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Abstract 
 

A computer program has been written to perform analytic derivative calculations of magnetic 

response properties based on uncontracted multireference configuration interaction (MRCI) 

wavefunctions. At this point orbital relaxation is neglected in this treatment and the basis 

functions are assumed to be independent of the perturbation. It is therefore equivalent to an 

untruncated sum-over-states (SOS) approach to the g-tensor. Hence, the treatment is more 

rigorous than all previous MRCI g-tensor calculations that have used truncated SOS 

formulations. In the present calculations, MR-CI calculations were performed on top of full 

valence complete-active space self-consistent field (CASSCF) reference wavefunctions 

without truncation of the reference or correlation spaces. Results are reported for two types of 

spin-orbit coupling operators, a simple effective nuclear charge approximation and the spin-

orbit mean field (SOMF) approximation. The effects of orbital relaxation are discussed. The 

values obtained can be used in future calibration studies. 

Formatiert: Englisch
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1 Introduction 
The theory of the g-tensor, the central property measured in electron paramagnetic resonance 

(EPR) experiments, has undergone a rapid development in recent years. In particular, methods 

based on density functional theory (DFT) have become very popular and are now widely 

applied in the interpretation of experiments (for reviews see [1-3]). However, one difficulty 

has been to find highly accurate data for calibration purposes since the g-values measured for 

small molecules in matrix isolation or the gas phase show a large scatter among different 

investigations (see for example the data assembled in ref [4]). Thus, there is a need for highly 

accurate reference data to gauge the quality of approximate approaches. In the ab initio field, 

g-tensors have been previously calculated by analytic derivative UHF theory,[5] generalized 

Hartree-Fock theory[6] and sum-over-states (SOS) based formulations for restricted-open-

shell Hartree-Fock (ROHF), multireference configuration-interaction (MRCI) [7-19] as well 

as multireference perturbation [18,20-23] approaches. In addition, a linear response theory 

(LRT) for g-tensors based on the complete active space self-consistent field (CASSCF) 

method has been developed and applied.[24-27] 

In this paper, an analytic derivative (linear response) method for the calculation of electronic 

g-tensors based on MRCI wavefunctions is reported. The method is approximate in thus far, 

as that orbital relaxation contributions and the dependence of the basis set on the perturbation 

are neglected. The present development is considered to be important since MRCI treatments 

are the most general and robust approach to electronic structure theory as they treat both static 

and dynamic correlation contributions in a balanced way.  

Theory 

The theory of analytic first- and second-derivatives for MR-CI wavefunctions is well known 

and will only be briefly described in order to document what was actually programmed. We 

basically follow Kallay and Gauss who have recently described general methods to obtain 
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analytic first- and second-derivatives for arbitrary CI and coupled-cluster (CC) 

wavefunctions.[28,29] The former case is considerably simpler since the MRCI energy is 

stationary with respect to variations in the CI coefficients. The MRCI wavefunction (assumed 

to be normalized) is given by: 

 ( )∑ Φ=Ψ
I

IIMRCI C 0          ( 1) 

The variational CI coefficients ( )0
IC  (the superscript (0) denotes the unperturbed situation) 

have been obtained by diagonalizing the Born-Oppenheimer Hamiltonian: 

 ( ) ( )[ ]∑∑ ++++ −++=
srqp

psqrrspq
qp

pqpqNN EEErspqEhVH
,,,

2
1

,

0 ˆˆ δ     ( 2) 

in the space of some configuration-state functions (CSFs) { }Φ  of the desired spin- and space-

symmetry (e.g. by solving ( )( ) ( ) 000 =− C1H MRCIE ). NNV̂  is the nuclear repulsion energy, pqh  

the matrix elements of the one-electron operator and ( )rspq  are the two-electron repulsion 

integrals in charge cloud notation. The orbital replacement operators are defined by: 

  ββαα qpqppq aaaaE ++± ±=        ( 3) 

and +
σpa  and σqa  are the usual spin-orbital creation and annihilation operators. The operator 

−
pqE  occurs in spin dependent terms which are proportional to the vector-operator component 

s0 of the electron spin. Such operators conserve the total spin.  

The MR-CI energy is given by: 

  ( ) ( )∑ ∑Γ++=ΨΨ= +

qp srqp
pqrspqpqNNMRCIMRCIMRCI rspqhPVHE

, ,,,

0 ˆˆ   ( 4) 

with the first order reduced electron (‘+’) and spin (‘-‘) density matrices: 

 ∑ ΦΦ=ΨΨ= ±±±

JI
JpqIJIMRCIpqMRCIpq ECCEP

,

*      ( 5) 

The spinless second order reduced density matrix is: 

 ∑ Φ−Φ=Ψ−Ψ=Γ ++++++

JI
JpsqrrspqIJIMRCIpsqrrspqMRCIpqrs EEECCEEE

,

*
2
1

2
1 δδ  ( 6) 
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In the presence of several true or effective one-electron perturbations ,...,μλ the first 

derivative of the MR-CI energy with respect to λ  becomes: 

 MRCI
H

MRCI
MRCIE

ΨΨ=
∂

∂
∂
∂

=
λ

λλ
ˆ

0

       ( 7) 

Assuming that the basis functions do not depend on the perturbation and neglecting the orbital 

relaxation the derivative becomes straightforward: 

 ( )∑ ±

=

=
∂

∂

qp
pqpq

MRCI PhE
,0

λ

λλ
        ( 8) 

The second derivative is then given by: 

 ( ) ( )∑∑
=

±
±

==
∂
∂

+=
∂∂

∂

qp

pq
pq

qp
pqpq

MRCI P
hPhE

, 0,

;

0

2

μ

λμλ

μλ μμλ
      ( 9) 

where  

 ( )

0

pq
pq

h
h λ

λ
λ

=

∂
=

∂
          ( 10) 

 ( )
2

,

0

pq
pq

h
h λ μ

λ μ
λ μ

= =

∂
=
∂ ∂

         ( 11) 

The electron density (P+) is to be used if the perturbation is spin-independent while a spin-

dependent perturbation that is proportional to s0 requires the spin-density (P-) to be used in the 

above equations. Based on the arguments of McWeeny in an effective Hamiltonian 

framework the two-terms in eq (9) may be referred to as ‘first’ and ‘second’ order 

respectively.[30]  The first order term is an expectation like quantity that only requires the 

unperturbed ground state electron or spin density. The second term on the other hand requires 

the calculation of the perturbed electron- or spin density and in a sum-over-states or effective 

Hamiltonian picture arises from an infinite sum over excited states. In the case of the MR-CI 

method, the calculation of the perturbed electron and spin-densities is particularly 

straightforward: 

 
μμμ

μ
∂
Ψ∂

Ψ+Ψ
∂
Ψ∂

=
∂
∂ ±±

=

±
MRCI

pqMRCIMRCIpq
MRCIpq EE

P

0

    ( 12) 
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The perturbed CI coefficients are obtained from the coupled-perturbed MRCI (CP-MRCI) 

equations: 

 ( )( ) ( ) ( ) ( )( ) ( ) 0ˆ 00 =ΨΨ−+− C1HC1H MRCIMRCIMRCI HE μμμ     ( 13) 

Here ( )μC  denotes the perturbed CI coefficients, ( )0H  the unperturbed matrix of the Born-

Oppenheimer Hamiltonian in the CSF basis, MRCIE  the unperturbed MR-CI energy, ( )μH  the 

matrix of the derivative of the total perturbed Hamiltonian with respect to the perturbation 

parameter evaluated at the origin and ( )
MRCIMRCI H ΨΨ μˆ  is the first-order perturbation 

energy (which is zero for the magnetic field perturbations considered in this work). The set of 

CP-MRCI equations (eq (13)) constitute a large set of linear equations of a similar structure as 

the MRCI eigenvalue equation. Consequently, the CP-MRCI equations can be solved by 

almost identical iterative techniques. The only moderately more complicated feature is the 

calculation of spin-dependent matrix elements in the calculation of the inhomogeneity which 

differs substantially from the corresponding terms in the analytic MR-CI gradient.[31] Our 

implementation of general spin-dependent MRCI matrix elements has been described 

previously.[32]  

If one introduces the spectral resolution of the matrix ( )
MRCIE1H −0  one can write: 

 
( )

∑
≠

Ψ
−

ΨΨ
−=

∂
Ψ∂

0

ˆ

K
K

MRCIK

MRCIKMRCI

EE

H μ

μ
      ( 14) 

where ( )∑ Φ=Ψ
L LLKK C 0  is the K’th eigenstate of ( )0Ĥ  with energy KE . This is merely a 

reminder that the solution of the linear-equation system is equivalent to an untruncated SOS 

expansion and is thus preferable over truncated SOS approaches.  

In the case of the g-tensor the only second-order contribution arises from the terms which are 

linear in the magnetic field and the electron spin but involve no other spins. These are the 

orbital-Zeeman operator and the SOC term (e.g. ref [5]). In this work, we take the SOC 
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operator to be an effective one-electron operator and evaluate two approximations to the full 

Breit-Pauli form of the SOC. The first is the simply effective nuclear charge model as 

parameterized by Koseki et al.[33-35] It’s matrix elements are given by: 

 ( ) ( )∑ −=
A

AA
eff

A
eff qrpZqzp μμ

α l3
2

2
ˆ        ( 15) 

with 137/1≈α  being the fine-structure constant and ( )eff
AZ  a semiempirical effective nuclear 

charge of atom A which were not changed from their original values. μ;
ˆ

Al  is the μ’th 

component of the angular momentum of the electron relative to atom A and Ar  is the 

electron’s distance to this atom. The second form of the SOC is the sophisticated spin-orbit-

mean-field (SOMF) approximation introduced by Hess et al.[36] (see also the AMFI program 

[37]) The ORCA implementation of this operator [38] is equivalent to the formulation of 

Berning et al. [39] and leads to an effective one-electron operator of the form: 

( ) ( ) ( ) ( )[ ]∑∑ −−−= −

yx

SOCSOCSOC
xy

A
AAA

SOMF pxgyqqygpxxygpqPqrpZqzp
,

2
3

2
3

2
3

2

ˆˆˆ
22

ˆ μμμμμ
αα l

            ( 16) 

with μμ ,12
3

12
ˆˆ l−= rg SOC . Here, xyP  is the atomic orbital basis representation of some density 

(taken here as the MRCI ground state density matrix), 12r  is the interelectronic distance and 

μ;12l̂  is the μ’th component of the angular momentum of electron 1 relative to electron 2. In 

this work, all two-electron integrals were evaluated exactly. The second-order contribution to 

the g-tensor becomes: 

 ( ) qzp
B
P

S
g

qp

pqSOCOZ
ν

μ
μν ˆ

2
1

,

/ ∑ ∂
∂

−=Δ
−

       ( 17) 

In the theory of the g-tensor, there are three operators which are bilinear in the external 

magnetic field and the electron spin and therefore contribute to the first-order term in eq (9). 

These, are the spin-Zeeman term, the reduced mass correction and the gauge-correction term 

which lead to the following contributions: 

 ( )
e

SZ gg μνμν δ=           ( 18) 

...002319.2=eg  is the free electron g-value. The reduced mass correction (RMC) is given by: 
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 ( ) qpP
S

g
qp

pq
RMC 2

,

2

2
∇= ∑ −αδμνμν        ( 19) 

where α  is the fine structure constant and S  the total spin of the ground state. In the effective 

nuclear charge approximation the gauge correction (GC) is given by: 

 ( ) ( ) { }qrrrZpP
S

g
A

AAA
eff

A
qp

pq
GC ∑∑ −=Δ −−

νμμν
α

,
3

,

2

4
rr      ( 20) 

Owing to its smallness of this term and the relatively good performance of the effective 

nuclear charge model (≈±10%, see below) it did not seem appropriate to implement a more 

sophisticated approximation. 

The method presented above is referred to below as LRT-MRCI treatment. 

Computational Details  
All calculations were carried out with the ORCA electronic structure program [40] which has 

been modified in this work to carry out CP-MRCI calculations. Presently, the program can 

deal with either purely real or purely imaginary perturbations which may or may not be spin-

dependent. However, the introduction of orbital relaxation is presently not implemented and is 

also not straightforward since the program makes no assumption about the identity of the 

input orbitals. For this purpose a more dedicated code seems preferable. Unless otherwise 

noted, the calculations employed the aug-cc-pVDZ basis set [41]. The orbitals were obtained 

in tightly converged CASSCF calculations using the reference spaces listed in Table 1. All 

configurations in the CAS space including those of symmetry different from the ground state 

were used as reference configurations in the following uncontracted MRCI calculations. All 

unique single- and double-excitations relative to all reference configurations were included in 

the variational calculation without selection. Core electrons were not correlated. The linear 

equation system for the perturbed MRCI coefficients were solved by Pople’s algorithm [42] 

and usually converged in less than 10 iterations to seven digits accuracy. The origin was 

chosen at the centre of the MRCI electronic charge. 
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Results and Discussion 
In general, the MRCI energies in Table 1 are 1-3 mEh higher than the corresponding numbers  

from spin-unrestricted coupled-cluster calculations with single- and double-excitations 

together with a perturbative triple-excitations correction (CCSD(T)). If it is assumed that the 

CCSD(T) results are close to full CI values, the main source of this discrepancy is very likely 

the size consistency error of the MRCI method. It would be remedied by the multireference 

Davidson correction. However, since the response of the (nonvariational) Davidson correction 

[43] has not been coded this would not have affected the outcome of the property calculations. 

Basis set convergence and core-correlation. Since the basis set convergence of the g-tensor 

has never been systematically studied at a correlated ab initio level, the g-tensor of the NH 

molecule was investigated with the converging series of correlation consistent basis sets. As 

becomes evident from Table 2, the first order terms are easily converged to about 1 ppm 

already at the triple-ζ level. This is, however, not true for the second order PSO term. Here, 

convergence is as slow as for the dynamic correlation energy itself and even upon going from 

cc-PVQZ to cc-pV5Z changes on the order of 20 ppm are observed. The data in Table 2 fit 

reasonably well to a X-3 dependence of the ( )PSOg⊥  shift with X being the cardinal number of 

the basis set. This fit leads to a predicted basis set limit of ~1610 ppm for the ( )PSOg⊥ -value of 

NH at the unrelaxed LRT-MRCI level in conjunction with the effective nuclear charge SOC 

operator. The effects of core-correlation were also briefly investigated for the NH molecule. 

Using the aug-pCVDZ basis set, ( )PSOg⊥  is 1447.9 ppm if only the valence electrons are 

correlated and 1479.5 ppm upon including the N-1s orbital in the correlation treatment.  Thus, 

at least in this example, the core-correlation effects appear to be limited and will only play an 

important role upon approaching the basis set limit. The core-correlation effects are also not 

expected to be large since, unlike the case met in the calculation of the Fermi-contact 

interaction, the limited core-level spin-polarization is not expected to play an important role 
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for the spin-orbit coupling of the valence shell electrons. Nevertheless, this subject certainly 

warrants a much more careful investigation on a larger test set of molecules including also 

heavier elements. 

Comparison to experiment and other calculations. Comparison of the present calculations to 

experimental data is of limited value since small basis sets are used here and the experimental 

data are uncertain and often significantly affected by matrix effects. Hence, comparison can 

be made to previous SOS calculations of Brownridge et al.,[16] Bolvin [23] and the present 

author.[18] However, all of the previous calculations used larger basis sets and introduced 

additional approximations leading to additional uncertainties. Nevertheless, the results of the 

LRT-MRCI calculations do agree reasonably well with the previous SOS-MRCI calculations 

except for H2O+ and AlO. The latter case is particularly pathological and has recently been 

analyzed in much more detail by Gilka and Marian.[44] In this work, the LRT-MRCI 

calculations for AlO give reasonable results that appear to be stable.  

For H2O+ the results of the LRT-MRCI calculations seem to be inferior to the earlier SOS-

MRCI calculations (the gmax shift is predicted too low in the present 

calculations).[12,16,18,23] The problems appear to be associated with the CASSCF orbitals 

as will be discussed in more detail below.  

Spin orbit operators. It is evident from Table 3 - Table 5 that the effective nuclear charge and 

SOMF SOC Hamiltonians provide results within ~10% of each other. The motivation for 

including the less rigorous effective nuclear charge values is that this operator is easily 

implemented and this will facilitate future comparison of theoretical g-tensor results. Since 

the effective nuclear charge values always overshoot the more rigorous SOMF results, it 

would have been possible to improve on the effective nuclear charge model by dividing the 

effective charges by ~1.1-1.2. However, this would be a merely cosmetic operation.  

Discussion of Approximations. In obtaining the theoretical results of this work only two 

approximations above the limitations of a finite (small) one-particle have been made: (1) 
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neglect of the dependence of the basis set on the (magnetic field) perturbation and (2) neglect 

of the orbital relaxation contribution. The first approximation is not very severe as all 

calculations to date show that the gauge dependence of the g-tensor is small. Hence, the 

enormous effort to implement gauge-including atomic orbitals (GIAO’s) into the LRT-MRCI 

code does not seem worthwhile at this stage. Concerning the second approximation, it is 

obvious that the orbital relaxation contributions must vanish for a full CI wavefunction.[28] 

To the extent that one hopes to approximate this limit well in the present calculations it could 

also be hoped that the orbital relaxation contributions are small enough to be neglected. 

Indeed, in CC calculations of response properties the orbital response is often neglected in 

order to avoid spurious poles that are introduced via the Hartree-Fock ground state (see for 

example the interesting discussion in ref [45]). Orbital relaxation contributions are implicitly 

accounted for in such calculations through the higher powers of the t1 (single-excitation 

cluster) operator. A similar situation does, however, not exist in the case of CI calculations 

which are linear in the single excitation amplitudes. Thus, if the orbitals are optimized for the 

ground state, it might happen that the excited states are not well described by the same 

orbitals and consequently, one might expect that the linear response treatment would predict 

g-shifts that are too small in magnitude.  

In order to find out how large these effects are in the case of g-tensors, calculations with 

different sets of orbitals were carried out for NH, CN and H2O+. For this purpose it is 

sufficient to focus on the largest PSO contribution to the g-shift. For NH the largest 

contribution to the ( )PSOg⊥ -shift in a SOS picture arises from the low-lying 3Π state. Thus, it 

seems appropriate to compare calculations where the reference orbitals have been obtained 

either from single root CASSCF(6,5) and state-averaged (SA) three-root CASSCF(6,5) 

calculations. The resulting ( )PSOg⊥  values are 1418.9 ppm and 1461.3 ppm which amounts to a 

change of less than 3%. Similarly, for the CN-radical it was shown previously, that the largest 
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contribution to ( )PSOg⊥  does not arise from the low-lying 1-2Π state but from the much higher 

2-2Π state since couples much more strongly to the ground state than 1-2Π.[18] In fact, 

orbitals from a CASSCF(9,8) yield ( )PSOg⊥ = -1889 ppm and a seven root average, which 

includes the 2-2Π state yields ( )PSOg⊥ = -1882 ppm. This result indicates that orbital relaxation 

effects are also limited in this system. 

However, one should not jump to the conclusion that the dependence of the results on the 

orbitals is always small. In fact, this is not the case – turning to H2O+, the largest contribution 

to ( )PSOg33  arises from the low-lying 1-2A1 state that is experimentally found around 16,500  

cm-1.[12] In this system orbital averaging makes a very large difference. Determining the 

orbitals from a single root CASSCF(7,6) calculation yields a LRT-MRCI value ( )PSOg33 =12596 

ppm while two root averaging gives ( )PSOg33 =15482 ppm – a change as large as 20%. The 

seemingly better result of the two-root calculation (the experimental value for the ( )
33
totg  shift 

is ~18800 ppm [12]) may well be associated with the averaged orbitals that describe the 

crucial 2B1→2A1 excitation in a more balanced way than the single root orbitals. In fact, 

already the SA-CASSCF transition energy of the two-root calculation (18500 cm-1) is close to 

experiment while the orbitals of the single-root optimization yield 24900 cm-1 which is much 

too high. This shortcoming is not repaired at the MRCI level, where the transition energy is 

still predicted too high with the single root orbitals (20400 cm-1) while the corresponding 

value with the two-root orbitals is accurate (16400 cm-1). This shows once more that it is 

important for linear response treatments of ground state properties that the eigenvalues of the 

response matrix (for LRT-MRCI simply ( )0
MRCIE−H 1 ) describe excitation energies well. It is 

noted in passing that the MRCI calculation based on the two-root CASSCF orbitals even yield 

a MRCI energy that is slightly lower (0.2 mEh) than the MRCI solution based on the single-

root CASSCF orbitals. Whether a LRT-MRCI calculation that includes orbital relaxation is 
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able to compensate for the shortcomings of the single-root CASSCF orbitals appears to be an 

open question. It is noted, however, that the significant deviations from experiment that still 

persist are not due to basis set effects. Calculations with the cc-pVQZ basis and the SOMF 

operator still yield a ( )PSOg33  of only ~15616 ppm which is ~20% below the experimental gas-

phase value. 

Conclusions  
In the present work the first analytic derivative implementation of electronic g-tensors at the 

MRCI level is reported and has been evaluated through benchmark calculations on small 

molecules. For a given set of molecular orbitals, the present LRT-MRCI approach is to be 

preferred over SOS based treatments since the entire manifold of excited states is implicitly 

accounted for and no truncation error arises. Under the reasonable assumption that the 

solution of the CP-MRCI equations is computationally about as expensive as the calculation 

of a single MRCI root, the LRT-MRCI method is also computationally more economical than 

the SOS-MRCI treatment. 

However, the present implementation is not complete in the sense that the orbital relaxation 

contributions are neglected. While it was initially hoped that the MRCI wavefunction might 

be accurate enough in order to compensate for this neglect, the actual calculations suggest that 

this is probably at least not always the case – different sets of state averaged CASSCF orbitals 

have yielded very different response contributions to the g-tensor for H2O+. In situations with 

low lying excited states that strongly spin-orbit couple to the electronic ground state it may 

prove advantageous to determine the orbitals for an average of several low-lying states since 

this will allow for a more balanced treatment of excitation energies at the linear response 

level. For future high-accuracy studies it appears desirable to include the orbital response in 

such calculations. This requires the solution of the coupled-perturbed CASSCF equations and 

their derivatives for a purely imaginary perturbation. The development of an efficient 
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computer code for this task is a significant undertaking that has so far not been completed in 

the framework of the ORCA program. 

The main fields of application for such an involved methodology might be: (a) accurate 

calculations on small molecules (owing to the slow basis set convergence this will likely also 

require basis set extrapolation to be carried out), (b) generation of benchmark values for more 

approximate schemes and (c) application to molecules with genuine multireference character. 

The lack of size consistency is a serious issue in such calculations and might be dealt with 

through average coupled pair functionals.[46] Once these tasks are accomplished, additional 

approximations must be introduced in order to make LRT-MRCI g-tensor calculations 

computationally feasible for at least medium sized molecules. Work in this direction is in 

progress in our group.  
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Table 1: Geometries (in a.u. and degrees), CASSCF energies , MRCI energies and CCSD(T) energies (all in Eh)obtained for the test set in the aug-cc-pVDZ basis. 

Molecule E(CASSCF) E(MR-CI) E(CCSD(T)) Ref-Space Geometry 
CN   -92.351608   -92.501359   -92.502281 CAS(9,8) RCN=2.2140 
CO+ -112.423319 -112.564973 -112.565419 CAS(9,8) RCO=2.0986 
BO   -99.651369   -99.793545   -99.796694 CAS(9,8) RBO=2.2770 
AlO -316.863176 -317.010044 -317.011757 CAS(9,8) RAlO=3.0569 
NH   -54.990463   -55.103281   -55.105587 CAS(6,5) RNH=1.9578 
OH+   -75.005612   -75.116515   -75.117897 CAS(6,5) ROH=1.9446 
PH -341.301599 -341.397667 -341.400433 CAS(6,5) RPH=2.6736 
SH+ -397.770501 -397.868444 -397.870574 CAS(6,5) RSH=2.5965 
H2O+   -75.677504   -75.803890   -75.806194 CAS(7,6) ROH =2.0893 ∠109.62 
NH2   -55.618776   -55.747935   -55.751555 CAS(7,6) RNH =1.9291 ∠103.15 
H2S+ -398.392575 -398.504049 -398.506884 CAS(7,6) RSH =2.5614 ∠  93.30 
PH2 -341.904247 -342.013942 -342.017597 CAS(7,6) RPH = 2.6663∠  91.92 

 
 
Table 2: Basis set convergence of LRT-MRCI g-tensor (in ppm) calculations for NH(3Σ) (effective nuclear charge SOC operator). 

Basis Set ( )totg||  ( )totg⊥
a ( )RMCg  ( )DSOg||  ( )DSOg⊥  ( )PSOg⊥

 a 
cc-pVDZ -107.4 1205.4 -205.1 97.6 71.0 1339.5 
cc-pVTZ -107.8 1394.4 -205.8 98.0 70.9 1529.2 
cc-pVQZ -107.8 1441.6 -205.8 98.0 70.9 1576.6 
cc-pV5Za -107.8 1463.0 -205.7 97.9 70.9 1597.8 

a – h functions had to be deleted due to technical constraints. 
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Table 3: MRCI linear response g-tensor (in ppm) results for 2Σ molecules as described in the text (results obtained with the effective nuclear charge SOC operator. 

Results obtained with the full SOMF-SOC operator are given in parenthesis). 

Molecule ( )totg||  ( )totg⊥
a ( )RMCg  ( )DSOg||  ( )DSOg⊥  ( )PSOg⊥

 a 
CN  -125.7 -1946.8 (-1758.8) -170.5 44.8 113.5 -1889.8 (-1701.8) 
CO+  -125.4 -2361.2 (-2144.9) -173.5 48.1 122.1 -2309.8 (-2093.6) 
BO  -61.3 -1664.9 (-1493.5)  -90.8 29.5 78.8 -1652.9 (-1481.5) 
AlO  -78.1 -2141.0 (-1739.7) -158.7 80.6 180.4 -2162.7 (-1761.4) 

 
 
Table 4: MRCI linear response g-tensor (in ppm) results for 3Σ molecules as described in the text (results obtained with the effective nuclear charge SOC operator. 

Results obtained with the full SOMF-SOC operator are given in parenthesis). 

Molecule ( )totg||  ( )totg⊥
a ( )RMCg  ( )DSOg||  ( )DSOg⊥  ( )PSOg⊥

 a 
NH  -106.0 1286.6 (1131.0) -203.0 97.0 70.6 1418.9 (1263.4) 
OH+  -175.5 3619.9 (3260.9) -323.7 148.2 109.8 3822.8 (3474.8) 
PH   -17.8 4201.5 (3823.2) -146.0 163.7 117.1 4230.4 (3852.1) 
SH+  -19.1 8068.6 (7609.6) -229.8 210.8 152.6 8145.9 (7686.9) 
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Table 5: MRCI linear response g-tensor (in ppm) results for 2XH2
n+ (n=0,1) molecules with 2B1 ground states as described in the text (results obtained with the effective 

nuclear charge SOC operator. Results obtained with the full SOMF-SOC operator are given below). 

Molecule ( )totg11  ( )totg22  ( )totg33
 ( )RMCg  ( )DSOg11  ( )DSOg22  ( )DSOg33  ( )PSOg11  ( )PSOg22  ( )PSOg33  

H2O+  -191.2 4566.3 12427.1 -317.5 73.2 146.7 147.9 53.1 4737.1 12598.3
 -198.1 4006.9 11117.0     46.3 4177.7 11286.7
NH2  -144.9 1532.3 4767.1 -198.3 45.9 97.1 98.6 7.5 1633.5 4866.9 
 -147.9 1312.7 4183.9     4.6 1414.0 4283.6 
H2S+     41.3 10698.9 24088.9 -228.7 97.6 212.0 210.3 172.4 10715.6 24107.3
    24.0 10071.1 22727.0     155.1 10087.8 22745.4
PH2

     24.6 4707.4 13622.3 -146.1 74.1 165.6 164.0 96.6 4687.9 13604.5
      8.9 4272.5 12409.6     80.9 4252.9 12391.8
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Abstract 

 

A computer program has been written to perform analytic derivative calculations of magnetic 

response properties based on uncontracted multireference configuration interaction (MRCI) 

wavefunctions. At this point orbital relaxation is neglected in this treatment and the basis 

functions are assumed to be independent of the perturbation. It is therefore equivalent to an 

untruncated sum-over-states (SOS) approach to the g-tensor. Hence, the treatment is more 

rigorous than all previous MRCI g-tensor calculations that have used truncated SOS 

formulations. In the present calculations, MR-CI calculations were performed on top of full 

valence complete-active space self-consistent field (CASSCF) reference wavefunctions 

without truncation of the reference or correlation spaces. Results are reported for two types of 

spin-orbit coupling operators, a simple effective nuclear charge approximation and the spin-

orbit mean field (SOMF) approximation. The effects of orbital relaxation are discussed. The 

values obtained can be used in future calibration studies. 
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1 Introduction 

The theory of the g-tensor, the central property measured in electron paramagnetic resonance 

(EPR) experiments, has undergone a rapid development in recent years. In particular, methods 

based on density functional theory (DFT) have become very popular and are now widely 

applied in the interpretation of experiments (for reviews see [1-3]). However, one difficulty 

has been to find highly accurate data for calibration purposes since the g-values measured for 

small molecules in matrix isolation or the gas phase show a large scatter among different 

investigations (see for example the data assembled in ref [4]). Thus, there is a need for highly 

accurate reference data to gauge the quality of approximate approaches. In the ab initio field, 

g-tensors have been previously calculated by analytic derivative UHF theory,[5] generalized 

Hartree-Fock theory[6] and sum-over-states (SOS) based formulations for restricted-open-

shell Hartree-Fock (ROHF), multireference configuration-interaction (MRCI) [7-19] as well 

as multireference perturbation [18,20-23] approaches. In addition, a linear response theory 

(LRT) for g-tensors based on the complete active space self-consistent field (CASSCF) 

method has been developed and applied.[24-27] 

In this paper, an analytic derivative (linear response) method for the calculation of electronic 

g-tensors based on MRCI wavefunctions is reported. The method is approximate in thus far, 

as that orbital relaxation contributions and the dependence of the basis set on the perturbation 

are neglected. The present development is considered to be important since MRCI treatments 

are the most general and robust approach to electronic structure theory as they treat both static 

and dynamic correlation contributions in a balanced way.  

Theory 

The theory of analytic first- and second-derivatives for MR-CI wavefunctions is well known 

and will only be briefly described in order to document what was actually programmed. We 

basically follow Kallay and Gauss who have recently described general methods to obtain 
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analytic first- and second-derivatives for arbitrary CI and coupled-cluster (CC) 

wavefunctions.[28,29] The former case is considerably simpler since the MRCI energy is 

stationary with respect to variations in the CI coefficients. The MRCI wavefunction (assumed 

to be normalized) is given by: 

 
( )∑ Φ=Ψ

I

IIMRCI C 0
         ( 1) 

The variational CI coefficients ( )0
IC  (the superscript (0) denotes the unperturbed situation) 

have been obtained by diagonalizing the Born-Oppenheimer Hamiltonian: 

 ( ) ( )[ ]∑∑ ++++ −++=
srqp

psqrrspq

qp

pqpqNN EEErspqEhVH
,,,

2
1

,

0 ˆˆ δ     ( 2) 

in the space of some configuration-state functions (CSFs) { }Φ  of the desired spin- and space-

symmetry (e.g. by solving ( )( ) ( ) 000 =− C1H MRCIE ). NNV̂  is the nuclear repulsion energy, pqh  

the matrix elements of the one-electron operator and ( )rspq  are the two-electron repulsion 

integrals in charge cloud notation. The orbital replacement operators are defined by: 

  ββαα qpqppq aaaaE ++± ±=        ( 3) 

and +
σpa  and σqa  are the usual spin-orbital creation and annihilation operators. The operator 

−
pqE  occurs in spin dependent terms which are proportional to the vector-operator component 

s0 of the electron spin. Such operators conserve the total spin.  

The MR-CI energy is given by: 

  ( ) ( )∑ ∑Γ++=ΨΨ= +

qp srqp

pqrspqpqNNMRCIMRCIMRCI rspqhPVHE
, ,,,

0 ˆˆ   ( 4) 

with the first order reduced electron (‘+’) and spin (‘-‘) density matrices: 

 ∑ ΦΦ=ΨΨ= ±±±

JI

JpqIJIMRCIpqMRCIpq ECCEP
,

*      ( 5) 

The spinless second order reduced density matrix is: 

 ∑ Φ−Φ=Ψ−Ψ=Γ ++++++

JI

JpsqrrspqIJIMRCIpsqrrspqMRCIpqrs EEECCEEE
,

*
2
1

2
1 δδ  ( 6) 
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In the presence of several true or effective one-electron perturbations ,...,µλ the first 

derivative of the MR-CI energy with respect to λ  becomes: 

 
MRCI

H
MRCI

MRCIE
ΨΨ=

∂

∂
∂
∂

=

λ
λλ

ˆ

0

       ( 7) 

Assuming that the basis functions do not depend on the perturbation and neglecting the orbital 

relaxation the derivative becomes straightforward: 

 ( )∑ ±

=

=
∂

∂

qp

pqpq
MRCI Ph

E

,0

λ

λλ
        ( 8) 

The second derivative is then given by: 

 ( ) ( )∑∑
=

±

±

==
∂

∂
+=

∂∂

∂

qp

pq

pq

qp

pqpq
MRCI

P
hPh

E

, 0,

;

0

2

µ

λµλ

µλ
µµλ

      ( 9) 

where  

 ( )

0

pq

pq

h
h

λ

λ
λ

=

∂
=
∂

          ( 10) 

 ( )
2

,

0

pq

pq

h
h

λ µ

λ µ
λ µ

= =

∂
=
∂ ∂

         ( 11) 

The electron density (P+) is to be used if the perturbation is spin-independent while a spin-

dependent perturbation that is proportional to s0 requires the spin-density (P-) to be used in the 

above equations. Based on the arguments of McWeeny in an effective Hamiltonian 

framework the two-terms in eq (9) may be referred to as ‘first’ and ‘second’ order 

respectively.[30]  The first order term is an expectation like quantity that only requires the 

unperturbed ground state electron or spin density. The second term on the other hand requires 

the calculation of the perturbed electron- or spin density and in a sum-over-states or effective 

Hamiltonian picture arises from an infinite sum over excited states. In the case of the MR-CI 

method, the calculation of the perturbed electron and spin-densities is particularly 

straightforward: 

 
µµµ

µ
∂

Ψ∂
Ψ+Ψ

∂

Ψ∂
=

∂

∂
±±

=

±

MRCI
pqMRCIMRCIpq

MRCIpq
EE

P

0

    ( 12) 
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The perturbed CI coefficients are obtained from the coupled-perturbed MRCI (CP-MRCI) 

equations: 

 ( )( ) ( ) ( ) ( )( ) ( ) 0ˆ 00 =ΨΨ−+− C1HC1H MRCIMRCIMRCI HE µµµ     ( 13) 

Here ( )µC  denotes the perturbed CI coefficients, ( )0H  the unperturbed matrix of the Born-

Oppenheimer Hamiltonian in the CSF basis, MRCIE  the unperturbed MR-CI energy, ( )µH  the 

matrix of the derivative of the total perturbed Hamiltonian with respect to the perturbation 

parameter evaluated at the origin and ( )
MRCIMRCI H ΨΨ µˆ  is the first-order perturbation 

energy (which is zero for the magnetic field perturbations considered in this work). The set of 

CP-MRCI equations (eq (13)) constitute a large set of linear equations of a similar structure as 

the MRCI eigenvalue equation. Consequently, the CP-MRCI equations can be solved by 

almost identical iterative techniques. The only moderately more complicated feature is the 

calculation of spin-dependent matrix elements in the calculation of the inhomogeneity which 

differs substantially from the corresponding terms in the analytic MR-CI gradient.[31] Our 

implementation of general spin-dependent MRCI matrix elements has been described 

previously.[32]  

If one introduces the spectral resolution of the matrix ( )
MRCIE1H −0  one can write: 

 

( )

∑
≠

Ψ
−

ΨΨ
−=

∂

Ψ∂

0

ˆ

K

K

MRCIK

MRCIK
MRCI

EE

H µ

µ
      ( 14) 

where ( )∑ Φ=Ψ
L LLKK C 0  is the K’th eigenstate of ( )0

Ĥ  with energy KE . This is merely a 

reminder that the solution of the linear-equation system is equivalent to an untruncated SOS 

expansion and is thus preferable over truncated SOS approaches.  

In the case of the g-tensor the only second-order contribution arises from the terms which are 

linear in the magnetic field and the electron spin but involve no other spins. These are the 

orbital-Zeeman operator and the SOC term (e.g. ref [5]). In this work, we take the SOC 
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 7 

operator to be an effective one-electron operator and evaluate two approximations to the full 

Breit-Pauli form of the SOC. The first is the simply effective nuclear charge model as 

parameterized by Koseki et al.[33-35] It’s matrix elements are given by: 

 ( ) ( )∑ −=
A

AA

eff

A

eff qrpZqzp µµ

α
l3

2

2
ˆ        ( 15) 

with 137/1≈α  being the fine-structure constant and ( )eff

AZ  a semiempirical effective nuclear 

charge of atom A which were not changed from their original values. µ;
ˆ

Al  is the µ’th 

component of the angular momentum of the electron relative to atom A and 
Ar  is the 

electron’s distance to this atom. The second form of the SOC is the sophisticated spin-orbit-

mean-field (SOMF) approximation introduced by Hess et al.[36] (see also the AMFI program 

[37]) The ORCA implementation of this operator [38] is equivalent to the formulation of 

Berning et al. [39] and leads to an effective one-electron operator of the form: 

( ) ( ) ( ) ( )[ ]∑∑ −−−= −

yx

SOCSOCSOC

xy

A

AAA

SOMF pxgyqqygpxxygpqPqrpZqzp
,

2
3

2
3

2
3

2

ˆˆˆ
22

ˆ µµµµµ

αα
l

            ( 16) 

with µµ ,12
3

12
ˆˆ l−= rg

SOC . Here, xyP  is the atomic orbital basis representation of some density 

(taken here as the MRCI ground state density matrix), 12r  is the interelectronic distance and 

µ;12l̂  is the µ’th component of the angular momentum of electron 1 relative to electron 2. In 

this work, all two-electron integrals were evaluated exactly. The second-order contribution to 

the g-tensor becomes: 

 ( ) qzp
B

P

S
g

qp

pqSOCOZ

ν

µ

µν ˆ
2
1

,

/ ∑
∂

∂
−=∆

−

       ( 17) 

In the theory of the g-tensor, there are three operators which are bilinear in the external 

magnetic field and the electron spin and therefore contribute to the first-order term in eq (9). 

These, are the spin-Zeeman term, the reduced mass correction and the gauge-correction term 

which lead to the following contributions: 

 ( )
e

SZ gg µνµν δ=           ( 18) 

...002319.2=eg  is the free electron g-value. The reduced mass correction (RMC) is given by: 
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 ( ) qpP
S

g
qp

pq

RMC 2

,

2

2
∇= ∑ −α

δµνµν        ( 19) 

where α  is the fine structure constant and S  the total spin of the ground state. In the effective 

nuclear charge approximation the gauge correction (GC) is given by: 

 ( ) ( ) { }qrrrZpP
S

g
A

AAA

eff

A

qp

pq

GC ∑∑ −=∆ −−
νµµν

α
,

3

,

2

4
rr      ( 20) 

Owing to its smallness of this term and the relatively good performance of the effective 

nuclear charge model (≈±10%, see below) it did not seem appropriate to implement a more 

sophisticated approximation. 

The method presented above is referred to below as LRT-MRCI treatment. 

Computational Details  

All calculations were carried out with the ORCA electronic structure program [40] which has 

been modified in this work to carry out CP-MRCI calculations. Presently, the program can 

deal with either purely real or purely imaginary perturbations which may or may not be spin-

dependent. However, the introduction of orbital relaxation is presently not implemented and is 

also not straightforward since the program makes no assumption about the identity of the 

input orbitals. For this purpose a more dedicated code seems preferable. Unless otherwise 

noted, the calculations employed the aug-cc-pVDZ basis set [41]. The orbitals were obtained 

in tightly converged CASSCF calculations using the reference spaces listed in Table 1. All 

configurations in the CAS space including those of symmetry different from the ground state 

were used as reference configurations in the following uncontracted MRCI calculations. All 

unique single- and double-excitations relative to all reference configurations were included in 

the variational calculation without selection. Core electrons were not correlated. The linear 

equation system for the perturbed MRCI coefficients were solved by Pople’s algorithm [42] 

and usually converged in less than 10 iterations to seven digits accuracy. The origin was 

chosen at the centre of the MRCI electronic charge. 
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Results and Discussion 

In general, the MRCI energies in Table 1 are 1-3 mEh higher than the corresponding numbers  

from spin-unrestricted coupled-cluster calculations with single- and double-excitations 

together with a perturbative triple-excitations correction (CCSD(T)). If it is assumed that the 

CCSD(T) results are close to full CI values, the main source of this discrepancy is very likely 

the size consistency error of the MRCI method. It would be remedied by the multireference 

Davidson correction. However, since the response of the (nonvariational) Davidson correction 

[43] has not been coded this would not have affected the outcome of the property calculations. 

Basis set convergence and core-correlation. Since the basis set convergence of the g-tensor 

has never been systematically studied at a correlated ab initio level, the g-tensor of the NH 

molecule was investigated with the converging series of correlation consistent basis sets. As 

becomes evident from Table 2, the first order terms are easily converged to about 1 ppm 

already at the triple-ζ level. This is, however, not true for the second order PSO term. Here, 

convergence is as slow as for the dynamic correlation energy itself and even upon going from 

cc-PVQZ to cc-pV5Z changes on the order of 20 ppm are observed. The data in Table 2 fit 

reasonably well to a X-3 dependence of the ( )PSOg⊥  shift with X being the cardinal number of 

the basis set. This fit leads to a predicted basis set limit of ~1610 ppm for the ( )PSOg⊥ -value of 

NH at the unrelaxed LRT-MRCI level in conjunction with the effective nuclear charge SOC 

operator. The effects of core-correlation were also briefly investigated for the NH molecule. 

Using the aug-pCVDZ basis set, ( )PSOg⊥  is 1447.9 ppm if only the valence electrons are 

correlated and 1479.5 ppm upon including the N-1s orbital in the correlation treatment.  Thus, 

at least in this example, the core-correlation effects appear to be limited and will only play an 

important role upon approaching the basis set limit. The core-correlation effects are also not 

expected to be large since, unlike the case met in the calculation of the Fermi-contact 

interaction, the limited core-level spin-polarization is not expected to play an important role 
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for the spin-orbit coupling of the valence shell electrons. Nevertheless, this subject certainly 

warrants a much more careful investigation on a larger test set of molecules including also 

heavier elements. 

Comparison to experiment and other calculations. Comparison of the present calculations to 

experimental data is of limited value since small basis sets are used here and the experimental 

data are uncertain and often significantly affected by matrix effects. Hence, comparison can 

be made to previous SOS calculations of Brownridge et al.,[16] Bolvin [23] and the present 

author.[18] However, all of the previous calculations used larger basis sets and introduced 

additional approximations leading to additional uncertainties. Nevertheless, the results of the 

LRT-MRCI calculations do agree reasonably well with the previous SOS-MRCI calculations 

except for H2O
+ and AlO. The latter case is particularly pathological and has recently been 

analyzed in much more detail by Gilka and Marian.[44] In this work, the LRT-MRCI 

calculations for AlO give reasonable results that appear to be stable.  

For H2O
+ the results of the LRT-MRCI calculations seem to be inferior to the earlier SOS-

MRCI calculations (the gmax shift is predicted too low in the present 

calculations).[12,16,18,23] The problems appear to be associated with the CASSCF orbitals 

as will be discussed in more detail below.  

Spin orbit operators. It is evident from Table 3 - Table 5 that the effective nuclear charge and 

SOMF SOC Hamiltonians provide results within ~10% of each other. The motivation for 

including the less rigorous effective nuclear charge values is that this operator is easily 

implemented and this will facilitate future comparison of theoretical g-tensor results. Since 

the effective nuclear charge values always overshoot the more rigorous SOMF results, it 

would have been possible to improve on the effective nuclear charge model by dividing the 

effective charges by ~1.1-1.2. However, this would be a merely cosmetic operation.  

Discussion of Approximations. In obtaining the theoretical results of this work only two 

approximations above the limitations of a finite (small) one-particle have been made: (1) 

Deleted: Table 5
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neglect of the dependence of the basis set on the (magnetic field) perturbation and (2) neglect 

of the orbital relaxation contribution. The first approximation is not very severe as all 

calculations to date show that the gauge dependence of the g-tensor is small. Hence, the 

enormous effort to implement gauge-including atomic orbitals (GIAO’s) into the LRT-MRCI 

code does not seem worthwhile at this stage. Concerning the second approximation, it is 

obvious that the orbital relaxation contributions must vanish for a full CI wavefunction.[28] 

To the extent that one hopes to approximate this limit well in the present calculations it could 

also be hoped that the orbital relaxation contributions are small enough to be neglected. 

Indeed, in CC calculations of response properties the orbital response is often neglected in 

order to avoid spurious poles that are introduced via the Hartree-Fock ground state (see for 

example the interesting discussion in ref [45]). Orbital relaxation contributions are implicitly 

accounted for in such calculations through the higher powers of the t1 (single-excitation 

cluster) operator. A similar situation does, however, not exist in the case of CI calculations 

which are linear in the single excitation amplitudes. Thus, if the orbitals are optimized for the 

ground state, it might happen that the excited states are not well described by the same 

orbitals and consequently, one might expect that the linear response treatment would predict 

g-shifts that are too small in magnitude.  

In order to find out how large these effects are in the case of g-tensors, calculations with 

different sets of orbitals were carried out for NH, CN and H2O
+. For this purpose it is 

sufficient to focus on the largest PSO contribution to the g-shift. For NH the largest 

contribution to the ( )PSOg⊥ -shift in a SOS picture arises from the low-lying 3Π state. Thus, it 

seems appropriate to compare calculations where the reference orbitals have been obtained 

either from single root CASSCF(6,5) and state-averaged (SA) three-root CASSCF(6,5) 

calculations. The resulting ( )PSOg⊥  values are 1418.9 ppm and 1461.3 ppm which amounts to a 

change of less than 3%. Similarly, for the CN-radical it was shown previously, that the largest 
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contribution to ( )PSOg⊥  does not arise from the low-lying 1-2Π state but from the much higher 

2-2Π state since couples much more strongly to the ground state than 1-2Π.[18] In fact, 

orbitals from a CASSCF(9,8) yield ( )PSOg⊥ = -1889 ppm and a seven root average, which 

includes the 2-2Π state yields ( )PSOg⊥ = -1882 ppm. This result indicates that orbital relaxation 

effects are also limited in this system. 

However, one should not jump to the conclusion that the dependence of the results on the 

orbitals is always small. In fact, this is not the case – turning to H2O
+, the largest contribution 

to ( )PSOg33  arises from the low-lying 1-2A1 state that is experimentally found around 16,500  

cm-1.[12] In this system orbital averaging makes a very large difference. Determining the 

orbitals from a single root CASSCF(7,6) calculation yields a LRT-MRCI value ( )PSOg33 =12596 

ppm while two root averaging gives ( )PSOg33 =15482 ppm – a change as large as 20%. The 

seemingly better result of the two-root calculation (the experimental value for the ( )
33
tot

g  shift 

is ~18800 ppm [12]) may well be associated with the averaged orbitals that describe the 

crucial 2B1→
2A1 excitation in a more balanced way than the single root orbitals. In fact, 

already the SA-CASSCF transition energy of the two-root calculation (18500 cm-1) is close to 

experiment while the orbitals of the single-root optimization yield 24900 cm-1 which is much 

too high. This shortcoming is not repaired at the MRCI level, where the transition energy is 

still predicted too high with the single root orbitals (20400 cm-1) while the corresponding 

value with the two-root orbitals is accurate (16400 cm-1). This shows once more that it is 

important for linear response treatments of ground state properties that the eigenvalues of the 

response matrix (for LRT-MRCI simply ( )0
MRCIE−H 1 ) describe excitation energies well. It is 

noted in passing that the MRCI calculation based on the two-root CASSCF orbitals even yield 

a MRCI energy that is slightly lower (0.2 mEh) than the MRCI solution based on the single-

root CASSCF orbitals. Whether a LRT-MRCI calculation that includes orbital relaxation is 
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able to compensate for the shortcomings of the single-root CASSCF orbitals appears to be an 

open question. It is noted, however, that the significant deviations from experiment that still 

persist are not due to basis set effects. Calculations with the cc-pVQZ basis and the SOMF 

operator still yield a ( )PSO
g33  of only ~15616 ppm which is ~20% below the experimental gas-

phase value. 

Conclusions  

In the present work the first analytic derivative implementation of electronic g-tensors at the 

MRCI level is reported and has been evaluated through benchmark calculations on small 

molecules. For a given set of molecular orbitals, the present LRT-MRCI approach is to be 

preferred over SOS based treatments since the entire manifold of excited states is implicitly 

accounted for and no truncation error arises. Under the reasonable assumption that the 

solution of the CP-MRCI equations is computationally about as expensive as the calculation 

of a single MRCI root, the LRT-MRCI method is also computationally more economical than 

the SOS-MRCI treatment. 

However, the present implementation is not complete in the sense that the orbital relaxation 

contributions are neglected. While it was initially hoped that the MRCI wavefunction might 

be accurate enough in order to compensate for this neglect, the actual calculations suggest that 

this is probably at least not always the case – different sets of state averaged CASSCF orbitals 

have yielded very different response contributions to the g-tensor for H2O
+. In situations with 

low lying excited states that strongly spin-orbit couple to the electronic ground state it may 

prove advantageous to determine the orbitals for an average of several low-lying states since 

this will allow for a more balanced treatment of excitation energies at the linear response 

level. For future high-accuracy studies it appears desirable to include the orbital response in 

such calculations. This requires the solution of the coupled-perturbed CASSCF equations and 

their derivatives for a purely imaginary perturbation. The development of an efficient 

Page 34 of 40

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 14 

computer code for this task is a significant undertaking that has so far not been completed in 

the framework of the ORCA program. 

The main fields of application for such an involved methodology might be: (a) accurate 

calculations on small molecules (owing to the slow basis set convergence this will likely also 

require basis set extrapolation to be carried out), (b) generation of benchmark values for more 

approximate schemes and (c) application to molecules with genuine multireference character. 

The lack of size consistency is a serious issue in such calculations and might be dealt with 

through average coupled pair functionals.[46] Once these tasks are accomplished, additional 

approximations must be introduced in order to make LRT-MRCI g-tensor calculations 

computationally feasible for at least medium sized molecules. Work in this direction is in 

progress in our group.  
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Table 1: Geometries (in a.u. and degrees), CASSCF energies , MRCI energies and CCSD(T) energies (all in Eh)obtained for the test set in the aug-cc-pVDZ basis. 

Molecule E(CASSCF) E(MR-CI) E(CCSD(T)) Ref-Space Geometry 
CN   -92.351608   -92.501359   -92.502281 CAS(9,8) RCN=2.2140 
CO+ -112.423319 -112.564973 -112.565419 CAS(9,8) RCO=2.0986 
BO   -99.651369   -99.793545   -99.796694 CAS(9,8) RBO=2.2770 
AlO -316.863176 -317.010044  -317.011757 CAS(9,8) RAlO=3.0569 
NH   -54.990463   -55.103281   -55.105587 CAS(6,5) RNH=1.9578 
OH+   -75.005612   -75.116515   -75.117897 CAS(6,5) ROH=1.9446 
PH -341.301599 -341.397667 -341.400433 CAS(6,5) RPH=2.6736 
SH+ -397.770501 -397.868444 -397.870574 CAS(6,5) RSH=2.5965 
H2O

+   -75.677504   -75.803890   -75.806194 CAS(7,6) ROH =2.0893 ∠109.62 
NH2   -55.618776   -55.747935   -55.751555 CAS(7,6) RNH =1.9291 ∠103.15 
H2S

+ -398.392575 -398.504049 -398.506884 CAS(7,6) RSH =2.5614 ∠  93.30 
PH2 -341.904247 -342.013942 -342.017597 CAS(7,6) RPH = 2.6663∠  91.92 

 
 

Table 2: Basis set convergence of LRT-MRCI g-tensor (in ppm) calculations for NH(
3ΣΣΣΣ) (effective nuclear charge SOC operator). 

Basis Set ( )tot
g||  ( )totg⊥

a ( )RMCg  ( )DSO
g||  ( )DSOg⊥  ( )PSOg⊥

 a 

cc-pVDZ -107.4 1205.4 -205.1 97.6 71.0 1339.5 
cc-pVTZ -107.8 1394.4 -205.8 98.0 70.9 1529.2 
cc-pVQZ -107.8 1441.6 -205.8 98.0 70.9 1576.6 
cc-pV5Za -107.8 1463.0 -205.7 97.9 70.9 1597.8 

a – h functions had to be deleted due to technical constraints. 
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Table 3: MRCI linear response g-tensor (in ppm) results for 
2ΣΣΣΣ molecules as described in the text (results obtained with the effective nuclear charge SOC operator. 

Results obtained with the full SOMF-SOC operator are given in parenthesis). 

Molecule ( )tot
g||  ( )totg⊥

a ( )RMCg  ( )DSO
g||  ( )DSOg⊥  ( )PSOg⊥

 a 

CN  -125.7 -1946.8 (-1758.8) -170.5 44.8 113.5 -1889.8 (-1701.8) 
CO+  -125.4 -2361.2 (-2144.9) -173.5 48.1 122.1 -2309.8 (-2093.6) 
BO  -61.3 -1664.9 (-1493.5)  -90.8 29.5 78.8 -1652.9 (-1481.5) 
AlO  -78.1 -2141.0 (-1739.7) -158.7 80.6 180.4 -2162.7 (-1761.4) 

 
 

Table 4: MRCI linear response g-tensor (in ppm) results for 
3ΣΣΣΣ molecules as described in the text (results obtained with the effective nuclear charge SOC operator. 

Results obtained with the full SOMF-SOC operator are given in parenthesis). 

Molecule ( )totg||  ( )tot
g⊥

a ( )RMC
g  ( )DSO

g||  ( )DSO
g⊥  ( )PSO

g⊥

 a 

NH  -106.0 1286.6 (1131.0) -203.0 97.0 70.6 1418.9 (1263.4) 
OH+  -175.5 3619.9 (3260.9) -323.7 148.2 109.8 3822.8 (3474.8) 
PH   -17.8 4201.5 (3823.2) -146.0 163.7 117.1 4230.4 (3852.1) 
SH+  -19.1 8068.6 (7609.6) -229.8 210.8 152.6 8145.9 (7686.9) 
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Table 5: MRCI linear response g-tensor (in ppm) results for 
2
XH2

n+
 (n=0,1) molecules with 

2
B1 ground states as described in the text (results obtained with the effective 

nuclear charge SOC operator. Results obtained with the full SOMF-SOC operator are given below). 

Molecule ( )totg11  ( )totg22  ( )totg33
 ( )RMCg  ( )DSOg11  ( )DSOg22  ( )DSOg33  ( )PSOg11  ( )PSOg22  ( )PSOg33  

H2O
+  -191.2 4566.3 12427.1 -317.5 73.2 146.7 147.9 53.1 4737.1 12598.3 

 -198.1 4006.9 11117.0     46.3 4177.7 11286.7 
NH2  -144.9 1532.3 4767.1 -198.3 45.9 97.1 98.6 7.5 1633.5 4866.9 
 -147.9 1312.7 4183.9     4.6 1414.0 4283.6 
H2S

+     41.3 10698.9 24088.9 -228.7 97.6 212.0 210.3 172.4 10715.6 24107.3 
    24.0 10071.1 22727.0     155.1 10087.8 22745.4 
PH2

     24.6 4707.4 13622.3 -146.1 74.1 165.6 164.0 96.6 4687.9 13604.5 
      8.9 4272.5 12409.6     80.9 4252.9 12391.8 
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