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Abstract

It is shown how a carefully devised quantum defect function can be
used to unify direct dissociation of the lowest member of a Rydberg series,
with predissociation of the higher vibronic states. Results obtained by the
techniques of multichannel quantum defect theory (MQDT) are compared
with those of a simpler Fano golden rule approximation. A simplified
model calculation for the ns 1B1 series of H2O and D2O yields results in
good accord with experiment, and a dramatic isotope effect is explained.
A similar application to the elusive np 1A2 series leads to the prediction of
sharp rotational structure for the np 1A2(000) bands with n > 4, despite
the evidence of a very broad Franck-Condon profile for the dissociative
3p 1A2 state. A band at 90051 cm−1 in the 2+1 REMPI spectrum is
tentatively assigned to the 4p member of this 1A2 series.

1 Introduction.
The Rydberg spectrum of H2O is one of the best characterized of any poly-
atomic species (see [1] for a comprehensive reference list). However problems
remain in the analysis of available high resolution spectra [2, 3, 4, 5], possibly
because modern experiments rely on the detection of ions, which may be lost
by relatively rapid predissociation into neutral fragments, which is known to
pervades the entire spectrum [6]. A systematic study of the dissociation and
predissociation dynamics is therefore desirable. The lowest energy dissociation
pathways must ultimately proceed via excitation of one of the lone pair electrons
to either the 4a∗1 or 2b

∗
2 antibonding molecular orbital [7], which ‘Rydbergize’

[8] in the spectroscopic region to the 3sa1 and 3pb2 orbitals respectively. The
excitation 3s← 1b1 gives rise to the Ã 1B1 state, which is bent at spectroscopi-
cally accessible geometries and directly dissociative to H + OH(X 2Π), while the
3s← 3a1 B̃ 1A1 state is bound in the absence of molecular rotation, at energies
below the H + OH(A 2Σ) dissociation threshold, except at linear geometries
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where it undergoes a conical intersection with the ground state [9]. The dissoci-
ation dynamics of these two states, which includes an important Renner-Teller
coupling mechanism [10], have been very fully characterized, both experimen-
tally (see [11]) and theoretically (see [12]). Less attention has been given to
the corresponding dynamics of the higher Rydberg states, except to note that
similar Renner-Teller coupling between the so far unobserved bent dissociative
3pb2 ← 1b1

1A2 state and its linear 3pb2 ← 3a1
1B2 counterpart allows the

observation of only the K0
a = 0 branches of the latter state [13, 14]. One also

knows that bent D̃ 1A1 and Ẽ0 1B2 states are strongly predissociated by con-
figuration interaction with the linear B̃ 1A1 and 3pb2 1B2 states respectively
[15, 16]. In addition quantum state selected predissociation rates for the bent
3pa1C̃ 1B1, 4s D̃0 1B1 and 3db2 D̃00 1A2 states have been reported [17, 18].
As a first step towards extension of the theory to higher members of the Ry-

dberg series, this paper offers a theory for homogeneous predissociation from the
ns 1B1 and npb2 1A2 states, which are not covered by the above Renner-Teller
coupling and configuration interaction mechanisms. The central assumption is
that s (or pb2) quantum defect functions µs(Q) [or µpb2(Q)] can be defined in
such a way that the family of potential functions

Vnλ(Q) = V +(Q)− Ry

[n− µλ(Q)]
2 (1)

includes the dissociative n = 3 potential surface, as well as the bound surfaces
with n > 4. Within the spirit of MQDT theory [19], vibrational matrix element
of sinπµ(Q) and cosπµ(Q) may then be used to compute the non-adiabatic
coupling strength responsible for the predissociation. Since experiments on the
4s state [18] show that the homogeneous linewidth is independent of excitation
in the modes, ν1 and ν2, the vibrational coordinates Q in eqn (1) are reduced
for simplicity to a single dissociation mode q. The computational method closely
follows that used by Jungen [20] and Ross et al [21] to describe the competitive
predissociation and autoionization of H2, although attention is restricted here
to energies below the ionization threshold. Simpler golden rule estimates for
the linewidths are also derived in order to bring out the physical origin of the
dramatic difference between H2O and D2O. Implications for changes in the
vibrational level structure within the relevant Rydberg series are also discussed.
The paper, starts in section 2, with a brief demonstration of the existence of

a quantum defect function, with the desired properties. Section 3 then uses an
MQDT treatment of non-adiabatic coupling leads to obtain a Wigner R matrix
[22] from which both the 3s absorption profile and the higher ns predissociation
linewidths may be deduced. Section 3 applies the theory to the ns series of H2O
and D2O; and the dramatic linewidth difference between H2O and D2O is found
to be well reproduced. Golden rule linewidth estimates in Section 4 are shown to
be in good agreement with the full MQDT theory, despite significant systematic
errors in the resonance energy levels. Application of this perturbation approach
to the npb2 1A2 indicates very narrow linewidths for the 4p 1A2(000) states
of H2O and D2O, despite the existence of a very broad 3p 1A2 Franck-Condon
profile. The tentative assignment of a band attributable to this state in the

2
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Figure 1: Schematic sections through the ns potential surfaces of H2O in the
direction of the antisymmetric stretching coordinate, Q3.

2+1 REMPI spectrum [23] is given. Finally section 6 summarizes the main
conclusions, and gives pointers for future research.

2 Potential curves and a quantum defect func-
tions.

Knowledge that the 3s Ã 1B1 state of H2O is directly dissociative, with two
equivalent H + OH products, while the 4s D̃00 1B1 state predissociates suf-
ficiently slowly to allow the observation of resolved rotational structure [18],
suggests that a typical section through the manifold of potential surfaces, in the
direction of the dissociation mode, q, must take the form in Fig 1.
Such behavior is found to be consistent with eqn (1) if V + (q) and the quan-

tum defect function µs (q) are taken in the forms

V + (q) = V +(0) +
ω

2
q2, (2)

3
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and

µs (q) = 3−
s

Ry

V + (q)− V3s (q)
(3)

with

V3s (q) = A+
B

1 + αq2
. (4)

The parameter values, which were used to construct Fig 1 are discussed in
section 4.
It will be important later to recognize that although the sequence of excited

potentials with n > 4 converges smoothly onto the positive ion potential as
n → ∞, the distorting influence of the quantum defect function, µs (q) , has a
significant influence on the vibrational level spacings, particularly for n = 4 and
n = 5.

3 MQDT non-adiabatic coupling theory
The non-adiabatic coupling between the dissociative 3s 1B1state and its higher
bound n > 4 counterparts is treated by the method pioneered for the competitive
predissociation and auto-ionization of H2 by Jungen [20] and Ross et al [21],
except that only states below the ionization limit are treated at this stage, so
that the autoionization does not come into play.
The first step is to construct a set of normalized vibrational basis functions

ψi(q), as eigenfunctions of the truncated positive ion Hamiltonian, taken here
as

Hvib = I +
ω

2

∙
1

µ
p̂2 + q2

¸
, (5)

subject to the Sturm-Louville boundary conditions at q = 0 and q = a. At-
tention is restricted to the symmetric eigenfunctions, ψi(−q) = ψi(q), which
are optically accessible from the ground vibrational state, by requiring that the
ψi(q) should have zero derivative at both boundaries.. The corresponding an-
tisymmetric solutions would be obtained by setting ψi(q) = 0 at q = 0. The
required solutions were obtained in practice by the numerical shooting method
[24] . The resulting eigenvalues and boundary amplitudes are denoted as Ei and
ψi(a) = ui respectively. Typically 60-80 elements of this basis are required for
convergence of the full calculation.
The second step is to introduce the non-adiabatic coupling by trapezium

quadrature for the matrix elements

Cvv0 = hv| sinπµs (q) |v0i Svv0 = hv| cosπµs (q) |v0i , (6)

followed by solution of the MQDT quantization equations [19]

[C sinβ(E) + S cosβ(E)]Z = 0, (7)

4
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where sinβ(E) and cosβ(E) are a diagonal matrices, with elements given by

βi(E) = πνi(E) νi (E) =

r
Ry

Ei −E
. (8)

The eigenvalues, Eα, of eqn (7) are determined by the compatibility condition

det [C sinβ(E) + S cosβ(E)] = 0; (9)

and the elements of the amplitude vectors Zα are rescaled and normalized in
the form [19]

Cαi = [νi (Eα)]
3/2

Zαi,
X
i

C2αi = 1, (10)

in order to allow for the fact that MQDT is formulated in terms of energy
normalized basis functions, whereas we are seeking a set of unit normalized
vibronic basis functions, within the finite nuclear coordinate range 0 6 q 6 a.
The first components, Cα1, of the vectors Cα are taken below to determine the
Franck-Condon amplitudes for excitation from v3 = 0, because the ground state
wavefunction lies entirely within the quantization box..
The power of the theory is that solutions of eqns (7) and (9) in principle

include truncated vibrational eigenfunctions of the entire Rydberg series, from
n = 3 to arbitrarily high n values, although the search for roots of (9) was in
practice limited to the energy range E < V +(0), in order to avoid the compli-
cation of the competing autoionization process. Different roots are associated
with different principal quantum numbers n. Those belonging to vibrational
levels of states with n > 4 are readily recognized, because one component Cαi

of the vector Cα is very much larger than the others, and the effective quantum
number, νi (Eα) , lies close to n − µ(0), where µ(0) = 1.5, for the present set
of parameter values in eqn (2)-(4) (see below). The remaining components of
a given vector Cα reflect the strength of non-adiabatic coupling between the
different series, a particular element, Cαi, being assigned to the principal quan-
tum numbers, n(i), which is the closest integer to νi (Eα) + µ(0). There is also
a relatively large residual set of roots, Eα, which are attributable to eigenvalues
of the n = 3 continuum, truncated at q = a.
The third step in the theory is to construct an R matrix for the n = 3

continuum of the present model, by the formula

R(E) =
X
α

w2α
Eα −E

+Rb(E), (11)

which relates the n = 3 continuum function, φ3(E, q) to its derivative φ
0
3(E, q),

by the equation [22]
φ3(E, q) = R(E)φ03(E, q). (12)

Details of the derivation of eqn (11) and of the form of the Buttle correction,
Rb(E), which is introduced to correct for truncation of the continuum basis,
are given in the appendix. The amplitudes wα are obtained by combining the

5
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boundary amplitudes of the vibrational basis, ui = ψi(a), with the components
Cαi in the form

wα =
X
n(i)

Cαiui, (13)

where the prescription for n(i) is given in the previous paragraph. A simi-
lar expression is derived in the appendix for the overlap amplitude, S(E) =
hχ|φ3(E)i , between the internal part of φ3(E, q) and some other function χ(q);

S(E) =
ω

2

X
α

wαSα
Eα −E

φ03(a) + Sb(E), (14)

where, in the present model Sα = hχ|φαi = Cα1u1.
Expressions for the Buttle corrections are given in eqn (A.8) and (A.11) as

particle in a box continuum contributions, summed from N +1 to infinity. The
cut-off index N was identified by comparing the energy spacing between the
last two n = 3 continuum contributions to eqns (11), with the particle in a box
spacing

EN − EN−1 = (2N − 1)
π2ω

2a2
. (15)

The value of N derived from the corresponding difference between the final two
MQDT eigenvalues differed from an integer by typically only 5%.
The above results are combined with the energy normalized continuum

function
φ3(E, q) = f(E, q) cosπτ(E)− g(E, q) sinπτ(E), (16)

where f(E, q) and g(E, q) are defined in appendix B, to obtain the form of the
3s absorption profile. The eigenphase τ(E) is first obtained by combining eqns
(11), (14) and (16) at q = a, to yield

tanπτ(E) = [g(E, a)−R(E)g0(E, a)]
−1
[f(E, a)−R(E)f 0(E, a)0] . (17)

The function |S(E)|2 given by eqns (14) and (16) then give the n = 3 absorp-
tion profile, which is shown in the lower panel of Fig 2. Confirmation thatR
|S(E)|2dE ' 1, to within a few percent, is good evidence for the reliability

and convergence of the theory.
In addition, although the bound ns eigenfunctions, with n > 4, have negli-

gible amplitude at q = a, their presence may be detected as local perturbations
to τ(E), arising from the internal non-adiabatic coupling, which are taken into
account by eqn (6)-(9). The resulting jumps in τ(E) are used to estimate the
predissociation linewidths. As discussed above, the various poles, Eα, of the R
matrix in eqn (11), are readily assigned either to the 3s continuum or to vi-
brational levels of the higher members of the series, which makes it convenient
to define a resonant contribution, τres(E), as the difference between the term,
τ(E), obtained from the full sum for S(E) and that obtained from the sum over
the poles belonging to the continuum. A typical jump in τres(E) by π is shown
for the 4s(000) resonance in the upper left panel of Fig 2. The energy derivative

6

Page 6 of 45

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

40000 50000 60000 70000

E / cm
−1

0

0.1

0.2

| S
(E

) 
|2  x

 1
00

0

84430 84440
0

0.2

0.4

0.6

0.8

1

τ/
 π

84430 84440
0

0.05

0.1

0.15

0.2

(d
τ/

dE
) 

/ π
3s

4s(000) 4s(000)

Figure 2: The 3s continuum absorption profile(lower) plus the resonant con-
tribution to the eigenphase τ (E) (upper left) and its energy derivative (upper
right) in the vicinity of the 4s 1B1(000) resonance of H2O
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H2O D2O Ref

GX(000) 4631 3386 [26]
G+(000) 4068 2978 [27]
GOX(0) 1848 1349 [28]
I 101766 101916 [29]
D0 41244 [7]
Γ4s 4.0 0.1 [18]
E4s 84434 84646 [18]
G4s12 2051 1510 [18]

Table 1: Data in cm−1 used to determine the parameters of the model

of τres(E) then determines the predissociation lineshape, as shown in the right
hand upper panel of Fig 2.

4 Application to the nsa1 1B1 series

The parameter values in eqns (2)-(4) were determined by reference to the
spectroscopic properties of H2O. With the energy zero taken at the minimum
of the ground state potential function,

V +(0) = I +GX(000)−G+(000) (18)

and
A = DH2O

0 +GX(000)−GOH(0), (19)

where I is the ionization energy , D0 is the dissociation energy and GX(000),
G+(000) and GOH(0) are the ground state zeropoint energies of H2O , H2O+

and OH respectively. Numerical values for H2O and D2O are given in table
1. The harmonic frequency of the ion core was taken as ω = ν3 = 3259 cm−1

[25], with the reduced mass in eqn (2) taken as µ = 1 or 2 for H2O or D2O
respectively. Finally, as discussed below, the parameters B and α in eqn (4) were
adjusted to reproduce the absorption frequency and predissociation linewidth
of the 4s (000) level of H2O [18]. The resulting numerical values are V +(0) =
102329 cm−1, ω = 3259 cm−1, A = 44025 cm−1, B = 14530 cm−1 and α =
0.625. The R matrix boundary radius for the scaled coordinate q was taken as
a = 7, which corresponds to the turning point of the antisymmetric stretching
state of H2O+ with v3 =24. Typically 80 truncated even harmonic oscillator
symmetric eigenfunctions, ψi(q) = ψi(−q), were used to compute the sine and
cosine matrices in eqn (6).
The most striking feature of the calculation is the sensitivity of the predis-

sociation rate to the width parameter, α, of the model potential V3s(q). For

8
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H2O

MQDT Golden rule
State E/cm−1 Γ/cm−1 E/cm−1 Γ/cm−1

4s(000) 84438 4.1 84367 4.0
4s(002) 89271 11.8 89254 10.6
4s(004) 94862 10.6 94851 16.7

5s(000) 92895 0.2 92847 0.7
5s(002) 98799 0.8 98764 1.6

6s(000) 96332 0.1 96327 0.2
D2O

MQDT Golden rule
State E/cm−1 Γ/cm−1 E/cm−1 Γ/cm−1

4s(000) 84671 0.1 84635 0.2
4s(002) 87882 0.7 87863 0.7
4s(004) 91702 4.3 91703 4.3

5s(000) 93049 0.05 93010 0.03
5s(002) 97185 0.3 97109 0.3

6s(000) 96429 0.008 96457 0.008

Table 2: Energy levels and resonance widths.

example the computed linewidth for the 4s D̃0 1B1(000) state of H2O increases
from 0.02 cm−1 at α = 0.1 to 0.8 cm−1 at α = 0.3 and to the observed value [18]
of 4 cm−1 at α = 0.625. The width of the absorption profile also increases from
2900 cm−1 at α = 0.1 to 4800 cm−1 at α = 0.3 and 6700 cm−1 at α = 0.625
The parameter B in eqn (4), which fixes the height of the 3s potential bar-
rier in Fig 1 was adjusted to bring the computed 4s D̃0 1B1(000) energy level
into close agreement with the experimental value of 84434 cm−1, after adding
a term, G12(0, 0), to account for zeropoint contributions from the neglected ν1
and ν2 modes. In the absence of other information, this latter term was taken
as G12(0, 0) = G+(000)−ω+3 /2−x+33/4, where the superscript ‘+’ implies values
for the positive ion - giving values of 2361 and 1704 cm−1 for H2O and D2O
respectively.

The results of the calculation are presented in Fig 2 and table 2. It is seen
from the lower panel of Fig 2 that the 3s absorption profile peaks at 55000 cm−1

with a width at half height of 6700 cm−1, which may be compared with the ex-
perimental values of 60500 cm−1 and 7200cm−1 [30]. The width is therefore well
reproduced and the main contribution to the discrepancy in the peak positions

9
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probably arises from the assumption of an energy independent quantum de-
fect function, because ab initio estimates [31] of the vertical excitation energies
between the 3s and 4s potential surfaces indicates a decrease in the quantum
defect from µ = 1.31 to 1.21, which is well in line with a calculated jump in the
s quantum defect of NO by 0.1 units, attributable to core polarization effects at
energies where the d channels open, an effect that is very well established for
NO [32, 33].
The variations between the predissociation linewidths in Table 2 are the main

focus of the paper. The parameters of the model were optimized to reproduce
the experimentally observed value, Γ = 4 cm−1 for the 4s(000) state of H2O
[18], but it is striking that the very much smaller experimental value, Γ = 0.05
cm−1, for D2O is also well reproduced. The physical origin of this dramatic
isotope effect is examined in section 4 below. The fact that the calculated
4s(000) energy is higher than the experimental value of 84646 cm−1 by 25 cm−1

is attributable to neglect of any interaction between the ν3 mode and the ν1
and ν2 degrees of freedom. One also sees that the predissociation linewidth
typically increases with increasing excitation of the ν3 mode, and decreases
with increasing electronic excitation.
Another significant feature of table 2, with regard to future analysis of the

spectrum, is that the lower, n = 4 and n = 5, bound potential curves are strongly
anharmonic, as might be expected from the functional dependence of Vns(q) on
the quantum defect in eqn (1). For example the ν3 contributions to the zeropoint
energy, deduced from potential minima, consistent with µ (0) = 1.5834, increase
roughly proportional to n−5 from 822 cm−1 at n = 4 to 1630 cm−1 for the
positive ion, in the case of H2O. The corresponding figures for D2O are 477 cm
−1 at n = 4 and 1152 cm−1 for the positive ion. Similarly the intervals between
the 4s(000), (002) and (004) levels of H2O take the values 4833 cm−1 and 5591
cm−1, compared with a uniform interval of 6518 cm−1 for the positive ion.

5 Non-adiabatic perturbation theory
While the above MQDT based theory is fully non-perturbative, it is hard to
trace the physical origin of resulting variations in predissociation linewidths
and resonance energies. To obtain a more physically transparent picture, it is
assumed that the nuclear wavefunctions, χi(q), are determined by the adiabatic
potential functions, given by eqn (1), and that the linewidths are estimated by
the following non-adiabatic golden rule formula:

Γi = 2π|H 0
ij |2, (20)

where

H 0
ij =

ω

2µ

Z ∞
0

∙
χi(q)Bij(q)

dχj
dq

+ χj(q)Bji(q)
dχi
dq

¸
dq. (21)
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Figure 3: Integrands of eqn (21) for predissociation of the 4s D̃0(000) 1B1 states
of H2O and D2O.

Following Stolyarov and Child [34] the electronic coupling terms are approxi-
mated as

Bij(q) = −Bji(q) '
2µ0s(q)

p
νi(q)νj(q)

νi(q)2 − ν2j(q)
(22)

in which µ0s(q) is the derivative of the quantum defect function in eqn (3) and
νi(q) = ni − µs(q). The bound vibrational wavefunction, χi(q), is normalized
to unity and the continuum function is taken to have the asymptotic form

χj(q) ∼
r
2µ

πωk
cos(kq + δ), k2 =

2µ[E − V3s(∞)]
ω

, (23)

which ensures normalization to an energy delta function.

Application to the ns 1B1 series
It is seen from table 2 that the resulting golden rule linewidth estimates are

in good order of magnitude agreement with the full MQDT model. One can also
understand the dramatic difference between the linewidths of the two isotopo-
logues, by plotting the integrands of eqn (21) in Fig 3. The essential difference
is that the de Broglie wavelength of the continuum wavefunction is very much
smaller for the heavier isotope, which leads to more complete cancellation of the
integral. However, despite the good agreement with respect to the linewidths,
one should notice that the golden rule eigenvalues, in the right hand column
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Figure 4: Schematic view of the adiabatic potential curves for the npb2 ← 1b1
1A2 series of H2O. The right hand panel shows the npb2 ← 1b1 absorption
profile. Energies are measured from the minimum of the ground state potential.
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of table 2 show significant systematic differences from the full MQDT reso-
nance energies because the perturbation approach neglects level shifts arising
from non-adiabatic coupling to the 3s continuum, which leads to a systematic
upward shift of the MQDT energies In addition the MQDT method allows
for vibronic perturbations between higher vibrational levels of a low electronic
state and lower levels of a higher state, which are ignored in the perturbation
approach.

Application to the npb2 1A2 series.
In the absence of experimental information, it is unjustified to apply the full

MQDT method to the npb2 ← 1b1
1A2 series, but the perturbation method

may be used to illustrate some interesting points. In the first place the the
Wigner-Witmer rules [7] require the lowest 1A2 state to dissociate to O(1D)
+ H2 fragments. The dissociation mode, q, is therefore a combination of the
symmetric stretching and bending degrees of freedom. Consequently the the
Lorentzian form for the dissociative potential function in eqn (4) is replaced, for
the purpose of illustration by a decaying exponential,

V3pb2(q) = A+Be−αq, (24)

and the positive ion potential is taken in the scaled Morse form

V +(q) = V +(0) + ω1d(1− e−βq)2, (25)

with β = 1/
√
2d. With energies measured from the minimum of the ground

state potential, the parameter values A = 58900 cm−1, B = 14900 cm−1, ω1 =
49600 cm−1 and d = 21 were chosen to be consistent with the O(1D) + H2
dissociation limit, the calculated [31] vertical excitation energy to the 3p 1A2
state and the Morse parameters for the symmetric stretching mode of H2O+

[27]. Ideally one might have ab initio information on the exponent α in eqn
(24) but Theodorakopoulos et al [35] follow only the first excited state of 1A2
symmetry, along the O(1D) + H2 dissociation coordinate. In the absence of
other information, the value α = 0.4 was taken for illustrative purposes.
The resulting potential curves are shown in the left hand panel of Fig 4.

Notice that the present model, implied by eqns (1), (3), (24) and (25) results
in a significant distortion of the shapes of the lower n > 4 curves, from that of
the parent ion. The right hand panel shows the computed the 3p 1A2 Franck-
Condon profile, which is seen to have a width of roughly 10000 cm −1 - even
larger that for absorption to the 3s Ã 1B1 state. The implied lifetime of 0.5 fs, in
the Frank-Condon region, is fully consistent with the absence of any discernible
3p 1A2 peak in the 3+1 MPI spectrum [18]. Any viable detection scheme would
need to monitor either the O(1D) or the H2 fragment.
The second point concerns the predissociation linewidths for n > 4, which

are predicted to be substantially smaller than those for the nsa1 1B1 series. The
estimate depends on the choice of α, with values of 2×10−4 cm−1 and 2×10−5
cm−1 for H2O and D2O respectively for α = 0.4, rising to 2 × 10−2 cm−1 and
2 × 10−3 cm−1 respectively for α = 0.6. Hence even if these estimates were
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Figure 5: A fragment of the unassigned 2+1 REMPI spectrum of Dickinson et
al [23], compared with the (inverted) 4p 1A2 ← X 1A1 simulation.

increased by two orders of magnitude, the bands, whose origins are predicted
to lie in the range 90000-92000 cm−1 would be expected to show observable
rotational structure. Inspection of the recent 2+1 REMPI spectrum, recorded
by Dickinson et al [23], suggests a plausible candidate with an origin at 90051
cm−1. A simulation based on the known rotational constants of H2O [36] and
H2O+ [25] is shown in Fig ??. Although there are too few lines for a convincing
analysis, further investigation of this spectral range would be of considerable
interest, as the first indication of definitive information on this elusive np A2
series.

6 Summary and conclusions

A model MQDT based theory of homogeneous predissociation throughout a
given Rydberg series has been based on a quantum defect function of the nuclear
coordinates, which encompasses both the lowest dissociative electronic state
of the series and all higher bound members of the series. Test results for a
one dimensional model of the nsa1 1B1 series of H2O correctly reproduce an
observed [18] dramatic difference between the predissociation linewidths of the
4s(000) 1B1 states of H2O and D2O, as well as the correct width of the 3s
continuum absorption profile [30]. An important consequence of the model,
for future spectroscopic analysis, is the prediction of much stronger vibrational
anharmonicity in the lower ns 1B1 states, than in the positive ion, to which the
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series converges.
A golden rule perturbation formula, which closely approximated the MQDT

linewidths, was used to obtain a clearer physical understanding of the origin of
the observed isotope effect. The shorter de Broglie wavelength of the continuum
wavefunction of the heavier isotopic species was seen to be the deciding factor.
.The perturbation approach was also applied to the elusive npb2 1A2 series.
One important difference from the ns 1B1 case is that the dissociative 3p 1A2
state correlates with O(1D) + H2 rather than H + OH fragments. The Franck-
Condon profile, which was predicted to be somewhat wider than that for the
3s 1B1 state, implies a lifetime ∼0.5 fs - much too short for detection by 3+1
MPI spectroscopy [18]. On the other hand the 4p(000) states of H2O and D2O,
with band origins in the range 90000-92000 cm−1, were predicted to show sharp
rotational structure. A tentative candidate for this band at 90051 cm−1 was
identified.
The strength of the present primitive model is that the R matrix, which

carries information about the predissociation linewidths, can be computed for
arbitrarily high energies by extending the theory to include the competitive au-
toionization process [20, 21]. The weaknesses are that it is currently formulated
in a one dimensional approximation and that it applies only to homogeneous pre-
dissociation within a given Rydberg series. The extension to three vibrational
dimensions is largely a matter of computational effort. The tacit assumption
that the neglected symmetric stretching and bending modes of the ns 1B1 series
are identical to those of H2O+ cannot be strictly valid, although the families of
ab initio bending potentials [37, 38, 39] show no marked deviations from one
state to the next. Strictly however one requires the full nuclear coordinate de-
pendence of the quantum defect function, most likely from ab initio information
on the lowest electronic state of the relevant symmetry, if eqn (3) is accepted.
Systems involving two equivalent dissociation channels, such as the ns 1B1 series
also raise questions about the nature of the dissociation coordinate, because the
dissociation to H + OH proceeds along a local mode coordinate, rather than
the antisymmetric stretching mode. The difference may be small in practice, if
one is concerned only with the predissociation rate, rather than the quantum
state dependence of the fragments, but a proper formulation would be in terms
of symmetrized local mode wavefunctions [40]. .
Extension of the theory to include Renner-Teller coupling is also planned

for the future, although much work remains to be done. An accurate Renner-
Teller treatment for the two lowest states of H2O+, on well converged potential
surfaces, was performed some years ago [41]. The strong Ka dependence of
the coupling appears in the composition of the resulting two component wave-
functions, truncated versions of which would provide the vibrational basis for
computation of sine and cosine matrices, analogous to those in eqn (6). The
relevant expressions would however appear as 2x2 matrix contractions, rather
than simple integrals. Construction of the dissociative R matrix and extraction
of the predissociation linewidths would follow the lines of section 3, though no
doubt with many complications of detail. It is also planned to use the present
framework to handle configuration interaction and Coriolis induced predissoci-
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Appendices

A The R matrix and Buttle corrections
Derivation of theWignerRmatrix, that relates solutions φE(x) of the Schrodinger
equation ∙

− ~
2

2m

d2

dq2
+ V (q)

¸
φE = EφE (A.1)

to their derivatives at q = a, involves a Green’s function argument to obtain
[22]

φE(q) =
~2

2m

X
α

φα(a)φα(q)

Eα −E
φ0E(a) 0 6 q 6 a, (A.2)

where the sum is taken over a complete orthonormal set of φn(q) with vanishing
derivatives at q = a. Specialization to the point q = a, together with the sub-
stitution ~2/2m → ω/2µ to conform with the kinetic energy term in (5) leads
to φE(a) = R(E)φ0E(a), with

R(E) =
ω

2µ

X
α

φα(a)φα(a)

Eα −E
. (A.3)

In addition the overlap of φE(q) with any other function χ(q) that vanishes for
q > a is given by

S(E) = hχ|φEi =
ω

2µ

X
α

φα(a) hχ|φαi
Eα −E

φ0E(a). (A.4)

Buttle corrections
Eqn (A.3) and (A.4) are of limited practical value as they stand, because

it is essential that the sums should be taken over a complete set. However, it
frequently happens that the eigenvalue spectrum, for the final few members of
the accessible finite set, approaches that of the ‘particle in a box’ eigenfunctions,
with the same boundary conditions - taken for the present model as φ(0)0(q) = 0
at q = 0 and q = a. The relevant eigenfunctions are

φ
(0)
0 (q) =

r
1

a
φ(0)n (q) =

r
2

a
cos
³nπq

a

´
, (A.5)
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with energies

E(0)n =
n2π2ω

2µa2
; (A.6)

and it is easy to verify that

R(0)(Eν) =
ω

2µ

X
n

φ(0)n (a)φ(0)n (a)

E
(0)
n −E

(0)
ν

= − a

νπ

"
1

νπ
+
2ν

π

∞X
n=1

1

ν2 − n2

#
(A.7)

= − a

νπ
cot νπ,

where the final line is taken from eqn 1.421.3 of Gradshteyn and Ryzhik [42].
The following Buttle correction may therefore be introduced, to add a tail con-
tribution over n = [N + 1,∞] to the truncated sum in eqn (A.3),

Rb(Eν) =
ω

2µ

∞X
n=N+1

φ(0)n (a)φ(0)n (a)

E
(0)
n − E

(0)
ν

=
a

νπ

"
1

νπ
− cot νπ + 2ν

π

NX
n=1

1

ν2 − n2

#
.

(A.8)
A similar argument may be used to obtain a Buttle-like correction to sum in

eqn (A.4) for the overlap S = hχ|φEi, in the case that χ(q) is the scaled harmonic
oscillator zero-point eigenfunction, normalized over the interval q = [0,∞]

χ(q) =

µ
4

π

¶1/4
exp(−q

2

2
). (A.9)

To the extent that χ(q) has negligible amplitude at q = a, the required elemen-
tary integrals are given byD

χ|φ(0)0
E
=

r
π

a2

D
χ|φ(0)ν

E
=

r
4π

a2
exp

∙
−ν

2π2

2a2

¸
, (A.10)

from which a tail contribution to the sum in eqn (A.4) may be deduced as

Sb(Eν) =
ω

2µ

∞X
n=N+1

φ(0)n (a)
D
χ|φ(0)n

E
E
(0)
n −E

(0)
ν

φ
(0)0
E (a) (A.11)

=

r
4π

a2

"
e−ν

2π2/2a2 − ν sinπν

π

(
1

ν2
+ 2

NX
n=1

(−1)ne−n2π2/2a2

ν2 − n2

)#
.

Numerical tests readily confirm the validity of the underlying infinite series for
exp

£
−ν2π2/2a2

¤
.
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B MQDT continuum basis functions
The basis functions, required to normalize the eigenfunctions of the n = 3
continuum to a delta function of energy, were taken as solutions of eqn (A.1),
with V (q) = V3s(q) and ~2/2m = ω/2µ. The two solutions were written in the
phase-amplitude forms [43, 44]

f(E, q) =
p
(2µ/πω)α(q) sin ξ(q) (B.1)

g(E, q) =
p
(2µ/πω)α(q) cos ξ(q),

where ξ0(q) = [α(q)]−2 and the factors under the square roots ensure normaliza-
tion to an energy delta function in the present unit system. The function f(E, q)
was defined to have zero derivative at q = 0 and α(q) and ξ(q) were determined
by propagating f(E, q) and f 0(E, q) out to a sufficiently large q value that V (q)
is constant. The connection between α(q) and ξ0(q) is then assured by setting
α(q) = [2µ{(E − V (q)}/ω]−1/2 and the required normalization factor is chosen
to ensure that £

f2(E, q)/α2(q)
¤
+
£
f 0(E, q)α2(q)

¤
= 2µ/πω, (B.2)

and

tan ξ(q) =
f(E, q)

α2(q)f 0(E, q)
. (B.3)

The functions g(E, q) and g0(E, q) were then constructed to be consistent with
eqn (B.1). Finally f(E, q), g(E, q) and their derivatives were propagated back
to q = a.
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Abstract

It is shown how a carefully devised quantum defect function can be
used to unify direct dissociation of the lowest member of a Rydberg se-
ries, with predissociation of the higher vibronic states. Results, for a one
dimensional model, obtained by the techniques of multichannel quantum
defect theory (MQDT) are compared with those of a simpler Fano golden
rule approximation. A simplified model calculation for the ns 1B1 series
of H2O and D2O yields results in good accord with experiment, and a dra-
matic isotope effect is explained. A similar application to the elusive np
1A2 series leads to the prediction of sharp rotational structure for the np
1A2(000) bands with n > 4, despite the evidence of a very broad Franck-
Condon profile for the dissociative 3p 1A2 state. A band at 90051 cm−1

in the 2+1 REMPI spectrum is tentatively assigned to the 4p member of
this 1A2 series.

1 Introduction.
The Rydberg spectrum of H2O is one of the best characterized of any poly-
atomic species (see [1] for a comprehensive reference list). However problems
remain in the analysis of available high resolution spectra [2, 3, 4, 5], possibly
because modern experiments rely on the detection of ions, which may be lost
by relatively rapid predissociation into neutral fragments, which is known to
pervades the entire spectrum [6]. A systematic study of the dissociation and
predissociation dynamics is therefore desirable. The lowest energy dissociation
pathways must ultimately proceed via excitation of one of the lone pair electrons
to either the 4a∗1 or 2b

∗
2 antibonding molecular orbital [7], which ‘Rydbergize’

[8] in the spectroscopic region to the 3sa1 and 3pb2 orbitals respectively. The
excitation 3s← 1b1 gives rise to the Ã 1B1 state, which is bent at spectroscopi-
cally accessible geometries and directly dissociative to H + OH(X 2Π), while the
3s← 3a1 B̃ 1A1 state is bound in the absence of molecular rotation, at energies

1
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below the H + OH(A 2Σ) dissociation threshold, except at linear geometries
where it undergoes a conical intersection with the ground state [9]. The dissoci-
ation dynamics of these two states, which includes an important Renner-Teller
coupling mechanism [10], have been very fully characterized, both experimen-
tally (see [11]) and theoretically (see [12]). Less attention has been given to
the corresponding dynamics of the higher Rydberg states, except to note that
similar Renner-Teller coupling between the so far unobserved bent dissociative
3pb2 ← 1b1

1A2 state and its linear 3pb2 ← 3a1
1B2 counterpart allows the

observation of only the K0
a = 0 branches of the latter state [13, 14]. One also

knows that bent D̃ 1A1 and Ẽ0 1B2 states are strongly predissociated by con-
figuration interaction with the linear B̃ 1A1 and 3pb2 1B2 states respectively
[15, 16]. In addition quantum state selected predissociation rates for the bent
3pa1C̃ 1B1, 4s D̃0 1B1 and 3db2 D̃00 1A2 states have been reported [17, 18].
As a first step towards extension of the theory to higher members of the Ry-

dberg series, this paper offers a theory for homogeneous predissociation from the
ns 1B1 and npb2 1A2 states, which are not covered by the above Renner-Teller
coupling and configuration interaction mechanisms. The central assumption is
that s (or pb2) quantum defect functions µs(Q) [or µpb2(Q)] can be defined in
such a way that the family of potential functions

Vnλ(Q) = V +(Q)− Ry

[n− µλ(Q)]
2 (1)

includes the dissociative n = 3 potential surface, as well as the bound surfaces
with n > 4. Within the spirit of MQDT theory [19], vibrational matrix element
of sinπµ(Q) and cosπµ(Q) may then be used to compute the non-adiabatic
coupling strength responsible for the predissociation. Since experiments on the
4s state [18] show that the homogeneous linewidth is independent of excitation
in the modes, ν1 and ν2, the vibrational coordinates Q in eqn (1) are reduced
for simplicity to a single dissociation mode q. The computational method closely
follows that used by Jungen [20] and Ross et al [21] to describe the competitive
predissociation and autoionization of H2, although attention is restricted here
to energies below the ionization threshold. Simpler golden rule estimates for
the linewidths are also derived in order to bring out the physical origin of the
dramatic difference between H2O and D2O. Implications for changes in the
vibrational level structure within the relevant Rydberg series are also discussed.
The paper, starts in section 2, with a brief demonstration of the existence of

a quantum defect function, with the desired properties. Section 3 then uses an
MQDT treatment of non-adiabatic coupling leads to obtain a Wigner R matrix
[22] from which both the 3s absorption profile and the higher ns predissociation
linewidths may be deduced. Section 3 applies the theory to the ns series of H2O
and D2O; and the dramatic linewidth difference between H2O and D2O is found
to be well reproduced. Golden rule linewidth estimates in Section 4 are shown to
be in good agreement with the full MQDT theory, despite significant systematic
errors in the resonance energy levels. Application of this perturbation approach
to the npb2 1A2 indicates very narrow linewidths for the 4p 1A2(000) states
of H2O and D2O, despite the existence of a very broad 3p 1A2 Franck-Condon

2
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Figure 1: Schematic sections through the ns potential surfaces of H2O in the
direction of the antisymmetric stretching coordinate, Q3.

profile. The tentative assignment of a band attributable to this state in the
2+1 REMPI spectrum [23] is given. Finally section 6 summarizes the main
conclusions, and gives pointers for future research.

2 Potential curves and a quantum defect func-
tions.

Knowledge that the 3s Ã 1B1 state of H2O is directly dissociative, with two
equivalent H + OH products, while the 4s D̃00 1B1 state predissociates suf-
ficiently slowly to allow the observation of resolved rotational structure [18],
suggests that a typical section through the manifold of potential surfaces, in the
direction of the dissociation mode, q, must take the form in Fig 1.
Such behavior is found to be consistent with eqn (1) if V + (q) and the quan-

tum defect function µs (q) are taken in the forms

V + (q) = V +(0) +
ω

2
q2, (2)

3
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and

µs (q) = 3−
s

Ry

V + (q)− V3s (q)
(3)

with

V3s (q) = A+
B

1 + αq2
. (4)

The parameter values, which were used to construct Fig 1 are discussed in
section 4.
It will be important later to recognize that although the sequence of excited

potentials with n > 4 converges smoothly onto the positive ion potential as
n → ∞, the distorting influence of the quantum defect function, µs (q) , has a
significant influence on the vibrational level spacings, particularly for n = 4 and
n = 5.

3 MQDT non-adiabatic coupling theory
The non-adiabatic coupling between the dissociative 3s 1B1state and its higher
bound n > 4 counterparts is treated by the method pioneered for the competitive
predissociation and auto-ionization of H2 by Jungen [20] and Ross et al [21],
except that only states below the ionization limit are treated at this stage, so
that the autoionization does not come into play.
The first step is to construct a set of normalized vibrational basis functions

ψi(q), as eigenfunctions of the truncated positive ion Hamiltonian, taken here
as

Hvib = I +
ω

2

∙
1

µ
p̂2 + q2

¸
, (5)

subject to the Sturm-Louville boundary conditions at q = 0 and q = a. At-
tention is restricted to the symmetric eigenfunctions, ψi(−q) = ψi(q), which
are optically accessible from the ground vibrational state, by requiring that the
ψi(q) should have zero derivative at both boundaries.. The corresponding an-
tisymmetric solutions would be obtained by setting ψi(q) = 0 at q = 0. The
required solutions were obtained in practice by the numerical shooting method
[24] . The resulting eigenvalues and boundary amplitudes are denoted as Ei and
ψi(a) = ui respectively. Typically 60-80 elements of this basis are required for
convergence of the full calculation.
The second step is to introduce the non-adiabatic coupling by trapezium

quadrature for the matrix elements

Cvv0 = hv| sinπµs (q) |v0i Svv0 = hv| cosπµs (q) |v0i , (6)

followed by solution of the MQDT quantization equations [19]

[C sinβ(E) + S cosβ(E)]Z = 0, (7)

4
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where sinβ(E) and cosβ(E) are a diagonal matrices, with elements given by

βi(E) = πνi(E) νi (E) =

r
Ry

Ei −E
. (8)

The eigenvalues, Eα, of eqn (7) are determined by the compatibility condition

det [C sinβ(E) + S cosβ(E)] = 0; (9)

and the elements of the amplitude vectors Zα are rescaled and normalized in
the form [19]

Cαi = [νi (Eα)]
3/2

Zαi,
X
i

C2αi = 1, (10)

in order to allow for the fact that MQDT is formulated in terms of energy
normalized basis functions, whereas we are seeking a set of unit normalized
vibronic basis functions, within the finite nuclear coordinate range 0 6 q 6 a.
The first components, Cα1, of the vectors Cα are taken below to determine the
Franck-Condon amplitudes for excitation from v3 = 0, because the ground state
wavefunction lies entirely within the quantization box..
The power of the theory is that solutions of eqns (7) and (9) in principle

include truncated vibrational eigenfunctions of the entire Rydberg series, from
n = 3 to arbitrarily high n values, although the search for roots of (9) was in
practice limited to the energy range E < V +(0), in order to avoid the compli-
cation of the competing autoionization process. Different roots are associated
with different principal quantum numbers n. Those belonging to vibrational
levels of states with n > 4 are readily recognized, because one component Cαi

of the vector Cα is very much larger than the others, and the effective quantum
number, νi (Eα) , lies close to n − µ(0), where µ(0) = 1.5, for the present set
of parameter values in eqn (2)-(4) (see below). The remaining components of
a given vector Cα reflect the strength of non-adiabatic coupling between the
different series, a particular element, Cαi, being assigned to the principal quan-
tum numbers, n(i), which is the closest integer to νi (Eα) + µ(0). There is also
a relatively large residual set of roots, Eα, which are attributable to eigenvalues
of the n = 3 continuum, truncated at q = a.
The third step in the theory is to construct an R matrix for the n = 3

continuum of the present model, by the formula

R(E) =
X
α

w2α
Eα −E

+Rb(E), (11)

which relates the n = 3 continuum function, φ3(E, q) to its derivative φ
0
3(E, q),

by the equation [22]
φ3(E, q) = R(E)φ03(E, q). (12)

Details of the derivation of eqn (11) and of the form of the Buttle correction,
Rb(E), which is introduced to correct for truncation of the continuum basis,
are given in the appendix. The amplitudes wα are obtained by combining the

5
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boundary amplitudes, at q = a, of the vibrational basis, ui = ψi(a), with the
components Cαi in the form

wα =
X
n(i)

Cαiui, (13)

where the prescription for n(i) is given in the previous paragraph. A simi-
lar expression is derived in the appendix for the overlap amplitude, S(E) =
hχ|φ3(E)i , between the internal part of φ3(E, q) and some other function χ(q);

S(E) =
ω

2

X
α

wαSα
Eα −E

φ03(a) + Sb(E), (14)

where, in the present model Sα = hχ|φαi = Cα1u1.
Expressions for the Buttle corrections are given in eqn (A.8) and (A.11) as

particle in a box continuum contributions, summed from N +1 to infinity. The
cut-off index N was identified by comparing the energy spacing between the
last two n = 3 continuum contributions to eqns (11), with the particle in a box
spacing

EN − EN−1 = (2N − 1)
π2ω

2a2
. (15)

The value of N derived from the corresponding difference between the final two
MQDT eigenvalues differed from an integer by typically only 5%.
The above results are combined with the energy normalized continuum

function
φ3(E, q) = f(E, q) cosπτ(E)− g(E, q) sinπτ(E), (16)

where f(E, q) and g(E, q) are defined in appendix B, to obtain the form of the
3s absorption profile. The eigenphase τ(E) is first obtained by combining eqns
(11), (14) and (16) at q = a, to yield

tanπτ(E) = [g(E, a)−R(E)g0(E, a)]
−1
[f(E, a)−R(E)f 0(E, a)0] . (17)

The function |S(E)|2 given by eqns (14) and (16) then give the n = 3 absorp-
tion profile, which is shown in the lower panel of Fig 2. Confirmation thatR
|S(E)|2dE ' 1, to within a few percent, is good evidence for the reliability

and convergence of the theory.
In addition, although the bound ns eigenfunctions, with n > 4, have negli-

gible amplitude at q = a, their presence may be detected as local perturbations
to τ(E), arising from the internal non-adiabatic coupling, which are taken into
account by eqn (6)-(9). The resulting jumps in τ(E) are used to estimate the
predissociation linewidths. As discussed above, the various poles, Eα, of the R
matrix in eqn (11), are readily assigned either to the 3s continuum or to vi-
brational levels of the higher members of the series, which makes it convenient
to define a resonant contribution, τres(E), as the difference between the term,
τ(E), obtained from the full sum for S(E) and that obtained from the sum over
the poles belonging to the continuum. A typical jump in τres(E) by π is shown

6
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Figure 2: The 3s continuum absorption profile(lower) plus the resonant con-
tribution to the eigenphase τ (E) (upper left) and its energy derivative (upper
right) in the vicinity of the 4s 1B1(000) resonance of H2O
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H2O D2O Ref

GX(000) 4631 3386 [26]
G+(000) 4068 2978 [27]
GOX(0) 1848 1349 [28]
I 101766 101916 [29]
D0 41244 [7]
Γ4s 4.0 0.1 [18]
E4s 84434 84646 [18]
G4s12 2051 1510 [18]

Table 1: Data in cm−1 used to determine the parameters of the model

for the 4s(000) resonance in the upper left panel of Fig 2. The energy derivative
of τres(E) then determines the predissociation lineshape, as shown in the right
hand upper panel of Fig 2.

4 Application to the nsa1 1B1 series

The parameter values in eqns (2)-(4) were determined by reference to the
spectroscopic properties of H2O. With the energy zero taken at the minimum
of the ground state potential function,

V +(0) = I +GX(000)−G+(000) (18)

and
A = DH2O

0 +GX(000)−GOH(0), (19)

where I is the ionization energy , D0 is the dissociation energy and GX(000),
G+(000) and GOH(0) are the ground state zeropoint energies of H2O , H2O+

and OH respectively. Numerical values for H2O and D2O are given in table
1. The harmonic frequency of the ion core was taken as ω = ν3 = 3259 cm−1

[25], with the reduced mass in eqn (2) taken as µ = 1 or 2 for H2O or D2O
respectively. Finally, as discussed below, the parameters B and α in eqn (4) were
adjusted to reproduce the absorption frequency and predissociation linewidth
of the 4s (000) level of H2O [18]. The resulting numerical values are V +(0) =
102329 cm−1, ω = 3259 cm−1, A = 44025 cm−1, B = 14530 cm−1 and α =
0.625. The R matrix boundary radius for the scaled coordinate q was taken as
a = 7, which corresponds to the turning point of the antisymmetric stretching
state of H2O+ with v3 =24. Typically 80 truncated even harmonic oscillator
symmetric eigenfunctions, ψi(q) = ψi(−q), were used to compute the sine and
cosine matrices in eqn (6).

8
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H2O

MQDT Golden rule
State E/cm−1 Γ/cm−1 E/cm−1 Γ/cm−1

4s(000) 84438 4.1 84367 4.0
4s(002) 89271 11.8 89254 10.6
4s(004) 94862 10.6 94851 16.7

5s(000) 92895 0.2 92847 0.7
5s(002) 98799 0.8 98764 1.6

6s(000) 96332 0.1 96327 0.2
D2O

MQDT Golden rule
State E/cm−1 Γ/cm−1 E/cm−1 Γ/cm−1

4s(000) 84671 0.1 84635 0.2
4s(002) 87882 0.7 87863 0.7
4s(004) 91702 4.3 91703 4.3

5s(000) 93049 0.05 93010 0.03
5s(002) 97185 0.3 97109 0.3

6s(000) 96429 0.008 96457 0.008

Table 2: Energy levels and resonance widths.

The most striking feature of the calculation is the sensitivity of the predis-
sociation rate to the width parameter, α, of the model potential V3s(q). For
example the computed linewidth for the 4s D̃0 1B1(000) state of H2O increases
from 0.02 cm−1 at α = 0.1 to 0.8 cm−1 at α = 0.3 and to the observed value [18]
of 4 cm−1 at α = 0.625. The width of the absorption profile also increases from
2900 cm−1 at α = 0.1 to 4800 cm−1 at α = 0.3 and 6700 cm−1 at α = 0.625
The parameter B in eqn (4), which fixes the height of the 3s potential bar-
rier in Fig 1 was adjusted to bring the computed 4s D̃0 1B1(000) energy level
into close agreement with the experimental value of 84434 cm−1, after adding
a term, G12(0, 0), to account for zeropoint contributions from the neglected ν1
and ν2 modes. In the absence of other information, this latter term was taken
as G12(0, 0) = G+(000)−ω+3 /2−x+33/4, where the superscript ‘+’ implies values
for the positive ion - giving values of 2361 and 1704 cm−1 for H2O and D2O
respectively.

The results of the calculation are presented in Fig 2 and table 2. It is seen
from the lower panel of Fig 2 that the 3s absorption profile peaks at 55000 cm−1

with a width at half height of 6700 cm−1, which may be compared with the ex-
perimental values of 60500 cm−1 and 7200cm−1 [30]. The width is therefore well

9
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reproduced and the main contribution to the discrepancy in the peak positions
probably arises from the assumption of an energy independent quantum de-
fect function, because ab initio estimates [31] of the vertical excitation energies
between the 3s and 4s potential surfaces indicates a decrease in the quantum
defect from µ = 1.31 to 1.21, which is well in line with a calculated jump in the
s quantum defect of NO by 0.1 units, attributable to core polarization effects at
energies where the d channels open, an effect that is very well established for
NO [32, 33].
The variations between the predissociation linewidths in Table 2 are the main

focus of the paper. The parameters of the model were optimized to reproduce
the experimentally observed value, Γ = 4 cm−1 for the 4s(000) state of H2O
[18], but it is striking that the very much smaller experimental value, Γ = 0.05
cm−1, for D2O is also well reproduced. The physical origin of this dramatic
isotope effect is examined in section 4 below. The fact that the calculated
4s(000) energy is higher than the experimental value of 84646 cm−1 by 25 cm−1

is attributable to neglect of any interaction between the ν3 mode and the ν1
and ν2 degrees of freedom. One also sees that the predissociation linewidth
typically increases with increasing excitation of the ν3 mode, and decreases
with increasing electronic excitation.
Another significant feature of table 2, with regard to future analysis of the

spectrum, is that the lower, n = 4 and n = 5, bound potential curves are strongly
anharmonic, as might be expected from the functional dependence of Vns(q) on
the quantum defect in eqn (1). For example the ν3 contributions to the zeropoint
energy, deduced from potential minima, consistent with µ (0) = 1.5834, increase
roughly proportional to n−5 from 822 cm−1 at n = 4 to 1630 cm−1 for the
positive ion, in the case of H2O. The corresponding figures for D2O are 477 cm
−1 at n = 4 and 1152 cm−1 for the positive ion. Similarly the intervals between
the 4s(000), (002) and (004) levels of H2O take the values 4833 cm−1 and 5591
cm−1, compared with a uniform interval of 6518 cm−1 for the positive ion.

5 Non-adiabatic perturbation theory
While the above MQDT based theory is fully non-perturbative, it is hard to
trace the physical origin of resulting variations in predissociation linewidths
and resonance energies. To obtain a more physically transparent picture, it is
assumed that the nuclear wavefunctions, χi(q), are determined by the adiabatic
potential functions, given by eqn (1), and that the linewidths are estimated by
the following non-adiabatic golden rule formula:

Γi = 2π|H 0
ij |2, (20)

where

H 0
ij =

ω

2µ

Z ∞
0

∙
χi(q)Bij(q)

dχj
dq

+ χj(q)Bji(q)
dχi
dq

¸
dq. (21)

10
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Figure 3: Integrands of eqn (21) for predissociation of the 4s D̃0(000) 1B1 states
of H2O and D2O.

Following Stolyarov and Child [34] the electronic coupling terms are approxi-
mated as

Bij(q) = −Bji(q) '
2µ0s(q)

p
νi(q)νj(q)

νi(q)2 − ν2j(q)
(22)

in which µ0s(q) is the derivative of the quantum defect function in eqn (3) and
νi(q) = ni − µs(q). The bound vibrational wavefunction, χi(q), is normalized
to unity and the continuum function is taken to have the asymptotic form

χj(q) ∼
r
2µ

πωk
cos(kq + δ), k2 =

2µ[E − V3s(∞)]
ω

, (23)

which ensures normalization to an energy delta function.

Application to the ns 1B1 series
It is seen from table 2 that the resulting golden rule linewidth estimates are

in good order of magnitude agreement with the full MQDT model. One can also
understand the dramatic difference between the linewidths of the two isotopo-
logues, by plotting the integrands of eqn (21) in Fig 3. The essential difference
is that the de Broglie wavelength of the continuum wavefunction is very much
smaller for the heavier isotope, which leads to more complete cancellation of the
integral. However, despite the good agreement with respect to the linewidths,
one should notice that the golden rule eigenvalues, in the right hand column
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Figure 4: Schematic view of the adiabatic potential curves for the npb2 ← 1b1
1A2 series of H2O. The right hand panel shows the npb2 ← 1b1 absorption
profile. Energies are measured from the minimum of the ground state potential.
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of table 2 show significant systematic differences from the full MQDT reso-
nance energies because the perturbation approach neglects level shifts arising
from non-adiabatic coupling to the 3s continuum, which leads to a systematic
upward shift of the MQDT energies In addition the MQDT method allows
for vibronic perturbations between higher vibrational levels of a low electronic
state and lower levels of a higher state, which are ignored in the perturbation
approach.

Application to the npb2 1A2 series.
In the absence of experimental information, it is unjustified to apply the full

MQDT method to the npb2 ← 1b1
1A2 series, but the perturbation method

may be used to illustrate some interesting points. In the first place the the
Wigner-Witmer rules [7] require the lowest 1A2 state to dissociate to O(1D)
+ H2 fragments. The dissociation mode, q, is therefore a combination of the
symmetric stretching and bending degrees of freedom. Consequently the the
Lorentzian form for the dissociative potential function in eqn (4) is replaced, for
the purpose of illustration by a decaying exponential,

V3pb2(q) = A+Be−αq, (24)

and the positive ion potential is taken in the scaled Morse form

V +(q) = V +(0) + ω1d(1− e−βq)2, (25)

with β = 1/
√
2d. With energies measured from the minimum of the ground

state potential, the parameter values A = 58900 cm−1, B = 14900 cm−1, ω1 =
49600 cm−1 and d = 21 were chosen to be consistent with the O(1D) + H2
dissociation limit, the calculated [31] vertical excitation energy to the 3p 1A2
state and the Morse parameters for the symmetric stretching mode of H2O+

[27]. Ideally one might have ab initio information on the exponent α in eqn
(24) but Theodorakopoulos et al [35] follow only the first excited state of 1A2
symmetry, along the O(1D) + H2 dissociation coordinate. In the absence of
other information, the value α = 0.4 was taken for illustrative purposes.
The resulting potential curves are shown in the left hand panel of Fig 4.

Notice that the present model, implied by eqns (1), (3), (24) and (25) results
in a significant distortion of the shapes of the lower n > 4 curves, from that of
the parent ion. The right hand panel shows the computed the 3p 1A2 Franck-
Condon profile, which is seen to have a width of roughly 10000 cm −1 - even
larger that for absorption to the 3s Ã 1B1 state. The implied lifetime of 0.5 fs, in
the Frank-Condon region, is fully consistent with the absence of any discernible
3p 1A2 peak in the 3+1 MPI spectrum [18]. Any viable detection scheme would
need to monitor either the O(1D) or the H2 fragment.
The second point concerns the predissociation linewidths for n > 4, which

are predicted to be substantially smaller than those for the nsa1 1B1 series. The
estimate depends on the choice of α, with values of 2×10−4 cm−1 and 2×10−5
cm−1 for H2O and D2O respectively for α = 0.4, rising to 2 × 10−2 cm−1 and
2 × 10−3 cm−1 respectively for α = 0.6. Hence even if these estimates were
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Figure 5: A fragment of the unassigned 2+1 REMPI spectrum of Dickinson et
al [23], compared with the (inverted) 4p 1A2 ← X 1A1 simulation.

increased by two orders of magnitude, the bands, whose origins are predicted
to lie in the range 90000-92000 cm−1 would be expected to show observable
rotational structure. Inspection of the recent 2+1 REMPI spectrum, recorded
by Dickinson et al [23], suggests a plausible candidate with an origin at 90051
cm−1. A simulation based on the known rotational constants of H2O [36] and
H2O+ [25] is shown in Fig 5. Although there are too few lines for a convincing
analysis, further investigation of this spectral range would be of considerable
interest, as the first indication of definitive information on this elusive np A2
series.

6 Summary and conclusions

A model MQDT based theory of homogeneous predissociation throughout a
given Rydberg series has been based on a quantum defect function of the nuclear
coordinates, which encompasses both the lowest dissociative electronic state
of the series and all higher bound members of the series. Test results for a
one dimensional model of the nsa1 1B1 series of H2O correctly reproduce an
observed [18] dramatic difference between the predissociation linewidths of the
4s(000) 1B1 states of H2O and D2O, as well as the correct width of the 3s
continuum absorption profile [30]. An important consequence of the model,
for future spectroscopic analysis, is the prediction of much stronger vibrational
anharmonicity in the lower ns 1B1 states, than in the positive ion, to which the
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series converges.
A golden rule perturbation formula, which closely approximated the MQDT

linewidths, was used to obtain a clearer physical understanding of the origin of
the observed isotope effect. The shorter de Broglie wavelength of the continuum
wavefunction of the heavier isotopic species was seen to be the deciding factor.
The perturbation approach was also applied to the elusive npb2 1A2 series. One
important difference from the ns 1B1 case is that the dissociative 3p 1A2 state
correlates with O(1D) + H2 rather than H + OH fragments. The Franck-
Condon profile, which was predicted to be somewhat wider than that for the
3s 1B1 state, implies a lifetime ∼0.5 fs - much too short for detection by 3+1
MPI spectroscopy [18]. On the other hand the 4p(000) states of H2O and D2O,
with band origins in the range 90000-92000 cm−1, were predicted to show sharp
rotational structure. A tentative candidate for this band at 90051 cm−1 was
identified.
The strength of the present primitive model is that the R matrix, which

carries information about the predissociation linewidths, can be computed for
arbitrarily high energies by extending the theory to include the competitive au-
toionization process [20, 21]. The weaknesses are that it is currently formulated
in a one dimensional approximation and that it applies only to homogeneous pre-
dissociation within a given Rydberg series. The extension to three vibrational
dimensions is largely a matter of computational effort. The tacit assumption
that the neglected symmetric stretching and bending modes of the ns 1B1 series
are identical to those of H2O+ cannot be strictly valid, although the families of
ab initio bending potentials [37, 38, 39] show no marked deviations from one
state to the next. Strictly however one requires the full nuclear coordinate de-
pendence of the quantum defect function, most likely from ab initio information
on the lowest electronic state of the relevant symmetry, if eqn (3) is accepted.
Systems involving two equivalent dissociation channels, such as the ns 1B1 series
also raise questions about the nature of the dissociation coordinate, because the
dissociation to H + OH proceeds along a local mode coordinate, rather than
the antisymmetric stretching mode. The difference may be small in practice, if
one is concerned only with the predissociation rate, rather than the quantum
state dependence of the fragments, but a proper formulation would be in terms
of symmetrized local mode wavefunctions [40]. .
Extension of the theory to include Renner-Teller coupling is also planned

for the future, although much work remains to be done. An accurate Renner-
Teller treatment for the two lowest states of H2O+, on well converged potential
surfaces, was performed some years ago [41]. The strong Ka dependence of
the coupling appears in the composition of the resulting two component wave-
functions, truncated versions of which would provide the vibrational basis for
computation of sine and cosine matrices, analogous to those in eqn (6). The
relevant expressions would however appear as 2x2 matrix contractions, rather
than simple integrals. Construction of the dissociative R matrix and extraction
of the predissociation linewidths would follow the lines of section 3, though no
doubt with many complications of detail. It is also planned to use the present
framework to handle configuration interaction and Coriolis induced predissoci-
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Appendices

A The R matrix and Buttle corrections
Derivation of theWignerRmatrix, that relates solutions φE(x) of the Schrodinger
equation ∙

− ~
2

2m

d2

dq2
+ V (q)

¸
φE = EφE (A.1)

to their derivatives at q = a, involves a Green’s function argument to obtain
[22]

φE(q) =
~2

2m

X
α

φα(a)φα(q)

Eα −E
φ0E(a) 0 6 q 6 a, (A.2)

where the sum is taken over a complete orthonormal set of φn(q) with vanishing
derivatives at q = a. Specialization to the point q = a, together with the sub-
stitution ~2/2m → ω/2µ to conform with the kinetic energy term in (5) leads
to φE(a) = R(E)φ0E(a), with

R(E) =
ω

2µ

X
α

φα(a)φα(a)

Eα −E
. (A.3)

In addition the overlap of φE(q) with any other function χ(q) that vanishes for
q > a is given by

S(E) = hχ|φEi =
ω

2µ

X
α

φα(a) hχ|φαi
Eα −E

φ0E(a). (A.4)

Buttle corrections
Eqn (A.3) and (A.4) are of limited practical value as they stand, because

it is essential that the sums should be taken over a complete set. However, it
frequently happens that the eigenvalue spectrum, for the final few members of
the accessible finite set, approaches that of the ‘particle in a box’ eigenfunctions,
with the same boundary conditions - taken for the present model as φ(0)0(q) = 0
at q = 0 and q = a. The relevant eigenfunctions are

φ
(0)
0 (q) =

r
1

a
φ(0)n (q) =

r
2

a
cos
³nπq

a

´
, (A.5)
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with energies

E(0)n =
n2π2ω

2µa2
; (A.6)

and it is easy to verify that

R(0)(Eν) =
ω

2µ

X
n

φ(0)n (a)φ(0)n (a)

E
(0)
n −E

(0)
ν

= − a

νπ

"
1

νπ
+
2ν

π

∞X
n=1

1

ν2 − n2

#
(A.7)

= − a

νπ
cot νπ,

where the final line is taken from eqn 1.421.3 of Gradshteyn and Ryzhik [42].
The following Buttle correction may therefore be introduced, to add a tail con-
tribution over n = [N + 1,∞] to the truncated sum in eqn (A.3),

Rb(Eν) =
ω

2µ

∞X
n=N+1

φ(0)n (a)φ(0)n (a)

E
(0)
n − E

(0)
ν

=
a

νπ

"
1

νπ
− cot νπ + 2ν

π

NX
n=1

1

ν2 − n2

#
.

(A.8)
A similar argument may be used to obtain a Buttle-like correction to sum in

eqn (A.4) for the overlap S = hχ|φEi, in the case that χ(q) is the scaled harmonic
oscillator zero-point eigenfunction, normalized over the interval q = [0,∞]

χ(q) =

µ
4

π

¶1/4
exp(−q

2

2
). (A.9)

To the extent that χ(q) has negligible amplitude at q = a, the required elemen-
tary integrals are given byD

χ|φ(0)0
E
=

r
π

a2

D
χ|φ(0)ν

E
=

r
4π

a2
exp

∙
−ν

2π2

2a2

¸
, (A.10)

from which a tail contribution to the sum in eqn (A.4) may be deduced as

Sb(Eν) =
ω

2µ

∞X
n=N+1

φ(0)n (a)
D
χ|φ(0)n

E
E
(0)
n −E

(0)
ν

φ
(0)0
E (a) (A.11)

=

r
4π

a2

"
e−ν

2π2/2a2 − ν sinπν

π

(
1

ν2
+ 2

NX
n=1

(−1)ne−n2π2/2a2

ν2 − n2

)#
.

Numerical tests readily confirm the validity of the underlying infinite series for
exp

£
−ν2π2/2a2

¤
.
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B MQDT continuum basis functions
The basis functions, required to normalize the eigenfunctions of the n = 3
continuum to a delta function of energy, were taken as solutions of eqn (A.1),
with V (q) = V3s(q) and ~2/2m = ω/2µ. The two solutions were written in the
phase-amplitude forms [43, 44]

f(E, q) =
p
(2µ/πω)α(q) sin ξ(q) (B.1)

g(E, q) =
p
(2µ/πω)α(q) cos ξ(q),

where ξ0(q) = [α(q)]−2 and the factors under the square roots ensure normaliza-
tion to an energy delta function in the present unit system. The function f(E, q)
was defined to have zero derivative at q = 0 and α(q) and ξ(q) were determined
by propagating f(E, q) and f 0(E, q) out to a sufficiently large q value that V (q)
is constant. The connection between α(q) and ξ0(q) is then assured by setting
α(q) = [2µ{(E − V (q)}/ω]−1/2 and the required normalization factor is chosen
to ensure that £

f2(E, q)/α2(q)
¤
+
£
f 0(E, q)α2(q)

¤
= 2µ/πω, (B.2)

and

tan ξ(q) =
f(E, q)

α2(q)f 0(E, q)
. (B.3)

The functions g(E, q) and g0(E, q) were then constructed to be consistent with
eqn (B.1). Finally f(E, q), g(E, q) and their derivatives were propagated back
to q = a.
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