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Abstract

This article proposes a methodology that helps to predict the main mean

shifts, denoted as principal alarms, in a non-normal multivariate process us-

ing the available in-control data. The analysis is based on the transformation

of the observed correlated variables into independent factors using independent

component analysis. These independent components allow us to simulate shifts

preserving the covariance structure. The graphical representations of those sim-

ulated shifts are helpful to improve the design and the control of the process.

Two real manufacturing processes are presented showing the advantage of the

proposed methodology.
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1 Introduction

Monitoring a production process is important to detect and prevent faults or other

special events. To that end, performing statistical process control (SPC) via control

charts has proven to be an effective method for monitoring and also for improving

manufacturing processes. Often the quality is measured by the joint level of several

correlated variables. To monitor such processes, multivariate control charts have been

proposed in the statistical literature. The Hotelling T2 chart is the most commonly

used chart for correlated variables (Hotelling, 1947; Alt, 1985). Furthermore, the

multivariate version of the CUSUM chart has been proposed by Woodall and Ncube

(1985), and Croisier (1988). A multivariate extension of the exponentially weighted

moving average (MEWMA) can be found in Lowry et al. (1992).

The use of multivariate control charts has, however, an important problem related

with the interpretation of the out-of-control signals in terms of the original quality

variables and, consequently, with the corrective decisions that are to be taken. This

problem occurs primarily because multivariate control charts attempt to reduce a k-

dimensional data vector into a one-dimensional statistic where the information of the

original variables is mixed. The identification of the cause of the alarm in a multivari-

ate process can then be a complex issue. An initial approach to deal with this

problem was based on the principal components of the multivariate data.

Principal components analysis (PCA) is an appropriate tool to project a set

of correlated variables onto a set of new uncorrelated variables (principal

components). This projection allows a univariate analysis of each principal

component. Jackson (1980, 1985) proposes the plotting of not only the T2

chart but all the univariate charts of the principal components. However,

since each principal component is a combination of all the original variables,

these plots do not usually lead to a clear interpretation.

2
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Alternative techniques for the interpretation of out-of-control signals are

based on variations of the T2 chart with the aim of extracting as much infor-

mation of the out-of-control signal as possible. The aim of these procedures

is to account for the contribution of the original variables in the T2 value.

For instance, Murphy (1987) proposes a searching procedure where the

overall T2 value is compared to the T2 value based on different subsets of

variables. Doganaksoy et al. (1991) propose a set of univariate t tests that

help to rank the variables according to their participation in the out-of-

control signal. Mason et al. (1995) propose an orthogonal decomposition of

the T2 value each of which reflects the contribution of an individual variable

and can be used to test the significance of each individual variable or a set of

them. Alternative procedures to decompose the T2 values can also be found

in Hawkins (1993), and Wade and Woodall (1993). Some procedures like

those proposed by Mason et al.(1997), can give the quality characteristics

responsible for the shift.

All these procedures are helpful in identifying the cause of a specific

observed out-of-control signals. However, they do not supply information

about potential alarms before these occur. In González and Sánchez (2006),

a complementary analysis to find the causes of the alarms is proposed. The

approach, however, is very different to multivariate control charts in that

the analysis is not aimed at monitoring the process but at identifying the

main expected alarms. These main expected alarms are denoted as principal

alarms (PA). The analysis of PA can be made with the same data used for

building the control charts, and can be seen as a descriptive and a preventive

tool, as opposed to control charts, which are used as an on-line control tool

. The analysis of PA has several advantages. First, the PA help to identify weak points

in the process, which is very useful in the initial stages of the design of a product or

3
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a process. Second, since the PA point out the weakness of the process, they can be

used to select the most convenient control chart, as done in González and Sánchez

(2006). And third, when a multivariate control chart triggers an alarm, we can start

the identification of the causes with the PA, since they are the most likely shifts. The

PA are, therefore, useful for the prevention of alarms, for the design of efficient charts,

and for allowing a faster response to an out-of-control signal.

The main argument in a PA analysis is that a mean shift in a multivariate process

involving correlated variables, X = (X1,X2, ..., XK), can not be considered as a set of

independent shifts on each variable Xi. The measured process variables are not inde-

pendent, but may be combinations of independent factors that might not be directly

measurable. In multivariate analysis, these independent factors are usually referred

to as latent factors. González and Sánchez (2006) use the PA analysis to simulate a

realistic mean shift by using a set of independent latent factors Y = (Y1, Y2, ..., YJ),

where J ≤ K. This vector Y is obtained using an appropriate transformation of the

original variables Y = f (X) that can be interpreted as the primary independent sources

of variability of the process. Since the variables Y are independent, it is possible to

simulate a mean shift in Y by only modifying each component Yj independently of

each other. This mean shift in Y can be translated in terms of the original variables

X by applying the inverse of the transformation, f−1 (Y) . The shifts in terms of X,

provoked by shifting each column of Y are the so called principal alarms of the process.

In order to obtain this vector of independent variables Y, González and Sánchez (2006)

use principal components analysis (PCA) based on an assumption of normality. As is

well known, under the normality assumption, independence is equivalent to uncorre-

latedness. However, if normality can not be assumed, uncorrelated variables can still

have non linear dependence.

In this article, a methodology is proposed to obtain the PA when X is non-normally

distributed. This methodology does not use any transformation of X to obtain normal-

4
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ity. The vector of independent factors Y will be obtained using independent component

analysis (ICA) instead of PCA. ICA is a recently developed method in which the goal

is to decompose non-normal multivariate data into a linear combination of statisti-

cally independent components (Lee, 1998; Hyvärinen, 1999; Hyvärinen and Oja, 2000;

Hyvärinen et al.2001). ICA has recently been used in SPC to build multivari-

ate control charts (Chen et al. 2004; Lee et al. 2004; Kano et al. 2004).

The idea of multivariate control charts using ICA can be seen as the exten-

sion of the control charts based on PCA proposed by Jackson (1980, 1985)

and Jackson and Mudholkar (1979) to non-normal data. By using ICA, the

original multivariate variables are decomposed into a set of independent

variables (independent components). Then, univariate and multivariate

control charts of these independent components are built to monitor the

process. In this article, the independent components of the process will

no be used to monitor the process but to identify the main alarms of a

non-normal process. As in the normal case based on PCA, the independent

components are estimated with historical data collected during normal op-

eration. These independent components will be used as a descriptive tool

that helps to simulate the main out-of-control situations that will take place

if a shift in the independent components occur. A graphical representation

of these shifts will help quality engineers to improve the understanding of

the process.

The structure of the article is as follows: Section 2 introduces the technique of ICA,

Section 3 describes the proposed methodology of estimating the principal alarms of a

non-normal process using ICA, Section 4 applies the methodology to two real cases,

and Section 5 gives the conclusions.

5
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2 Independent component analysis

2.1 The independent component transformation

The most popular methods for transforming a set of related variables into uncorre-

lated ones are PCA and factor analysis. These methods can be labeled as second order

methods since they only use the information contained in the covariance matrix of the

observed data set. Hence, these techniques are to be understood under normality,

because under such assumption all the information of zero mean normal variables is

contained in the covariance matrix. ICA, however, is a higher-order method which uses

information that is not contained in the covariance matrix. ICA is a signal processing

technique aimed at transforming a set of multivariate observations into statistically

independent components. Therefore, the ICA model can be seen as a generative model

that describes how the observed variables are generated by a process made by linearly

combining these independent components.

The ICA model can be written as X = AY+E, where X = (X1, X2, ..., XK)
0 is

the vector of K measured variables of zero mean, Y = (Y1, Y2, ..., YJ)0 with J ≤ K is

the zero mean vector of independent components, A is a K × J matrix denoted as

mixing matrix, and E is the residual vector. This model is known as the noise ICA

model. However, the estimation of this noise model is difficult and, therefore, the great

majority of ICA research and applications have focused on the following noise-free ICA

model:

X = AY. (1)

If J = K, and since A is invertible, we can write the ICA model as:

Y =WX, (2)

where W = A−1 is called the demixing matrix. Using (2), the objective of ICA is to

6
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calculate a demixing matrix W so that the components Y become as independent

as possible. In this article, we will apply this noiseless ICA model.

2.2 The estimation of the ICA transformation

The intuition of the estimation of the independent components in the ICA model

is the following. If an observed variable X is generated by a linear combination of

some independent components Y, it will be closer to normality than these independent

components, according to the central limit theorem. Then, Y will be obtained in such

a way that they departure from normality as much as possible. Therefore, using the

model (2), we can estimate the j-th independent component Yj finding a vector wj, in

Yj = w
0
jX, that maximizes the non-normality of Yj.

In the literature, many algorithms have been suggested in order to solve the ICA

model; that is, to compute the independent components Y and the demixing matrix

W (see Bell and Sejnowsky, 1995; Amari et al, 1996; Hyvärinen, 1999, which includes

a survey on the topic; Hyvärinen and Oja, 2000; Cheung and Xu, 2001; Hyvärinen et

al. 2001, among others). Two of the more common measures of non-normality are

kurtosis and negentropy. Kurtosis is the classical measure of non-normality but it is

sensitive to outliers. Negentropy is a measure of non-normality based on the entropy.

It is zero for normal variables and always nonnegative. A simple approximation of

the negentropy of a random variable y, denoted as J(y), is introduced by

Hyvärynen (1998), as J(y) ≈ [E {G(y)}− E {G(ν)}]2 , where ν is normal with

zero mean and unit variance and G is a non-quadratic function. By choosing

G wisely, it is possible to obtain approximations of negentropy that make

a good compromise between kurtosis and negentropy. The functions sug-

gested for G are G(y) = a−11 log cosh(a1y), 1 ≤ a1 ≤ 2, and G(y) = − exp(−y2/2).

Based on this approximation, Hyvärinen and Oja (2000) and Hyvärinen et

7

Page 8 of 31

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

al.(2001) have developed an algorithm called FastICA that is available at

www.cis.hut.fi/projects/ica/fastica/.

The FastICA algorithm uses a whitened vector X̆; that is, a vector with compo-

nents that are uncorrelated and with unit variances. The model (2) can be written

as Y = BX̆, where B = (b1,b2, ...,bJ)
0 is now an orthogonal matrix whose compo-

nents bi are vectors of unit norm. FastICA allows us to estimate the independent

components one by one (deflationary orthogonalization) or all vectors bi in parallel

(symmetric orthogonalization). The deflationary method has the drawback that the

estimation errors of the first vectors are cumulated in the subsequent ones by orthog-

onalization. Hence, symmetric orthogonalization is preferred. A description of the

symmetric orthogonalization algorithm can be found below.

An important drawback of ICA estimation is that we cannot determine an ordering

of the independent components, in contrast to other techniques such as PCA, where the

ordering is determined by the eigenvalues. A number of methods have been suggested

to determine some ordering in the independent components. For example, Hyvärynen

(1999) suggests sorting the independent components according to their non-normality.

He also proposes using the norm of the columns of the mixing matrix A in (1) to order

the independent components. Lee et al.(2004) propose, in the context of SPC, the use

of the Euclidean norms of the rows of the demixing matrixW. These norms give the

contribution of the independent components to the variance of X. Other criteria related

with data reconstruction criterion have also been proposed in Cheung and Xu (2001).

In this article we use the Euclidean norm ofW to order the independent components.

This method is a simple measure and gives an ordering of independent components

reminiscent of PCA.

8
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3 Principal alarms in a non-normal process

3.1 General considerations

LetX = (X1,X2, ...,XK)
0 be the vector ofK non-normal variables that can be measured

and used for statistical control of the process. Let us assume thatμ =E(X) =(μ1, μ2, ..., μK)0

and Cov(X) =Σ. One of the purposes of multivariate SPC is to detect a multivariate

mean shift μ∗ = μ+ δ assuming that the covariance Σ remains constant. The vector

δ =(δ1, δ2, ..., δK)
0 represents the shift in each original variable. Once a deviation is

detected, the next goal is to determine which elements of the vector δ hold δk 6= 0,

and interpret it. The goal in the analysis of the PA is different from the latter in that

the interest is not in the analysis of observed mean shifts, but in the identification of

potential mean shifts δ that have not been observed yet. To that end, we will simulate

mean shifts that, although not observed yet, are very likely to happen when the process

is out of control. In this article, we will consider out-of-control situations where the

mean changes, but Σ remains constant. González and Sánchez (2006) also consider

the case of PA with changes in the elements of Σ.

As mentioned before, since the variables X are dependent, we will simulate a mean

shift in a set of independent variables Y =f (X) by simply adding a vector of constants

γ = (γ1, ..., γJ)
0 to Y; where the individual γj, j = 1, ..., J do not need to be related.

This simulated change is translated in terms of the original variables X by applying

the inverse of the transformation, f−1 (Y+γ). Hence,δ = E [f−1 (Y+γ)]−μ. The ICA

model will be used to obtain the independent variables Y.

3.2 Computation of principal alarms using ICA

LetX be a n×K matrix of observations of X. It should be noted that in ICA literature

the data are defined as X0 instead of X, as is customary in the SPC literature and also

9
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here. Assuming that the process has been in control during these observations, they

can be used to obtain the estimates bμ and Σ̂ as bμ0 = 10X/n and Σ̂ = X̃0
X̃/n, where

1 is a vector of ones of appropriate dimension and:

X̃ =
¡
X− 1bμ0¢ . (3)

In the context of SPC, it is important to detect the most relevant mean shifts of X.

With this purpose in mind, the first step in the estimation of the PA will be to reduce

the dimension K of the original non-normal variables X to a new dimension J with

J < K that captures most of the information and facilitates the analysis. PCA can be

used to obtain this dimension reduction. PCA projects the variables X onto a new set

of variables Z of dimension J < K retaining most of the original variance of X. This

dimension reduction is in the very nature of SPC, since the interest is in the

effect of the so-called special causes of variability, whereas the remaining

variability (due to the so-called common causes) is ignored. The special

causes are usually referred to as the main set of causes which provoke large

variations in the process. The idea of dimension reduction in SPC has also

been used in Jackson and Mudholkar (1979) and Kano et al. (2004), among

others, as a way to improve the control by focusing on essential variables

that drive the process.

After this dimension reduction, it is possible to apply the ICA model (2)

to obtain the J < K independent components of the main set of variables

Z. These independent components will be interpreted as the main latent

independent sources of variability of X. The steps to obtain the PA are the

follows:

STEP 1 Reduce the dimension K to dimension J with PCA. This step can be carried

out by using the singular value decomposition of the covariance matrix Σ̂, or the

10
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correlation matrix R̂ if the variables have different magnitude. Using Σ̂, this

singular value decomposition can be written as Σ̂ = UDU0, were U is the K×K

matrix of eigenvectors of Σ̂, and D is the diagonal matrix with its K eigenvalues

λ1, λ2, ...λK. Using the first J columns of this matrix U, it is possible to obtain

the new set of variables Z of dimension J as:

Z = X̃U(J), (4)

where U(J) is the K × J matrix containing the first J eigenvectors. Note that

since the variables X are non-normal then the variables Z are uncorrelated but

still not independent. The eigenvalue λj represents the variance of Zj. The value

J can be chosen so that the variability of Z represents some proportion of the

total variability of X. Applying the inverse function of (4) and using (3), the

matrix X(1), representing an approximation of X free of noise, can be computed

as:

X(1) = ZU
0
(J)+1bμ0. (5)

Note that the mean vector ofX(1) is bμ.We can then interpret our original dataset
as:

X = X(1) +X(2), (6)

where X(2) will be assumed as noise, with zero mean and independent of X(1).

Then, in order to simulate a mean shift on X we can use the new set of uncorre-

lated variables Z.

STEP 2 Obtain the J independent components of Z, denoted as Y, by using the noise

free ICA model in (1), which is:

Z = YA, (7)

where A is the J×J orthogonal mixing matrix, and Y is the n×J matrix of the

estimated independent components. The FastICA algorithm used to obtain Y

11
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and A needs a whitened matrix Z̆; that is, a matrix with variables uncorrelated

and with variances equal to unity. The whitening transformation of Z can be

obtained using the diagonal matrix with the first largest J eigenvalues of D, de-

noted as matrixD(J), since its diagonal components λ1, λ2, ...λJ are the variances

of Z1, Z2, ..., Zj respectively. Then, the whitened matrix Z̆ is:

Z̆ = ZD
−1/2
(J) , (8)

and it is easy to check that E(Z̆0Z̆) = I. Now, using this matrix Z̆, the ICA

model (7) can be written as:

Z̆ = YH, (9)

where H = AD
−1/2
(J) . This ICA model can also be written as:

Y = Z̆B. (10)

where B = H−1is the J×J demixing matrix. The matrix B is obtained by using

the FastICA algorithm described below. A detailed description of this algorithm

can be found in Hyvärinen and Oja (2000) and Hyvärinen et al.(2001). Here we

will summarize the steps of the so-called symmetric orthogonalization algorithm,

which is the one used in the empirical part of this article. This method is based

on a fast fixed-point optimization method of the approximated negentropy. In

this description, the symbol ← means that the result on the rigth-hand side is

assigned to the variable on the left-hand side. The steps are the following:

(a) Initialize the J × 1 vectors bi, i = 1, 2, ..., J using J random numbers and

scale them to unit norm. Orthogonalize the matrix B as in (c) below.

(b) For every i = 1, 2, ..., J , let bi ← E
n
g(Z̆bi)Z̆

o
− E

n
g0(Z̆bi)

o
bi, where g

is the first derivative of G and g0 is the second derivative of G.

(c) Do a symmetric orthogonalization of the matrix B = (b1,b2, ...,bJ)
0
by B

← (BB0)−1/2B.

12
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(d) Repeat (b)-(c) until the convergence of B.

Once we obtain B, we can compute Y = Z̆B.

STEP 3 Determine an ordering of the independent components with the aim of determin-

ing an ordering of the PA. Use the euclidean norm of the columns of the demixing

matrix, as proposed in Lee et al.(2004). The demixing matrix B in terms of the

variables X, denoted as L, can be found using (10) and (14) as follows:

L = U(J)BD
−1/2
(J) . (11)

The euclidean norm of each column of L gives the contribution of each indepen-

dent component to the variances of X (note that in Lee et al., 2004, the norm

corresponds to the rows of the demixing matrix because the data matrix used is

X0 instead of X). It will be assumed in the sequel that Y has columns sorted by

this euclidean norm. Then, the first PA will be obtained by modifying the first

column of Y.

STEP 4 Introduce a mean shift in this matrix Y following the methodology proposed in

González and Sánchez (2006); that is, a mean shift is introduced in Y by adding

a constant term in some of its columns. In this way, the k-th PA will be obtained

by calculating

Y(k) = Y + 1γ 0, (12)

where:

γ =(0, ..., 0, c, 0, ..., 0)0 , (13)

and c is the k-th element of the vector γ, that determines the size of the shift.

STEP 5 Translate this mean shift in terms of the original variables X by applying the

suitable transformation. In order to compute this transformation, note that using

13
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(4) expression (8) can be written in terms of X as:

Z̆ = X̃U(J)D
−1/2
(J) . (14)

Then, using (5), (8) and (9) we can obtain the new matrix eX(k)
(1) that contains the

data with the simulated mean shift. That is:

eX(k)
(1) = Y

(k)B−1D
1/2
(J)U

0
(J). (15)

STEP 6 Since eX(k)
(1) = X

(k)
(1) − 1bμ0 and the average vector of X(k)

(1) is μ̂
(k), the mean shift

vector δ(k) = μ̂(k)− bμ can be obtained by averaging eX(k)
(1). This mean shift vector

δ(k) = (δ
(k)
1 , ..., δ

(k)
J )

0 is the estimation of the k-th principal alarm of X given the

available data. Note that μ̂(k) depends on the value of c, because a PA is not a

fixed shift but a direction of change of the mean vector.

In the next section, we will apply the proposed methodology to analyse the PA

using data from two real production processes.

4 Application in two real cases

4.1 Case 1: Manufacturing of a window frame

This process corresponds to the manufacturing of the window frame for the door of

a vehicle. The shape of this frame has very restrictive dimensional tolerances since it

must be fitted into the bodywork and it should allow the allocation of the window.

The shape is obtained by a forming and stamping process (using a progressive die).

The control of each frame implies the measuring of 10 points. The measurements are

the gaps between the frame and a special gauge built for this purpose, as shown by the

inspector that appears in Figure 1 (b). The nominal dimension of this gap is 0 and

the tolerance is +1.5. Figure 1 (a) shows the profile of the frame with the 10 points.

14
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Figure 1 (b) also shows the window frame fitted in this gauge, with some of the control

points. Figure 1 (b) also shows the inspector measuring point P1 using a

low-precision measurement instrument.

(a) (b)

Figure 1: Window frame of the door of a vehicle. (a) Profile with the ten

measured control points. (b) Picture of the window frame fitted in the gauge

used to measure the control points.

The dataset consists of 970 measured frames, obtained when the process is in con-

trol. The analysis of the data revealed that the variables were not normally distributed,

showing a high positive asymmetry with long tails. Transforming data using op-

timal Box-Cox transformation did not produce normality either, rejecting

normality of univariate and multivariate normality tests. Figure 2 shows the

histogram of variables P1 and P3 and illustrates the non-normality.
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Figure 2: Histograms of variables P1 and P3.

The first step to estimate the PA is the dimension reduction using PCA. Since the

variables are of similar nature and of similar order of magnitude, the PCA was made
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using the covariance matrix. Keeping in mind the goal of the PA analysis, the

main latent independent sources of variability of X will correspond to the

principal components with large eigenvalues. It is important to note that,

as seen in Figure 1 (b), the measuring instrument used in this process is

not very accurate. This lower accuracy reduces the correlation between

the measured points. As a result, there is an added variability due to this

effect with respect to the case of perfect measurements. From a statistical

point of view, this lower correlation will induce a larger determinant of the

correlation matrix, and a larger uniformity in the eigenvalues. Therefore,

it will be difficult for a reduced number of principal components (say, 4 or

5) to explain a large portion of variability (for instance 95%).

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Number of principal components

C
um

ul
at

ed
 p

ro
po

rti
on

 o
f v

ar
ia

bi
lit

y

Figure 3: Window frame of the door of a vehicle: cumulated proportion of

variability as a function of the number of principal components.

Figure 3 shows the cumulated proportion of variability as a function of

the number of principal components. This figure shows that the first four

principal components are much larger than the rest, accounting for 74% of

the variability. The fifth principal component adds only 8% of variability.

Then, we will use J = 4 independent components in STEP 1 of the method

presented in Section 3.2. Using FastICA, we can obtain the matrix B, of

dimension 10 × 4 and the matrix Y , of dimension 970 × 4, containing the

four independent components (STEP 2). Afterwards, the four PA were
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generated by modifying each of these 4 independent components following

STEP 4. In each case the independent components were modified by adding

a shift c ranging in the interval [0, 2]. The ordering of the PA was done

according to the euclidean norm of the columns of the estimated demixing

matrix L, of dimension 10 × 4, shown in expression (11) of STEP 3. For

instance, the first column of L has the values l1 = [0.1538; 0.1594; −0.5646;

−0.3256; 0.1116; −0.8431; −1.6502; −3.0604; −2.6638; 2.2850] and its euclidean

norm is 5.06. The euclidean norm of the remaining columns is, respectively,

5.17, 4.67 and 5.09. Then, the first PA is obtained modifying the second

column of Y, the second PA is obtained modifying the fourth column of Y,

the third PA is related to the second column of Y, and the fourth PA is

related to the third column of Y.

The mean shifts μ̂(k) − μ̂, k = 1, ..., 4 are shown in Figures 4 to 7. The first PA is

shown in Figure 4. Figure 4 (a) shows the mean shift μ̂(k) − μ̂ obtained as a function

of c = 0, 0.5, 1.0, 1.5, 2.0. For c < 0, the mean shifts are the same but with opposite

sign. This figure suggests that the main shifts due to the first PA will mainly affect

points P4 and P5. Figure 4 (b) displays the original mean frame (solid line) with an

approximated representation of the deformation using some large value of c. This figure

can help the engineers understand and foresee potential deformations.

The second PA is shown in Figure 5. This figure shows that the main shifts due to

the second PA affect P9 and P10.

The third PA is shown in Figure 6. In this case, the main shifts are seen in the

zone around P7, P8 and P9.

The last PA is shown in Figure 7. The main shifts due to this PA are in P2 and

P3.

It is important to note that the deformations provoked by these four PA can be

assumed as independent. That is, they are provoked at different stages of the forming
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Figure 4: Simulated mean shifts provoked by the first PA in each measured point

for different values of c. (a) Mean shift at each point. (b) Simulated deformation

(dotted line) from the nominal frame (solid line) provoked by a large c.

and stamping process. These results have important practical implications, in that a

single multivariate control chart based on the 10 points could be an inefficient control

tool, whereas four univariate control charts might be preferred. These four univariate

control charts can be based on the points that are more affected by these independent

deformations; P4, P10, P8, and P2, respectively.

4.2 Case 2: Manufacturing of a drug substance

This case study is based on the dataset provided by González and Rodríguez (2003).

This process corresponds to the manufacturing of a crystalline drug substance. The

production process is done in lots by a multistep procedure. The quality of the drug

substance obtained in a given lot is evaluated by the so-called impurity profile. This

impurity profile consists of 7 major organic impurities, labelled from A to G, measured

using a high-performance liquid chromatography method and reported in ppm values.

Figure 8 shows the histogram of impurities B and C, where the non-normality of this

dataset can be seen .

The dataset provided in González and Rodríguez (2003) is split in three phases. In
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phases 1 and 3 the process can be considered to be in control, whereas in phase 2 the

production process is clearly out of control. We will take advantage of this circumstance

to illustrate the validity and usefulness of the proposed PA analysis. Data from phases

1 and 3 will be used to estimate the PA of the impurity profile. Then, phase 2 will

be used to check if the observed departures from the in-control situation are similar to

those predicted by the estimated PA. Since the order of magnitude of the impurities

is very different, all variables are standardized by the standard deviation computed by

using only the observations in phases 1 and 3.

4.2.1 Estimation period

Phases 1 and 3 have a total of 63 lots. We will perform the PA analysis of the process

using these in control observations. The first step in the PA analysis is the reduction of

the dimension using PCA. From the eigenvalues and the cumulated proportion

of variability of each dimension, we chose J = 5. These 5 principal compo-

nents account for 88% of the variability. The five PA were obtained by shifting

each independent component by a value c ranging in the interval [0, 2]. The ordering

of the PA was done according to the euclidean norm of the columns of the demixing

matrix. These euclidean norms are: 1.08, 1.04, 0.99, 0.96, and 0.81, respectively, which

can be considered rather similar.

Figure 9 shows the mean shift μ̂(k) − μ̂, k = 1, ..., 5, provoked by each PA as a

function of c. This figure reveals the following conclusions. The first PA, shown in

Figure 9 (a) has mainly two effects on the impurity profile: an increase of impurities

D and E together with a decrease of impurities B and G. The second PA, showed in

Figure 9 (b), is mainly an increase of impurity C, with a possible decrease of impurities

E and G, but of smaller order of magnitude than the increase of C. The third PA,

shown in Figure 9 (c), is clearly a large increase of impurity A. The fourth PA, shown

in Figure 9 (d), implies an increase of impurity D together with a decrease of C and F.
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And the fifth PA, shown in Figure 9 (e), is an increase in all the impurities except A.

These five PA should be analysed by the chemical experts of the process in order to

assign them to real causes. For instance, a PA could be related to a deficient control

of the temperature, or the speed in the addition of reagents.

It is important to note that impurity A is only affected by the third PA. The other

PAs do not produce any change in this impurity. Also, by looking at the relative

changes of each impurity in the PAs, a simplified control procedure might be proposed

by monitoring only impurities A, C and D using univariate control charts for each

one. The interpretation of an alarm in the control chart of A is that the third PA has

taken place. If only the chart of C triggers an alarm, then it might be caused by the

second PA. If only the chart of D is out of control, then it might be caused by the

first PA. However, if both C and D show a drift of the same sign in their respective

control charts, it might be caused by the fifth PA. Finally, if the chart C and D show

drifts of opposite sign, the cause could be the fourth PA. These three univariate control

charts would be complementary to the multivariate control chart of the 7 impurities,

but with the advantage that the univariate control charts will detect the most frequent

out-of-control situations more efficiently than the multivariate chart.

4.2.2 Validation period

As reported in González and Rodríguez (2003), during phase 2 the process was out of

control due to lack of experience of the production personnel and deficient manufac-

turing instructions. The 134 lots of phase 2 will be used to analyse if the observed

shifts are similar to those predicted by the five estimated PA. This analysis consists of

comparing the observed impurity profile of each lot with the impurity profile of each

PA. As a result of this comparison, each lot is classified as an in-control observation,

as provoked by a specific PA, or as provoked by ’other alarms’. In order to perform

this classification, a distance of each observation to each alternative pattern (PA or

20

Page 21 of 31

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

in-control situation), as well as a decision rule to evaluate such distance have to be

established. We have used the euclidean distance to measure the distance of each lot

profile to each alternative pattern. The distance of the i-th lot, i = 1, ..., 134, to the

in-control pattern is then

Dc
i =

7X
j=1

¡
xij − μj

¢2
. (16)

Measuring the distance to a given PA is not that straightforward, since a PA is not

a fixed shift but only a direction of change. The size of the shift is not determined. In

order to obtain a distance to the k-th PA, we have used the mean μ̂(k) =
³
μ̂
(k)
1 , ..., μ̂

(k)
7

´
,

k = 1, ..., 5, obtained with c = 2 in (12) using the data of phases 1 and 3. Then, the

distance of observation Xi to a shift provoked by the k-th PA is computed as

D
(k)
i =

7X
j=1

³
xij − α̂ik − β̂ikμ̂

(k)
j

´2
. (17)

where

β̂ik =

P
x̃ijμ̃

(k)
jP³

μ̃
(k)
j

´2 , (18a)

α̂ik = x̃ij − β̂ikμ̃
(k)
j , (18b)

x̃ij = xij −
P7

j=1 xij

7
, (18c)

μ̃
(k)
j = μ̂

(k)
j −

P7
j=1 μ̂

(k)
j

7
. (18d)

The evaluation of the distances Dc
i and D

(k)
i , k = 1, ..., 5 for each observation in

phase 2 is done using their empirical distributions computed with the 63 observations

of phases 1 and 3. These empirical distributions are computed as follows. For the

in-control case, the 63 values of Dc
i are computed as in (16). Let us denote as F̂c the

empirical cumulative distribution function of Dc
i . For each PA, the 63 values of D

(k)
i

are computed by provoking a shift in the k-th PA with c = 2. Then, 18 is computed

using xij + δ
(k)
j instead of xij. The empirical cumulative distribution function of D

(k)
i

is denoted as F̂k. For each observation in phase 2, we compare the distances Dc
i and
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D
(k)
i , k = 1, ..., 5, with their empirical cumulative distributions F̂c and F̂k, respectively.

If all the distances are larger than their respective 95th percentile, the observation is

classified as produced by ’other alarms’. Otherwise, the observation is classified as

produced by the pattern that has minimum empirical cumulative distribution. For

instance, an observation is classified as in-control if F̂c(Xi) < F̂k(Xi), k = 1, ..., 5.

According to this classification rule, the 134 observations of phase 2 have been

classified as follows: 31 observations (23%) have been classified as being in control; 69

observations (51%) have been classified as provoked by the third PA; 15 observations

(11%) have been classified as provoked by the fourth PA; and 19 observations (14%)

have been classified as provoked by ’others’ alarms. The solid lines in Figure 10 show

the average mean shift of the 69 observations classified as belonging to the third PA,

and the average mean shift of the 15 observations classified as belonging to the fourth

PA. This figure also displays (dotted line) the mean shift of the third and fifth PA,

respectively, as also seen in Figure (9) for c = 2. Both lines show the similarity between

the estimated PAs and the observed shifts.

Figure 10 (a) shows a large shift in impurity A and very small shifts in the remaining

impurities, probably due to randomness. This pattern is similar to the one foreseen by

the third PA. Figure 10 (b) shows a large shift in impurity D and shifts of opposite

sign in impurities C and F, just as predicted by the fourth PA.

5 Concluding remarks

The PA analysis proposed by González and Sánchez (2006) for normal processes is

extended in this article to non-normal processes by using ICA. Non-normal processes

can be very frequent in real applications. For instance, processes where the measures

of quality are related to non-negative deviations from some ideal levels can produce

highly asymmetric distributions. This is the case, for instance, of the manufacturing of
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mechanical parts, like the one in Section 4.1, where one-side tolerances are established.

Other examples can be found in chemical processes such as the one shown in Section

4.2, where the impurity profile can only have positive deviations from a zero level. The

multivariate analysis of such processes has the added complexity of the non-normality.

In those cases, the analysis of PA using ICA helps to foresee the potential deviations

of the process using only in-control data. That is, we do not need to be out of control

to have some insights about what is going to happen. The analysis of PA is related to

the principles of the so-called Pareto analysis, since it helps to identify a small number

of alarms that will account for most of the out-of-control situations. Such analysis can

be used for many purposes: to identify weak points in the design of the process, to

design more specific control charts, and to facilitate the interpretation of out-of-control

signals.
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Figure 5: Simulated mean shifts provoked by the second PA in each measured

point for different values of c. (a) Mean shift at each point. (b) Simulated

deformation (dotted line) from the nominal frame (solid line) provoked by a large

c.
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Figure 6: Simulated mean shifts provoked by the third PA in each measured

point for different values of c. (a) Mean shift at each point. (b) Simulated

deformation (dotted line) from the nominal frame (solid line) provoked by a large

c.
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Figure 7: Simulated mean shifts provoked by the fourth PA in each measured

point for different values of c. (a) Mean shift at each point. (b) Simulated

deformation (dotted line) from the nominal frame (solid line) provoked by a large

c > 0.
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Figure 8: Histograms of impurities B and C.
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Figure 9: Simulated mean shifts provoked by the five PA in each impurity for

different values of c > 0. (a) First PA. (b) Second PA. (c) Third PA. (d) Fourth

PA. (e) Fifth PA.

A B C D E F G

-1

0

1

2

3

4

5

Impurities

m
ea

n 
sh

ift

3th PA
Data average

(a)

A B C D E F G
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Impurities

m
ea

n 
sh

ift

4th PA

Data average

(b)

Figure 10: Solid lines: average mean shift of the observations classified as be-

longing to: (a) the third PA (a) and (b) to the fourth PA. Dotted lines: average

mean shift of: (a) the third, and (b) the fifth PA.
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