalogen substituted methane having an ozone deplection potential of 0.73 with respect to CCl_3F (CFC-11), has been investigated by medium- and high-resolution infrared (IR) spectroscopy [1–3].

In Ref. [1] the vibrational spectra of CH₂BrF were studied in the region below 6200 cm⁻¹ at medium resolution and an *ab initio* investigation comprehensive of harmonic force field calculation was also performed. Employing a 90% enriched specimen of CH₂⁷⁹BrF, the high resolution infrared spectrum of the ν_4 fundamental vibration allowed the determination of the excited and ground state constants including some sextic centrifugal distortion terms [2].

Subsequently the rovibrational analysis of the tunable diode laser spectra of the ν_3 fundamental was also performed [3], keeping the ground state constants fixed to the values of Ref. [2].

Since the pioneering early days of *ab initio* calculations of harmonic force fields of polyatomic molecules as an unvaluable aid for the proper assignments of their infrared spectra [4–6], in the last few decades, thanks to the progress in hardware and software, the prediction of accurate energy levels and spectroscopic parameters beyond the harmonic approximation is becoming a viable task. The theoretical development of analytical derivative methods has made it possible to determine, at moderate computer costs, the cubic and quartic force constants. The calculation of fundamental frequencies which closely correspond with the frequencies obtained from high-resolution infrared spectra, vibration-rotation interaction constants, centrifugal distortion constants and other spectroscopic parameters by use of anharmonic force fields permits direct comparison between computed and observed spectroscopic transitions.

In this article are reported the anharmonic force fields of bromofluoromethane determined by methods of quantum mechanics electronic structure theory. The theoretical predictions were performed at several levels of theory and the results were compared taking into account both the quality of the computed

^{*}Corresponding author. Email: gambi@uniud.it

 $\mathbf{2}$

1

2

3

4 5 6

7

Molecular Physics

A.Gambi

data and the time required to obtain them. These results, including mass-independent anharmonic force constants up to 4th order, are expected to facilitate and guide experimental work on the high-resolution rovibrational spectrum of bromofluoromethane and its isotopologues.

2 Computational details

Quantum-chemical calculations were carried out over a span of one year using different suites of programs and levels of theory. At first, the molecular geometry was optimised and the harmonic force field was computed with coupled cluster theory with single and double excitations augmented by a perturbational estimate of the effects of connected triple excitations [7–9], CCSD(T), employing the Dunning correlation consistent cc-pVTZ basis set [10, 11] with the MOLPRO [12] system of programs. The cc-pVTZ basis is a [6s5p3d1f/4s3p2d1f/3s2p1d] contraction of a (20s13p9d1f/10s5p2d1f/5s2p1d) primitive set for Br/C,F/H atoms, respectively.

In another run, after geometry optimisation and calculation of the harmonic force constants, the anharmonic force field in terms of cubic and quartic semidiagonal force constants, were evaluated by numerical differentiation of analytic second derivatives calculated at points that are displaced along the normal coordinates [13] using a Density Functional Theory (DFT) method and to be more precise the Becke [14] three parameters exchange functional (B3) in combination with the Lee, Yang, and Parr [15] (LYP) correlation functional. A local developed procedure which includes the GAMESS-UK program [16] was used to get the force constants at B3LYP/cc-pVTZ level of theory.

The installation of the GAUSSIAN 03 suite of programs [17] on computer systems available through an Interuniversity Consortium Computer Center (CINECA), encouraged many other calculations taking advantage of the implementation of anharmonic force constants computation included in the program code [18]. Geometry optimisation, harmonic force field and anharmonic force constants calculations were carried out at the correlated levels of second-order Møller-Plesset perturbation theory [19], (MP2), either correlating all the electrons, MP2(full), or excluding the core electrons (frozen core), MP2(fc), all employing the cc-pVTZ basis set. In addition calculations with density functional theory employing the B3LYP functional in conjunction with cc-pVTZ and 6-311G++(3df,2pd) [20] basis sets, were also performed.

The implementation of analytic second derivatives of CCSD(T) molecular energies with respect to nuclear coordinates, stimulated the installation of Mainz-Austin-Budapest version of ACES2 program package [21]. The CCSD(T) level of theory was used in conjunction with the cc-pVTZ basis set for H, C, and F atoms while using TZVP, (17s13p7d)/[6s5p3d] contraction [22], for the Br atom to reduce the computation time. These calculations are summarized in Table 1 with information concerning the program, computer, level of theory and approximate computer time. Although the computer times have been fairly rounded, it becomes clear that CCSD(T) anharmonic force constants calculation cannot be afforded with one PC. The installation of ACES2 on the SP5 cluster of processors (see Table 1) made the calculations employing the cc-pVTZ basis set for all the atoms of bromofluoromethane also possible in acceptable time. All ACES2 calculations were carried out within the frozen core approximation.

Finally, the complete quartic force fields in terms of dimensionless normal coordinates were carried out at B3LYP/cc-pVTZ and MP2(full)/cc-pVTZ(H,C,F)/TZVP(Br) levels of theory employing GAMESS-UK and ACES2 program packages, respectively. In order to get the full quartic force constants having four different indices, Φ_{ijkl} , additional double displacements of the type $(-\Delta q_i, -\Delta q_j)$ and $(+\Delta q_i, +\Delta q_j)$ were required [23]. Both runs could be carried out in less than 2 weeks on the PC workstation. Spherical harmonics were used throughout.

3 Results and discussion

Bromofluoromethane molecule, with a symmetry plane containing the F, C, and Br atoms, belongs to the C_s symmetry point group and the 9 fundamentals have the following symmetry species: 6A' which comprise the in-plane vibrations and 3A'' for the out-of-plane modes.

The set of chemically intuitive nonredundant internal coordinates (in parentheses), corresponds to the

September 11, 2007

gmbtMPHrev Molecular Physics

Anharmonic Force Fields of Bromofluoromethane

six structural parameters: C–H (h), C–F (f), C–Br (b), \angle HCH (γ), \angle HCF (δ), and \angle HCBr (β).

For the quadratic force field, in the space of internal or symmetry coordinates, there are 27 independent force constants detailed as 21A'A' + 6A''A''. The cubic potential consists of 92 force constants which can be detailed as 56A'A'A' + 36A'A''A'' and the independent quartic potential constants are 267 detailed as 126A'A'A' + 15A''A''A'' + 126A'A'A''A''. The symmetry species relative to the cubic and quartic force constants refer to the indices which span the normal modes.

The computed equilibrium geometry of bromofluoromethane at the various levels of theory investigated are reported in Table 2. For the sake of completeness also the \angle FCBr angle, which can however be easly obtained from the other nonredundant structural parameters, has been reported in the same Table.

As expected, both geometries and harmonic frequencies of calculations at B3LYP/cc-pVTZ level of theory are actually equivalent since they represent the same computation performed with different programs and machines. This consideration applies also to calculations done at the CCSD(T)/cc-pVTZ level as reported in the last two columns of Table 2. Also calculations MP2(full)/cc-pVTZ and MP2(full)/ccpVTZ(H,C,F);TZVP(Br) present closely results indicating only small differences from employing the cc-pVTZ basis set for Br instead of the less resources demanding TZVP. These arguments can be extended to calculations CCSD(T)/cc-pVTZ and CCSD(T)/cc-pVTZ(H,C,F);TZVP(Br). Between calculations MP2(full)/cc-pVTZ and MP2(fc)/cc-pVTZ, which correlate all electrons and the valence electrons, respectively, the discrepancies become larger. As far as calculation MP2(full)/cc-pVTZ is concerned, the C–H and C–Br bond lengths are too short with respect to the CCSD(T) values.

In general, CCSD(T) calculations give very reliable results for equilibrium geometry determinations with systematic errors. On the basis of several structure optimisations, an accuracy of 0.005 \mathring{A} for bond lengths and 0.2° for bond angles can be assumed [24].

The computed harmonic vibrational wavenumbers, ω_i , of CH₂⁷⁹BrF are shown in Table 3. For the calculation at CCSD(T)/cc-pVTZ level of theory performed with ACES2 program, the analytical derivative of the dipole moment was also computed and used to determine the integrated infrared intensity of each fundamental vibration. These data are reported in parentheses, near the wavenumbers, in Table 3.

The cubic and quartic force constants, in terms of dimensionless normal coordinates are reported in Table 4. For brevity only the third and fourth potential derivatives with respect to the q_i at the equilibrium geometry having the same three and four i indices, respectively, are presented. These data however suffice for the following considerations.

Both cubic and quartic force constants, although computed at different levels of theory, are almost comparable.

The computer time required in these calculations are nevertheless quite unlike each other as summarized in Table 1. They range from one or two days up to more than three months.

Another point to be taken into account concerns the sign of the force constants. Although many spectroscopic parameters are computed directly from the *ab initio* program packages, it is preferable, expecially in the framework of the spectral analysis of small molecules, to input the theoretical force field into a computer program dedicated to determine the molecular constants from second-order perturbation theory [25, 26].

Therefore commonplace transfering of the computed force field does not ensure subsequently right calculations. In particular the vibration-rotation interaction constants α_i^B and the sextic centrifugal distortion constants might be wrongly calculated if the signs of the cubic force constants are not appropriately checked.

A displacement Δq_i along the dimensionless normal coordinate q_i leads to Cartesian displacements:

$$\Delta X_{3N}^i = \gamma_i^{-1/2} \, l_{3N,i} \, M_{3N}^{-1/2} \, \Delta q_i \,, \qquad \gamma_i = \lambda_i^{1/2} / \hbar \,, \qquad i = 1, 3N - 6$$

where λ_i and $\{l_{3N,i}\}$ are the eigenvalues and eigenvectors, respectively, of the mass-weighted quadratic force constants matrix evaluated, in terms of Cartesian coordinates, at the equilibrium geometry, while M_{3N} are the masses of the N atoms which compose the molecule.

It should be noticed that the ambiguity in the definition of the phase of q_i arise from the fact that both $l_{3N,i}$ and $-l_{3N,i}$ are column eigenvectors which solve the same secular equation with the same eigenvalues

A.Gambi

Page 4 of 11

 λ_i . Two solutions of the same problem may be obtained with opposite phase from two computer systems and programs, even when exactly the same input data are used.

Consequently, exactly the same eigenvector matrix $\{l_{3N,i}\}$ employed to calculate the cubic and quartic force constants, must be supplied together the force field to the separate program which computes the spectroscopic parameters, in order to get comparable results from different cases.

Since the largest discrepancies among the computed spectroscopic parameters are actually localised on the harmonic wavenumbers of the normal modes (see Table 3) and it was not possible to determine the eigenvector matrix used by GAUSSIAN03 program package to compute the anharmonic force field, the rest of the discussion will be limited to calculation B3LYP/cc-pVTZ performed with GAMESS-UK and to the MP2(full)/cc-pVTZ(H,C,F);TZVP(Br) and CCSD(T)/cc-pVTZ computations with ACES2 program. In particular, the CCSD(T)/cc-pVTZ calculations of geometry, harmonic force field and anharmonic force constants are assumed the better approach to the experimental values [24]. However, in order to reduce the considerable amount of computer time required to obtain cubic and quartic force constants at this level of theory, the results of *hybrid* force fields having the geometry and second order force constants at CCSD(T)/cc-pVTZ level of theory while the cubic and quartic force constants are taken from calculations B3LYP/cc-pVTZ and MP2(full)/cc-pVTZ(H,C,F);TZVP(Br) of Table 1, will be investigated.

Since calculations B3LYP/cc-pVTZ and MP2(full)/cc-pVTZ(H,C,F);TZVP(Br), were carried out in a reasonable time also with a PC, the computations were extended to double displacements of the dimensionless normal coordinates [23, 27] in order to obtain the full quartic force constants, Φ_{ijkl} . Once the complete sets of force constants up to the fourth order were available, they could be converted by an appropriate nonlinear transformation [28] into internal coordinates force constants defined in terms of the independent geometry parameters reported in Table 2. The internal coordinates force constants are mass-independent and with a second nonlinear transformation can be used to obtain the force constants in terms of dimensionless normal coordinates for other isotopologues of bromofluoromethane.

Other hybrid force fields, now in the space of internal coordinates, may be obtained taking the internal quadratic force constants from calculation CCSD(T)/cc-pVTZ and the internal cubic and quartic force constants derived from the B3LYP and MP2(full) calculations as previously described.

It should be mentioned that these force fields give through the nonlinear coordinate transformations cubic and quartic normal coordinates force constants slightly different from that obtained directly in B3LYP and MP2(full) calculations. That is because the cubic Φ s depend on both cubic and quadratic Fs, and the quartic Φ s depend on quartic, cubic and quadratic Fs. Thus, the transformations include the quadratic terms of calculation CCSD(T)/cc-pVTZ which were not present in the cubic and quartic normal coordinates force constants at B3LYP and MP2(full) levels of theory. The quadratic force constants in terms of the internal coordinates defined in Table 2 and relative to calculation CCSD(T)/cc-pVTZ, are reported in Table 5. As an examples, in Table 6, the full diagonal cubic and quartic internal coordinates force constants concerning the calculations at the levels B3LYP, MP2(full), and CCSD(T) (only cubic), are reported.

These force fields, determined using for the non-linear transformation, the appropriate eigenvectors matrix of each calculation, display the same sign for every force constant in all sets, although before the transformation, normal coordinates force constants had different signs.

In Table 7 are summarized the vibrational fundamental frequencies, ν_i , obtained from the harmonic frequencies ω_i and anharmonicity constants x_{ij} , both computed with the force constants of calculations B3LYP/cc-pVTZ, MP2(full)/cc-pVTZ(H,C,F);TZVP(Br), CCSD(T)/cc-pVTZ and the hybrid force fields CCSD(T)+B3LYP and CCSD(T)+MP2(full) both in normal coordinates space and internal coordinates space. In the same Table, the experimental wavenumbers from Ref. [1] and the approximate description of each vibrational mode, are also given.

The anharmonicity constants x_{ij} , depend on the quadratic, cubic, and quartic force constants. Breakdown of their calculation takes place when strong anharmonic interactions between fundamentals and overtones or combination bands are present. In these cases it is necessary define effective constants by excluding the respective contributions from the perturbational formulas [25,26]. Such effective anharmonicity constants are introduced here to take into account for the Fermi resonances $2\nu_6/\nu_5$, $2\nu_5/\nu_3$, and $\nu_6 + \nu_9/\nu_8$.

Table 7 shows that wavenumbers from calculation CCSD(T)/cc-pVTZ are in good agreement with the

16:20 Molecular Physics

gmbtMPHrev Molecular Physics

observed values. Good results are obtained also from the hybrid force fields which display almost the same discrepancies from the experiment. The largest differences among computed and observed values are in calculations B3LYP and MP2(full); these may be ascribed in large extent to the quadratic force field (see also Table 3). The theoretical values of the ν_4 fundamental are all too distant from the experimental value. The potential energy distribution indicates this vibration as 100% C–F stretching. Therefore the corresponding computed quadratic force constant reported in Table 5 should be considered overestimated, a problem which is known for polar bonds [29]. The use, for example, of aug-cc-pVTZ basis set on fluorine atom would improve the results but would also increase considerably CPU time requirements. Interestingly, the B3LYP calculations give underestimated results for this vibrational mode.

Table 8 lists the results for the vibration-rotation interaction constants along with the available experimental data. The α_i^X (X = A, B, C) constants are computed with the same force fields previously described. The agreement between theory and experiment is good and all the constants, also if computed with different force constants, exhibit comparable values.

In Table 9, the rotational and centrifugal distortion constants, calculated with the anharmonic force fields B3LYP, MP2(full), CCSD(T), and the hybrid CCSD(T)+MP2(full), CCSD(T)+B3LYP both in normal and internal coordinates space as previously depicted are reported together with the corresponding experimental data for $CH_2^{79}BrF$. The theoretical ground-state rotational constants (A_0, B_0, C_0) have been obtained from the associated equilibrium constants (A_e, B_e, C_e) by taking into account the effects of vibration-rotation coupling through perturbation theory [25,26]. Even for these spectroscopic parameters there is a general satisfactory agreement between theory and experiment.

Finally, as an example, the hybrid force field composed by the quadratic force constants of calculation CCSD(T)/cc-pVTZ together the cubic and full quartic force constants of calculation MP2(full)/ccpVTZ(H,C,F);TZVP(Br), all in the space of the mass-independent internal coordinates, was used to compute significant spectroscopic parameters for the isotopologues $CH_2^{81}BrF$, $CD_2^{79}BrF$, and $CHD^{79}BrF$. The results are collected in Table 10. These data may be useful for further investigations on the highresolution rovibrational spectra of bromofluoromethane.

4 Conclusions

Ab initio calculations of anharmonic force fields of bromofluoromethane were performed at B3LYP, MP2, and CCSD(T) levels of theory employing basis sets of spdf quality for both the harmonic and anharmonic parts. These calculations make use of analytic second derivatives, which are differentiated numerically in reduced normal coordinates. The CCSD(T) results are in good agreement with the available experimental data, however the cost in terms of computation time makes this approach almost impracticable for the anharmonic part. Observing that cubic and quartic force constants, do not change in appreciable manner going from medium-level (B3LYP, MP2) to high-level (CCSD(T)) theory in spite of their very big difference in computation time, hybrid force fields — composed by high-level quadratic part and medium-level anharmonic parts — are proposed. The overall agreement between theory and experiment supports this approach.

In addition, complete quartic force fields were also computed to allow non-linear transformations and get mass-independent internal coordinates force constants suitable to predict the spectroscopic parameters for the isotopologues of bromofluoromethane.

5 Acknowledgements

The High Performance Systems Division of the CINECA Supercomputer Centre (Interuniversity Consortium) is gratefully acknowledged for support in the utilization of computer resources.

2

3

4

5

6

7

8

9

10

11

12 13 14

15

16 17

18

19

20

21

22 23 24

25

26

27 28

29

30

31 32

33

34

35

36

37

gmbtMPHrev Molecular Physics

A.Gambi

- References
 - A. Baldacci, A. Baldan, A. Gambi and P. Stoppa, J. Mol. Struct. 517-518, 197 (2000).
- A. Baldacci, P. Stoppa and A. Gambi, J. Mol. Spectrosc. 201, 280 (2000)
- A. Baldacci, P. Stoppa, A. Pietropolli Charmet and S. Giorgianni, J. Mol. Spectrosc. 220, 7 (2003).
 P. Pulay, Molec. Phys. 17, 197 (1969).
- [4]
- P. Pulay, Modern Theoretical Chemistry, Ed. H. F. Schaefer III, Plenum, New York, (1977).
- P. Pulay, Advan. Chem. Physics 69, 241 (1987).
- G. D. Purvis and R. J. Bartlett, J. Chem. Phys. 76, 1910 (1982).
 K. Raghavachari, G. W. Trucks, J. A. Pople and M. Head-Gordon, Chem. Phys. Lett. 157, 479 (1989).
 C. Hampel, K. A. Peterson and H. -J. Werner, Chem. Phys. Lett. 190, 1 (1992). [8]
- [0]
- [10] T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989).
- D. E. Woon and T. H. Dunning, Jr., J. Chem. Phys. 98, 1358 (1993).
- [12] MOLPRO (version 2002.6) is a package of ab initio programs written by H.-J. Werner, P. J. Knowles, R. Lindh, F. R. Manby, M. Schütz, P. Celani, T. Korona, G. Rauhut, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, C. Hampel, G. Hetzer, A. W. Lloyd, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklaß, P. Palmieri, R. Pitzer, U. Schumann, H. Stoll, A. J. Stone, R. Tarroni, and T. Thorsteinsson.
 - [13]W. Schneider and W. Thiel, Chem. Phys. Lett. 157, 367 (1989).
- [14] A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
- [15] C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B* 37, 785 (1988).
 [16] M. F. Guest, I. J. Bush, H. J. J. Van Dam, P. Sherwood, J. M. H. Thomas, J. H. Van Leuthe, R. W. A. Havenith and J. Kendrick, Molec. Phys. 103, 719 (2005).
- [17] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, GAUSSIAN03, revision B.05, Gaussian, Inc., Pittsburgh PA, (2003).
- V. Barone, J. Chem. Phys. 122, 014108 (2005). [18]
- [19] C. Møller and M. S. Plesset, Phys. Rev. 46, 618 (1934).
- [20] M. J. Frisch, J. A. Pople and J. S. Binkley, J. Chem. Phys. 80, 3264 (1984).
- [21] ACES2 (Mainz-Austin-Budapest) program package by J. F. Stanton, J. Gauss, J. D. Watts, P. G. Szalay, R. J. Bartlett with contributions from A. A. Auer, D. B. Bernholdt, O. Christiansen, M. E. Harding, M. Heckert, O. Heun, C. Huber, D. Jonsson, J. Institute and the Contribution of the Contributication of the Contribut Jusélius, W. J. Lauderdale, T. Metzroth, C. Michauk, D. P. O'Neill, D. R. Price, K. Ruud, F. Schiffmann, A. Tajti, M. E. Varner, J. Vázquez and the integral packages MOLECULE (J. Almlöf and P. R. Taylor), PROPS (P. R. Taylor), and ABACUS (T. Helgaker, H. J. Aa. Jensen, P. Jørgensen, and J. Olsen). Version 2005, see also http://www.aces2.de
- [22] A. Schafer, C. Huber and R. Aldrichs, J. Chem. Phys. 100, 5829 (1994).
 [23] A. G. Császár, in The Encyclopedia of Computational Chemistry, P. v. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer III and P. R. Schreiner (Eds), pp. 13-80, Wiley, Chichester, (1998).
 [24] K. L. Bak, J. Gauss, P. Jørgensen, J. Olsen, T. Helgaker and J. F. Stanton, J. Chem. Phys. 114, 6548 (2001).
- [25] I. M. Mills, in Molecular Spectroscopy: Modern Research, K. Narahari Rao, C. W. Mathew (Eds), Vol. 1, pp. 115-140, Academic Press, New York, (1972).
- [26] D. Papoušek and M. R. Aliev, Molecular Vibrational-Rotational Spectra, Elsevier, Amsterdam, (1982).
- [27] G. Cazzoli, C. Puzzarini and A. Gambi, J. Chem. Phys. 120, 6495 (2004).
- [28]A. R. Hoy, I. M. Mills and G. Strey, Molec. Phys. 24, 1265 (1972).
- [29] X-G. Wang, E. L. Sibert III and J. M. L. Martin, J. Chem. Phys. 112, 1353 (2000).

 16:20

Molecular Physics

gmbtMPHrev **Molecular Physics**

Anharmonic Force Fields of Bromofluoromethane

Table 1. Summary of the various quantum-chemical calculations performed to compute optimised geometries, harmonic and anharmonic force fields of $\rm CH_2BrF.$

Program Package	$Machine^{a}$	Theory	Basis Set	$\operatorname{Time}^{\mathrm{b}}$
GAMESS-UK	\mathbf{PC}	B3LYP	cc- $pVTZ$	2
Gaussian03	SP5 SP5 SP5 SP5	B3LYP B3LYP MP2(full) MP2(fc)	cc-pVTZ 6-311G++(3df,2pd) cc-pVTZ cc-pVTZ	1 1 1 1
Aces2	PC PC SP5	$\begin{array}{l} MP2(full)\\ CCSD(T)\\ CCSD(T) \end{array}$	cc-pVTZ (H,C,F); TZVP (Br) cc-pVTZ (H,C,F); TZVP (Br) cc-pVTZ	$\begin{array}{c}2\\110\\15\end{array}$
Molpro	SP5	$\operatorname{CCSD}(T)$	cc- $pVTZ$	1

^aPC is Intel/Linux with Pentium 4 processor at 2.4 GHz clock and SP5 is a Cluster of 512 IBM Power5 processors at 1.9 GHz.

^bComputer time in days. These data are estimated and for the SP5 machine additional queue's waiting time might be added.

Table 2. Optimised geometries of CH₂BrF molecule obtained at the various level of theory reported in Table 1. Bond lengths in units of angström (A) and bond angles in degree (°). The data are reported following the order of Table 1.

		B3LYP VTZ ^a	B3LYP VTZ	B3LYP 6-311G ^b	${ m MP2(full)} { m VTZ}$	${ m MP2(fc)}\ { m VTZ}$	${ m MP2(full)}\ { m TZVP^c}$	$\begin{array}{c} \mathrm{CCSD}(\mathrm{T}) \\ \mathrm{TZVP} \end{array}$	$\begin{array}{c} \mathrm{CCSD}(\mathrm{T}) \\ \mathrm{VTZ} \end{array}$	$\begin{array}{c} \mathrm{CCSD}(\mathrm{T}) \\ \mathrm{VTZ} \end{array}$
h	C–H	1.0848	1.0849	1.0844	1.0794	1.0835	1.0790	1.0853	1.0857	1.0857
f	C-F	1.3592	1.3587	1.3598	1.3564	1.3588	1.3582	1.3614	1.3584	1.3585
b	C-Br	1.9625	1.9617	1.9574	1.9195	1.9249	1.9146	1.9302	1.9450	1.9450
γ	∠HCH	113.37	113.20	113.30	112.50	112.54	112.15	112.21	112.66	112.70
δ	$\angle \text{HCF}$	109.83	109.87	109.63	109.65	109.66	109.33	109.38	109.78	109.75
β	∠HCBr	106.55	106.59	106.85	107.15	107.15	107.58	107.54	107.01	107.00
	$\angle \mathrm{FCBr}$	110.62	110.62	110.52	110.70	110.64	110.86	110.79	110.54	110.57

 $^{\mathrm{a}}\mathrm{cc}\text{-}\mathrm{pVTZ}$

^b6-311G++(3df,2pd)

^ccc-pVTZ (H,C,F); TZVP (Br)

	B3LYP VTZ	B3LYP VTZ	B3LYP 6-311G	${MP2(full) \atop VTZ}$	${ m MP2(fc)} m VTZ$	MP2(full) TZVP	$\begin{array}{c} \mathrm{CCSD}(\mathrm{T}) \\ \mathrm{TZVP} \end{array}$	$\begin{array}{c} \mathrm{CCSD}(\mathrm{T}) \\ \mathrm{VTZ} \end{array}$	$\begin{array}{c} \mathrm{CCSD}(\mathrm{T}) \\ \mathrm{VTZ} \end{array}$
$egin{array}{c} \omega_1 \ \omega_2 \ \omega_3 \end{array}$	$3094 \\ 1497 \\ 1328 \\ 1082$	$3092 \\ 1498 \\ 1333 \\ 1084$	$3095 \\ 1493 \\ 1330 \\ 1070$	$3163 \\ 1529 \\ 1367 \\ 1118$	$3143 \\ 1519 \\ 1362 \\ 1112$	3166 1528 1377	3110 1507 1357	$\begin{array}{c} 3109 \ (17.14) \\ 1510 \ (0.16) \\ 1349 \ (50.26) \\ 1114 \ (172 \ 55) \end{array}$	$3108 \\ 1510 \\ 1349 \\ 1112$
$egin{array}{c} \omega_4 \ \omega_5 \ \omega_6 \end{array}$	$626 \\ 307$	$\begin{array}{c} 1084\\ 624\\ 306\end{array}$	$628 \\ 308$		$679 \\ 322$	$ \begin{array}{c} 1116 \\ 686 \\ 327 \end{array} $	$667 \\ 319$	$\begin{array}{c} 1114 \\ 657 \\ 56.86 \\ 315 \\ (0.53) \end{array}$	$656 \\ 314$
$\omega_7 \ \omega_8 \ \omega_9$	$3178 \\ 1247 \\ 937$	$3176 \\ 1249 \\ 938$	$3179 \\ 1246 \\ 939$	$3232 \\ 1279 \\ 962$	3231 1270 962	$3230 \\ 1282 \\ 968$	$3187 \\ 1263 \\ 952$	$\begin{array}{c} 3190 \ (5.60) \\ 1262 \ (2.94) \\ 948 \ (\approx 0) \end{array}$	$3190 \\ 1262 \\ 948$

Molecular Physics

A.Gambi

Table 4. Cubic and quartic force constants of $CH_2^{79}BrF$ in the space of dimensionless normal coordinates from the first eight calculations depicted in Table 1. Only the constants with the same indices are reported. For the basis sets, see footnotes of Table 2.

		B3LYP VTZ	B3LYP VTZ	B3LYP 6-311G	MP2(full) VTZ	${ m MP2(fc)} { m VTZ}$	MP2(full) TZVP	CCSD(T) TZVP	$\begin{array}{c} \mathrm{CCSD}(\mathrm{T}) \\ \mathrm{VTZ} \end{array}$
Φ_{iii}	i = 1	-1358.12 -106.80	-1354.88 -108.80	-1353.28	-1361.42	-1352.55 -104.31	-1361.42 -120.57	-1363.38 -110.24	-1361.32 -105.42
	3	-93.20	-94.51	-93.92	-87.00	-84.67	91.41	86.87	87.75
	4	-439.83	435.78	434.76	431.63	430.48	-431.31	-433.99	-433.97
	5	-156.39	165.36	165.34	166.96	167.05	165.95	171.39	166.57
	6	41.14	40.58	40.18	36.55	37.33	36.78	38.78	39.03
Φ_{iiii}	i = 1	527.13	529.74	530.60	530.12	520.93	529.7	525.68	525.04
	2	40.97	39.82	40.83	37.94	40.96	46.06	50.89	36.12
	3	117.15	114.39	121.79	122.56	115.68	115.01	108.97	110.96
	4	166.56	159.92	160.45	154.58	154.83	154.07	153.18	153.20
	5	42.59	54.56	53.81	44.31	43.93	44.05	44.44	43.20
	6	7.50	7.54	6.19	7.17	7.49	6.68	7.56	7.68
	7	585.05	585.27	584.50	595.91	573.71	601.63	586.92	581.92
	8	132.09	132.48	141.65	124.58	124.58	127.08	124.56	120.12
	9	302.12	304.12	303.94	304.26	294.66	287.73	290.59	297.35

Table 5. The quadratic internal coordinates force constants of CH₂BrF, from calculation at CCSD(T)/ccpVTZ level performed with ACES2 on SP5 machine. Diagonal force constants are indexed with only one symbol identifying the internal coordinate. The ' indicates two different force constants involving the same coordinates. The units are consistent with energy in aJ, bond length in \mathring{A} and bond angle in radian.

F_h	5.4507	F_{bf}	0.5312	$F_{\delta\delta}$	1.2359
F_{f}	6.1510	$F_{\gamma h}$	0.1088	$F_{\beta h}$	0.0021
$\check{F_b}$	2.8222	$F_{\gamma f}$	-0.3863	$\dot{F}_{\beta h'}$	-0.0264
F_{γ}	1.8812	$F_{\gamma b}$	-0.3942	$F_{\beta f}$	-0.3976
F_{δ}	2.1519	$F_{\delta h}$	0.0621	$F_{\beta b}$	0.0251
F_{β}	1.7217	$F_{\delta h'}$	-0.0081	$F_{\beta\gamma}$	1.1781
F_{hh}	0.0362	$F_{\delta f}$	0.1266	$F_{\beta\delta}$	1.2073
F_{fh}	0.1907	$F_{\delta b}$	-0.3424	$F_{\beta\delta'}$	1.0844
F_{bh}	0.0437	$F_{\delta\gamma}$	1.3088	$F_{\beta\beta}$	1.0453

Table 6. The full diagonal cubic and quartic internal coordinates force constants of CH_2BrF from calculations at B3LYP/cc-pVTZ, MP2(full)/ccpVTZ(H,C,F);TZVP(Br) and CCSD(T)/cc-pVTZ levels of theory. See Table 2 for the definition of the internal coordinates. The units are consistent with energy in aJ, bond lenth in \mathring{A} and bond angle in radian.

		B3LYP VTZ	MP2(full) TZVP	$\begin{array}{c} \operatorname{CCSD}(\mathrm{T}) \\ \mathrm{VTZ} \end{array}$
F_{iii}	i = h	-31.65	-32.57	-31.93
	f	-36.58	-37.25	-37.55
	b	-11.73	-14.24	-13.31
	γ	10.70	10.07	10.25
	$\dot{\delta}$	4.88	4.21	4.53
	β	3.31	3.54	3.24
F_{iiii}	i = h	165.57	174.36	а
	f	209.65	204.28	
	\tilde{b}	48.82	61.47	
	γ	101.04	91.19	
	δ	41.60	33.18	
	β	23.76	23.00	

^aFor this calculation only the cubic force constants are available.

gmbtMPHrev Molecular Physics

Anharmonic Force Fields of Bromofluoromethane

Table 7. Fundamental vibrations of $CH_2^{79}BrF$ calculated with the anharmonic force fields described in the text. The approximate description of the normal modes are reported in the rightmost column. All data in cm⁻¹.

3 4 5		Mode	B3LYP VTZ	MP2(full) TZVP	$\begin{array}{c} \mathrm{CCSD}(\mathrm{T}) \\ \mathrm{VTZ} \end{array}$	$\begin{array}{l} {\rm CCSD(T)} + \\ {\rm MP2(full)^a} \end{array}$	$\begin{array}{c} \mathrm{CCSD}(\mathrm{T}) + \\ \mathrm{B3LYP^{a}} \end{array}$	$\begin{array}{l} {\rm CCSD(T)} + \\ {\rm MP2(full)^b} \end{array}$	CCSD(T)+ B3LYP ^b	Exp ^c	Approximate Description
5 6	A'	ν_1	2977	3054	2992 1470	3000 1472	2998 1472	2987 1472	2998 1472	2992	CH_2 sym stretch
7		$\nu_2 \\ \nu_3$	$1439 \\ 1297$	$1490 \\ 1346$	$1470 \\ 1319$	$1472 \\ 1318$	$1475 \\ 1321$	1472 1311	1472 1323	$1403 \\ 1314$	CH_2 deformation CH_2 wag
8		$\nu_4 u_5$	$1057 \\ 619$	$1089 \\ 676$	$1086 \\ 645$	$1087 \\ 646$	$1088 \\ 647$	$1087 \\ 643$	$1089 \\ 649$	$ 1068 \\ 650 $	C–F stretch C–Br stretch
9 10		ν_6	304	323	311	311	312	311	312	312	∠FCBr bend
11	$A^{\prime\prime}$	$ u_7 u_8 $	$3030 \\ 1218$	$3092 \\ 1253$	$3041 \\ 1232$	$3049 \\ 1233$	$3045 \\ 1236$	$3039 \\ 1231$	$3046 \\ 1236$	$3047 \\ 1226$	CH ₂ asym stretch CH ₂ twist
12		ν_9	923	954	934	933	936	933	936	936	CH ₂ rock

13 ^aHybrid force field in normal coordinate space.
14 ^b

¹⁴ ^bHybrid force field in internal coordinate space.

16 ^cFrom Ref. [1].

September 11, 2007

Page 9 of 11

Table 8. Vibration-rotation interaction constants of $CH_2^{79}BrF$ calculated from the cubic force fields described in the text. The last column reports the available observed values. All data in MHz.

		B3LYP VTZ	MP2(full) TZVP	CCSD(T) VTZ	$CCSD(T)+MP2(full)^{a}$	CCSD(T)+ B3LYP ^a	$CCSD(T)+MP2(full)^{b}$	CCSD(T)+ B3LYP ^b	Exp ^c
α_i^A	i = 1	111.706	112.427	110.209	113.600	112.040	114.016	109.513	
U	2	130.108	122.619	129.074	120.076	128.867	110.573	123.781	
	3	118.312	95.574	112.300	100.123	108.379	131.422	66.375	113.532
	4	277.726	252.109	287.274	278.146	270.444	280.138	273.133	257.417
	5	-42.469	-26.641	-24.712	-20.444	-50.489	-17.758	-46.492	20.116
	6	-193.331	-193.169	-199.053	-191.734	-200.844	-199.959	-202.920	
	7	57.613	59.111	60.016	64.804	58.779	65.718	55.002	
	8	234.696	242.080	230.929	233.893	222.737	232.987	234.485	
	9	105.821	91.626	90.780	71.361	88.497	71.219	85.079	
α_i^B	i = 1	-2.980	-1.282	-1.632	-1.309	-2.901	-1.759	-1.749	
ı	2	1.319	1.360	1.377	1.642	1.075	2.317	1.256	
	3	1.839	1.229	1.494	0.876	2.083	0.539	3.064	1.289
	4	5.225	6.518	6.266	6.888	4.741	6.385	5.896	6.529
	5	20.246	18.490	19.303	18.977	20.206	21.009	17.095	15.757
	6	5.645	3.698	4.723	4.007	5.431	5.121	4.069	
	7	-5.727	-3.404	-3.705	-3.478	-5.653	-4.064	-3.974	
	8	-2.126	-2.316	-1.928	-2.431	-1.972	-2.439	-2.446	
	9	9.829	9.397	9.376	9.419	9.725	10.204	9.073	
α_i^C	i = 1	-2.924	-1.421	-1.758	-1.445	-2.843	-1.898	-1.850	
ı	2	-3.830	-4.871	-4.215	-4.090	-4.470	-3.583	-4.346	
	3	10.858	11.009	10.977	10.357	11.474	10.219	12.046	11.368
	4	5.597	6.740	6.463	6.963	5.007	6.518	6.033	6.879
	5	21.025	19.542	20.161	19.900	20.766	21.692	18.093	23.233
	6	7.062	5.560	6.353	5.782	6.960	6.700	5.762	
	7	-4.936	-2.806	-3.150	-2.888	-4.833	-3.451	-3.389	
	8	-5.172	-5.304	-4.973	-5.383	-5.041	-5.409	-5.379	
	9	11.055	10.449	10.642	10.529	10.934	11.199	10.331	

^aHybrid force field in normal coordinate space.

^bHybrid force field in internal coordinate space.

^cFrom Refs. [2,3].

Molecular Physics

Table 9. Equilibrium and ground state rotational constants, quartic and sextic centrifugal distortion constants of $CH_2^{79}BrF$ calculated from the force fields described in Section 3. The available experimental data are reported in the rightmost column. Rotational constants in units of MHz, quartic centrifugal distortion constants in kHz and sextic distortion constants in Hz.

A.Gambi

	B3LYP VTZ	MP2(full) TZVP	$\begin{array}{c} \mathrm{CCSD}(\mathrm{T}) \\ \mathrm{VTZ} \end{array}$	$CCSD(T)+MP2(full)^{a}$	$\begin{array}{c} \mathrm{CCSD}(\mathrm{T}) + \\ \mathrm{B3LYP^{a}} \end{array}$	$\begin{array}{l} {\rm CCSD(T)} + \\ {\rm MP2(full)^b} \end{array}$	$\begin{array}{c} \mathrm{CCSD}(\mathrm{T}) + \\ \mathrm{B3LYP^b} \end{array}$	$\operatorname{Exp}^{\operatorname{c}}$	
$\begin{array}{c} A_e \\ B_e \\ C_e \end{array}$	$\begin{array}{c} 40215.05846\\ 3676.49449\\ 3444.59844\end{array}$	$\begin{array}{c} 40871.77862\\ 3801.95150\\ 3557.50830\end{array}$	40270.68732 3728.30703 3489.94481	Asi	As in calculation CCSD(T)/cc-pVTZ				
$\begin{array}{c} A_0 \\ B_0 \\ C_0 \end{array}$	$39814.968 \\ 3659.860 \\ 3425.232$	$\begin{array}{c} 40493.910\ 3785.106\ 3538.060 \end{array}$	$39872.279 \\ 3710.671 \\ 3469.695$	$39885.775 \\ 3711.012 \\ 3470.082$	$39901.482 \\ 3711.939 \\ 3470.968$	$39876.509\ 3709.651\ 3468.951$	$39921.710 \\ 3712.165 \\ 3471.294$	$39852.671 \\ 3772.924 \\ 3524.060$	
$egin{array}{lll} \Delta_J \ \Delta_K \ \Delta_{JK} \ \delta_J \ \delta_K \end{array}$	$\begin{array}{c} 1.74910 \\ 548.57863 \\ -24.05862 \\ 0.17059 \\ 7.58035 \end{array}$	$\begin{array}{c} 1.67193 \\ 542.24546 \\ -24.26586 \\ 0.16907 \\ 7.27296 \end{array}$	$\begin{array}{c} 1.70400\\ 541.22096\\ -24.37437\\ 0.17062\\ 7.43229\end{array}$	As in calculation CCSD(T)/cc-pVTZ			$\begin{array}{c} 1.77687\\ 535.63918\\ -24.54401\\ 0.17658\\ 5.99585\end{array}$		
$\Phi_J \\ \Phi_K \\ \Phi_{JK} \\ \phi_{KJ} \\ \phi_J \\ \phi_{JK} \\ \phi_K$	$\begin{array}{c} 0.00078\\ 27.07719\\ 0.02000\\ -1.99303\\ 0.00025\\ 0.00823\\ 2.27767\end{array}$	$\begin{array}{c} 0.00088\\ 25.29773\\ 0.01786\\ -1.84497\\ 0.00026\\ 0.00918\\ 2.10622\end{array}$	0.00081 26.18133 0.02130 -1.95717 0.00026 0.00889 2.19699	$\begin{array}{c} 0.00090\\ 25.85091\\ 0.01860\\ -1.91551\\ 0.00027\\ 0.00934\\ 2.20979\end{array}$	$\begin{array}{c} 0.00071\\ 26.27699\\ 0.02198\\ -1.92153\\ 0.00024\\ 0.00817\\ 2.19186\end{array}$	$\begin{array}{c} 0.00075\\ 26.19361\\ 0.02067\\ -1.95984\\ 0.00025\\ 0.00835\\ 2.19340\end{array}$	$\begin{array}{c} 0.00094\\ 26.65200\\ 0.02184\\ -1.96948\\ 0.00027\\ 0.00955\\ 2.20126\end{array}$	19.48651 0.02099 -1.43900	

^aHybrid force field in normal coordinate space.

^bHybrid force field in internal coordinate space.

^cFrom Ref. [2].

16:20Molecular Physics

gmbtMPHrev **Molecular Physics**

Anharmonic Force Fields of Bromofluoromethane

Table 10. Spectroscopic molecular parameters for the $\rm CH_2{}^{81}BrF,~CD_2{}^{79}BrF,$ and $\rm CHD^{79}BrF$ isotopologues calculated from the hybrid force field in internal coordinates CCSD(T)/cc-pVTZ+MP2(full)/ccpVTZ(H,C,F); TZVP(Br) described in Section 3. Rotational constants in units of MHz, quartic centrifugal distortion constants in kHz and sextic distortion constants in Hz. Fundamental wavenumbers in $\rm cm^{-1}$.

	$\mathrm{CH_2}^{81}\mathrm{BrF}$	$\mathrm{CD_2}^{79}\mathrm{BrF}$	$\rm CHD^{79}BrF$
A_e	40259.73930	29444.72115	33982.55193
B_e	3702.74667	3601.65341	3667.41949
C_e	3467.43203	3348.98088	3414.37519
A_0	39865.565	29191.685	33674.358
B_0	3684.228	3583.932	3649.298
C_0	3446.628	3329.717	3394.353
Δ_J	1.68198	1.47823	1.58718
Δ_K	540.59139	209.94767	325.31116
Δ_{JK}	-24.22057	-11.53276	-16.32719
δ_J	0.16735	0.16195	0.16873
δ_K	7.34844	5.39314	6.46845
Φ_J	0.00073	0.00051	0.00062
Φ_K	26.14361	5.67397	11.46299
Φ_{JK}	0.02031	0.01449	0.01742
Φ_{KJ}	-1.94405	-0.64239	-1.07372
ϕ_J	0.00024	0.00019	0.00022
ϕ_{JK}	0.00820	0.00583	0.00722
ϕ_K	2.17354	0.86762	1.37480
$ u_1^{\mathrm{a}}$	2986.580	2176.822	3024.289
ν_2	1471.566	1139.657	2222.425
ν_3	1310.717	1019.070	1356.123
$ u_4$	1087.187	1001.344	1244.870
ν_5	642.565	601.390	1085.983
ν_6	310.003	309.521	955.015
ν_7	3039.281	2295.639	789.888
ν_8	1231.434	921.585	603.003
ν_9	932.649	716.410	310.221

^aFor the C_1 asymmetric isotopologue, CHD⁷⁹BrF, all the vibrations belong to the unique symmetry species

and are reported in descending order.

URL: http://mc.manuscriptcentral.com/tandf/tmph