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Abstract 
 
In this paper we study the multi-product lot streaming problem in a permutation flow shop. 
The problem involves splitting given order quantities of different products into sublots and 
determining their optimal sequence. Each sublot has to be processed successively on all 
machines. The sublots of the particular products are allowed to intermingle, that is sublots of 
different jobs may be interleaved. A mixed integer programming formulation is presented 
which enables us to find optimal sublot sizes as well as the optimal sequence simultaneously. 
With this formulation small and medium sized instances can be solved in a reasonable time. 
The model is further extended to deal with different settings and objectives. As no lot 
streaming instances are available in the literature, LSGen, a problem generator is presented, 
facilitating valid and reproducible instances. First results about average benefit of lot 
streaming with multiple products are presented, which are based on a computational study 
with 160 small and medium sized instances. 
 
 
 
 
 
Keywords: lot streaming; scheduling; production planning; mixed integer programming 
 
*Corresponding author 

Page 1 of 26

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 1 

1. Introduction and literature review 

The term "lot streaming" denotes techniques of splitting given jobs, each consisting of 

identical items, into sublots to allow their overlapping processing on successive machines in a 

multi-stage production system. While traditional scheduling problems assume that jobs or 

lotsizes are fixed, lot streaming problems can be considered as sequencing problems with the 

characteristic that the magnitude of each sublot is a decision variable. In line with Allahverdi 

et al. (1999), these techniques are part of job floor control, where the master production 

schedule has to be realized. Lot or batch sizes are specified by the production planning and 

control system, but regularly these targets turn out to be infeasible during execution. One 

option to dealing with this problem is the application of lot streaming procedures, i.e. items 

are rearranged and allocated in sublots. If these sublots are produced in an overlapping 

fashion, remarkable reduction of makespan and improved timeliness are within reach 

(Kalir/Sarin, 2000). Due to its high relevance, Lee et al. (1997) classify lot streaming as one of 

the current trends in deterministic scheduling. They point out the necessity to extend classical 

algorithms to models which are more closely related to real world problems. 

The first formal results on lot streaming are obtained by dealing with the one-product-case in a 

flow shop with two and three stages (Potts/Baker, 1989). In the concluding part of their paper 

Potts/Baker address the problem of lot streaming with two products on two stages. They give 

a small example to show that sequential decisions –first sequencing the jobs without lot 

streaming and afterward applying lot streaming individually to each job– may lead to 

suboptimal schedules. However, Potts/Baker (1989) did not present a general solution 

procedure for streaming with multiple products. The vast majority of research in lot streaming 

has been concerned with the one-product-case only. A comprehensive and excellent review of 

well solved variants in lot streaming is given by Trietsch/Baker (1993) – for more recent 

literature reviews see Biskup/Feldmann (2005), Chang/Chiu (2005) and Feldmann (2005). 

Generally, the goal in lot streaming is to determine the number of sublots for each product, the 

size of each sublot and the sequence for processing the sublots so that a given objective is 

optimized (Zhang et al., 2005). As the general problem remains unsolved, research typically 

tackles less general versions of the general lot streaming problem. The following terms 

summarize different directions of lot streaming research, see Potts/Van Wassenhove (1992), 

Trietsch/Baker (1993), Kalir/Sarin (2001) and Zhang et al. (2005): 
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• Single product / multiple products: Either a single product or multiple products are 

considered.  

• Fixed / equal / consistent / variable sublots: Fixed sublots means that all sublots for 

all products consist of the identical number of items on all stages. Equal sublots means 

that sublot sizes are fixed for each product. The differentiation between fixed and 

equal sublots is only necessary for multiple products. A sublot is called consistent if it 

does not alter its size over the stages of processing. For variable sublots no restrictions 

are given. 

• Non-idling / intermitted idling: For non-idling the sublots on a particular stage have 

to be processed directly one after the other. For intermitted idling on the other hand, 

idle times between sublots may occur. 

• No-wait / wait schedules: In no-wait schedules, each sublot has to be transferred to 

and processed on the next stage immediately after it has been finished on the preceding 

stage. In a wait schedule, a sublot may wait for processing between consecutive stages. 

• Attached setups / detached setups / no setups: If attached setups are required the 

setup can not start until the sublot is available at the particular stage. In a detached 

setup the setup is independent from the availability of the sublot. And sometimes setup 

times are neglected or do not occur. 

• Discrete / continuous sublots: For discrete sublots, the number of items of a sublot 

has to be an integer. For continuous sublots no such restriction exists. 

• Intermingling / non-intermingling sublots: If in a multi-product setting inter-

mingling sublots are allowed, the sequence of sublots of product j may be interrupted 

by sublots of produkt k. For non-intermingling sublots no interruption in the sequence 

of sublots of a product is allowed, which is obviously always given in one-product 

settings and can be forced in multi-product settings. 

In the following, we survey research on multi-product lot streaming problems and focus on 

flow shop environments, and consider consistent or variable sublots results in a magnitude of 

related problems:  

 

Vickson/Alfredsson (1992) consider multiple products on two and three stages with unit-sized 

sublots, i.e. every item has to be transferred separately. If setup and transfer times are 

negligible and regular measures of performance are used, unit-sized sublots are proved to be 
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optimal. Moreover, but restricted to the two-stage setting, it can be shown that optimal 

schedules exist with non-intermingling sublots, but if the number of stages increases, optimal 

solutions may require intermingling sublots (Vickson/Alfredsson, 1992, p. 1564). Vickson 

(1995) considers non-intermingling sublots on two stages and investigates the question of how 

to solve lot streaming problems with job or sublot detached setups and attached setups for 

discrete and consistent sublots, respectively. He presents some closed form solutions for 

continuous sublots and a fast polynominally bounded search algorithm for discrete sublots. 

Baker (1995) continues the analytic work of Vickson/Alfredsson (1992) by incorporating 

sublot-attached setup times into the model. He exploits some theoretical results of scheduling 

with time lags, but his findings strongly rely on the fact that in two-stage settings, permutation 

schedules are known to be optimal. For more than two stages, optimality is no longer 

guaranteed. 

Lot streaming with multiple products and fixed sublot sizes is intensively discussed by Kalir 

(1999). In the case of continuous and fixed sublots, closed forms can be given for the optimal 

number of sublots and sublots-sizes, respectively. Kalir/Sarin (2001) present the BMI 

heuristic to sequence fixed sublots in multi-stage flow shops, if sublots are not allowed to 

intermingle. This heuristic constructs a schedule which attempts to minimize idle time on the 

bottleneck machine. Kalir/Sarin (2003) deal with sublot-attached setups, while equal and non-

intermingling sublots are assumed. They present a solution procedure which finds optimal 

solutions if one product is streamed on two stages. They further propose procedures to gain 

near optimal solutions with equal, non-intermingling sublots for multiple products on two 

stages by applying Johnson’s rule (Johnson, 1954). Moreover, they discuss an extension of 

their approach to the multi stage setting, modifying the BMI heuristic. 

Lee et al. (1993) minimize makespan in a multi-stage lotsizing and scheduling problem with 

significant and sequence depending setup times. The total lot size of each product is assumed 

to be given and items are allowed to be produced in an overlapping fashion – so their problem 

is equivalent to lot streaming with consistent and intermingling sublots in a permutation flow 

shop. They develop a genetic algorithm and focus their research on the effect of an evolving 

chromosome structure, where building blocks are directly interpreted as lot-sizes: In the 

beginning, a randomly generated sequence of fix and minimal lot sizes (e.g. 5 items per 

sublot) for all products is given. During the search, positions of sublots are interchanged and 

consecutive sublots of the same product are aggregated if and only if this aggregation is 

advantageous. As re-splitting of aggregated sublots is not modelled, sublot sizes are only 
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allowed to increase. Nevertheless, sequencing and lot sizing are decided simultaneously, 

sublots are allowed to intermingle, and finally the number of sublots for every product is 

adjusted by the genetic algorithm. However, sublot sizes are restricted to be multiples of the 

given minimal fixed sublot size, and the approach does not guarantee to find optimal 

solutions. 

Kumar et al. (2000) consider the multi-product, multi-stage, no-wait flow shop with non-

intermingling discrete sublots. Their solution procedure consists of three-steps: First, optimal, 

consistent and continuous sublots are calculated separately for every product by linear 

programming. Secondly the sublots are rounded, as discrete sublots are required. In the third 

step the remaining sequencing problem among the products is reformulated as a TSP and 

solved heuristically. The approach of Kumar et al. (2000) generalizes the procedure of 

Sriskandarajah/Wagneur (1999), which is restricted to two-stage settings, detached setups and 

consistent (continuous as well as discrete) lot sizes. In addition, Kumar et al. (2000) present 

two genetic algorithms to solve the sublot size or the product sequencing task. They further 

develop some hybrid heuristic approaches (combinations of genetic search, linear 

programming and heuristical TSP procedures) and allow the number of sublots to be adjusted 

during the search. Hall et al. (2003) study the problem of Sriskandarajah/Wagneur (1999) with 

attached setups and develop an efficient heuristic to solve the multi-stage no-wait lot 

streaming problem with multiple products, if consistent non-intermingling but integer sublot 

sizes are assumed. 

 

Only few studies on production environments other than flow shops are available: 

- Zhang et al. (2005) deal with lot streaming in m-1 hybrid flow shops to minimize mean 

completion time. On the first stage m identical and parallel machines are given, while the 

following stages are arranged like a traditional flow shop. In their study only two stages 

are investigated: two parallel machines are given on the first stage and one machine on the 

second stage. Each sublot requires a setup. Similar to the paper of Kumar et al. (2000), the 

number of sublots is a decision variable and sublot sizes are restricted to be larger than a 

fixed minimal sublot size. They present two heuristic approaches and a MIP model, but 

again sublots are not allowed to intermingle. 

- Lot streaming in job shop environments is dealt with by Dauzère-Pérès/Lasserre (1997). 

They propose an iterative procedure, where first lot streaming with consistent sublots is 

executed, and in a second step the scheduling decisions are regarded. As job shop 
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scheduling is NP-hard, Dauzère-Pérès/Lasserre apply the shifting bottleneck heuristic 

(Adams et al., 1988).  

- Lot streaming in open shops was first considered by Şen/Benli (1999). They present some 

results for scheduling a single job in multi-stage open shops, considering single or 

multiple routing for each sublot. Furthermore they focus on the multiple-job lot streaming 

problem with two stages and show that lot streaming will only improve makespan if there 

is a job with large processing times. Close form solutions are given to calculate optimal 

sublot sizes and their sequences. Hall et al. (2005) study the problem of minimizing 

makespan in no-wait two-machine open shops with consistent and non-intermingling 

sublots by modifying the procedures given in Hall et al. (2003). As the problem 

additionally requires a machine sequence for each product, the study is restricted to two 

stage settings. A dynamic programming algorithm is used to generate all dominant 

schedule profiles for each product. These profiles are required to formulate the open shop 

problem as a generalized traveling salesman problem. A computationally efficient 

heuristic is presented and it is shown that good solutions can quickly be found for two 

machine open shops with up to 50 products. 

 

Recapitulating the solution status of lot streaming problems, one important aspect – already 

highlighted by Potts/Baker (1989) – is still open. It is the question of how to find optimal 

solutions in a multi-stage multi-product flow shop if sublots are allowed to intermingle. In 

line with the studies mentioned above, we consider a permutation flow shop to let the 

sequencing decision only occur once, and restrict sublot sizes to consistent sublots. From a 

practical point of view permutation flow shops have two big advantages: Firstly, as the 

sequencing decision is determined on the first stage, the remaining stages do not need to 

bother with (error-prone) sequencing issues. Their schedule is given by the order the different 

sublots arrive. Secondly, from the perspective of fast error detection sublots need to be easily 

tracable. Obviously lot tracing is much easier in permutation flow shops than in open flow 

shops (Feldmann, 2005, p. 71). 

In contrast to the studies mentioned above, our mixed integer programming formulation 

simultaneously determines the lot sizes and the sequence of sublots to guarantee overall 

optimal solutions. To the best of our knowledge the complexity status of the lot streaming 

problem considered in this paper is still open - but as makespan minimization in permutations 

flow shop scheduling is known to be NP-hard for three and more machines (Garey, et al. 
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1976), the problem under study is most probably NP hard (Trietsch/Baker, 1993, 

Sriskandarajah/Wagneur, 1999), too. 

 

The remainder of the paper is organized as follows: In the next section we introduce a model 

formulation for the multi-stage multi-product flow shop problem with sublots that are allowed 

to intermingle. This model formulation is afterwards extended to some settings that seem to 

be very interesting from a practical point of view. In the third section we discuss the benefits 

of lot streaming by introducing a problem generator and solving 1,760 problems to optimality. 

The paper concludes with some final remarks in section four. 

 

 

2. Model Formulation and Extensions 

 

With the following model formulation, generally speaking, the two inherent goals of the 

problem, namely determining the sequence among the sublots and the size of the individual 

sublots, are solved simultaneously. We will make use of the following variables and symbols: 

S := number of sublots per product 

s,t := indices for the sublots, s, t = 1, …, S 

M := number of machines 

m := index for the machines, m = 1, …, M 

J := number of products 

j,k := indices for the products, j, k = 1, ..., J 

rjm := processing time for one unit of product j on machine m 

ujs := number of units produced in sublot s of product j 

pjsm := processing time of sublot s of product j on machine m  

Lj := number of identical items of product j to be produced 

R := sufficiently large number 

bjsm := starting time of the sublot s of product j on machine m 

xjskt := binary variable, which takes the value 1 if sublot s of product j is sequenced 

prior to sublot t of product k, 0 otherwise 

 

Note that the use of sequence-related binary variables bears some similarity to Manne’s 

(1960) formulation of the job shop scheduling problem. The multi-stage multi-product flow 

shop problem with sublots that are allowed to intermingle can now be formulated:  
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Minimize Z 

subject to 

(1) 
1

S

js j
s

u L
=

=å     j = 1, ..., J 

(2) pjsm = ujs rjm    j = 1, ..., J; s = 1, ..., S; m = 1, ..., M 

(3.1) (1 )
jsm jsm ktm jskt

b p b x R+ £ + -  j, k = 1, ..., J; j k< ; s, t = 1, ..., S; m = 1, ..., M 

(3.2) 
jsmktm ktm jskt

b p b x R+ £ +   j, k = 1, ..., J; j k< ; s, t = 1, ..., S; m = 1, ..., M 

(4) 
, 1 , 1jsm js m js m

b b p
- -

³ +    j = 1, ..., J; s = 1, ..., S; m = 2, ..., M 

(5) 
1, 1,jsm js m js m

b b p
- -

³ +    j = 1, ..., J; s = 2, ..., S; m = 1, ..., M 

(6) 
, 1jsk t jskt

x x
-

£     j, k = 1, ..., J, j k< ; s = 1, ..., S; t = 1, ..., S-1 

(7) 
jSM jSM

Z b p³ +    j = 1, ..., J 

(8) { }0,1
jskt

x Î     j, k = 1, ..., J, j k< ; s, t = 1, ..., S 

(9) , 0
js jsm

u b ³     j = 1, ... J, s = 1, ..., S, m = 1, ..., M 

 

Restrictions (1) ensure that in sum Lj items are processed of product j. With (2) the processing 

times of the sublots are calculated. Restrictions (3.1) and (3.2) determine the sequence of 

sublots. Since it is a permutation flow shop, no machine index is needed for x. (3.1) is binding 

if (and only if) xjskt takes the value 1. In this case sublot s of product j is scheduled prior to 

sublot t of product k on machine m and the processing of sublot t of product k is forced to start 

after sublot s of product j has been finished. If, on the other hand, xjskt takes the value zero, 

(3.1) are not binding, as R is added on the right hand side. The disjunctive counterpart is 

reflected by restrictions (3.2). These restrictions are only binding, if xjskt takes the value 0. The 

restrictions (4) and (5) assure that the sublots of the same product do not overlap: With 

restrictions (4) sublot s on machine m is not allowed to start before sublot s on machine m - 1 

has been finished. Restrictions (5) prevent that two sublots, s and s – 1, are processed 

simultaneously on one machine. From a computational point of view, is it advantageous to 

decrease the number of possible permutations of the binary variables. As stated in (6), an 

inherent structure among the variables xjskt is known: If sublot s of product j is scheduled prior 

to sublot t of product k, sublot s must also be scheduled prior to sublot t + 1, t + 2, ..., S of 

product k. With the restrictions (6) the number of iterations (LINGO 7.0 is used) could be 
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reduced to approx. 60% compared to the model without them. In (7) the completion time of 

the last sublot S on the last machine M are used to define the makespan Z.  

 

In line with most of the literature on lot streaming we assume that sublots do not need to be 

discrete, see (9). However, discrete sublots can easily be generated by non negative integer 

requirements for ujs, j = 1, …, J, s = 1, …, S in (9). From a practical point of view there are 

examples for both cases: Books, cars, furniture, etc. require integer variables while for the 

production (not the sizing) of gas, beverages, concrete, electricity etc. real variables are 

appropriate. 

 

The number of binary variables needed can be calculated by 
2 ( 1)

2

S J J⋅ ⋅ −
. Note that the 

number of machines does no impact this formula as a permutation work flow is considered. 

But with an increasing number of products and sublots the number of binary variables needed 

increases rather fast, see Table 1: 

J\S 2 3 4 5 6 7 … 10 

2 4 9 16 25 36 49  100 

3 12 27 48 75 108 197  300 

…         
10 180 405 720 1,125 1,620 2,205  4,500 

Table 1: Number of binary variables needed depending on J and S. 

 

From the perspective of intermingling especially the following settings seem to be of interest: 

 

Extension #1: No intermingling between the sublots of one (or more) of the J products with 

the other products 

All sublots of one (or more) of the J products are produced one after the other and are not 

allowed to intermingle with the other products. This setting might be advantageous if the set-

up costs for one or more products are high. Let us assume product three is not allowed to 

intermingle (and J = 3, S = 3). A possible sequence on the machines might be: (1_1, 1_2, 2_1, 

1_3, 3_1, 3_2, 3_3, 2_2, 2_3). The first number indicates the product, the second number the 

sublot. To formulate a situation like this we can use the restrictions (3.1) and (3.2) of the 
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above model formulation for all products j and k that are allowed to intermingle. We assume 

that Ji contains all products that are allowed to intermingle and the subset Jn contains the 

products that are not allowed to intermingle, i.e. J ={Ji, Jn}:  

(3.1) (1 )
jsm jsm ktm jskt

b p b x R+ £ + -  

j, k ∈Ji; j k< ; s, t = 1, ..., S; m = 1, ..., M 

(3.2) 
jsmktm ktm jskt

b p b x R+ £ +  

j, k ∈Ji; j k<  s, t = 1, ..., S; m = 1, ..., M 

For the products l ∈ Jn we make use of the following binary variables: 

xjsl := binary variable, which takes the value 1 if sublot s of product j ∈ Ji is 

sequenced prior to product l ∈ Jn, 0 otherwise 

(3.3) 
1

(1 )
jsm jsm l m jsl

b p b x R+ £ + -  

j ∈ Ji; l ∈ Jn; s = 1, ..., S; m = 1, ..., M 

(3.4) 
jsmlSm lSm jsl

b p b x R+ £ +  

j ∈ Ji; l ∈ Jn; s = 1, ..., S; m = 1, ..., M 

Furthermore, the definition of the binary variables in (9) has to be adjusted. All other 

restrictions of the above model formulation apply for both intermingling and non-

intermingling products. Another “quick and dirty” approach for this setting was to use the 

model formulation (1) to (9) and equate the binary variables for the sublots of the product(s) 

that is (are) not allowed to intermingle. For the above example this would be xjs31 = xjs32 = 

xjs33, j = 1, 2 and s = 1, 2, 3. 

 

A model without any intermingling would only make use of the restrictions (3.3) and (3.4). In 

this case the sequencing part of the problem reduces to finding a sequence among the products 

(instead of among the sublots). 

 

Extension #2: Overall number of sublots given, but not the number of sublots per product 

From a practical point of view a second interesting setting is the following: The overall 

number of sublots is given but not the number of sublots per product. For example it might, 

from an logistical perspective, be advantageous to have at most 8 sublots (among J = 3 

products). Now the task is to find the optimal number of sublots per product, the optimal 

sequence among the sublots, and the optimal size of the sublots. To formulate a setting like 

this we make use of position related binary variables.  
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Let: 

P :=  overall number of sublots allowed, p = 1, …, P 

xpj :=  binary variable which takes the value 1 if at the p-th position product j is 

   produced, 0 otherwise 

upj := number of units produced of product j in position p 

ppjm := processing time of product j in position p on machine m  

bpm := starting time of the product in position p on machine m 

 

The model formulation is as follows: 

Minimize Z 

subject to 

(1’) 
1

1

P J

pj j
p

u L
- +

=

=å     j = 1, ..., J 

(2’) ppjm = upj rjm    p = 1, …, P; j = 1, ..., J; m = 1, ..., M 

(3’) 
1

1
J

pj
j

x
=

=å     p = 1, …, P 

(4’)  pjm pjp x R≤     p = 1, …, P; j = 1, ..., J; m = 1, ..., M 

(5’) 1,
1

J

pm pjm p m

j

b p b
+

=

+ ≤∑     p = 1, …, P - 1; j = 1, ..., J; m = 1, ..., M 

(6’) , 1
1

J

pm pjm p m

j

b p b
+

=

+ ≤∑    p = 1, …, P; j = 1, ..., J; m = 1, ..., M - 1 

(7’) 
1

J

PM PjM
j

Z b p
=

³ + å    j = 1, ..., J 

(8’) { }0,1
pj

x Î     p = 1, …, P; j = 1, ..., J  

(9’) , 0pmpj
u b ³     p = 1, …, P; j = 1, ... J; m = 1, ..., M 

 

The restrictions (1’) ensure that for each product Lj units are produced; note that at most P – J 

+ 1 sublots are possible for one job, as for each of the other jobs at least one sublots is 

necessary. The restrictions (3’) allow exactly one product being produced at each of the P 

positions. This of course means that a positive production time may only occur if the 

particular binary variable takes the value 1 (4’). All other restrictions are obvious and similar 

to the model formulation (1) to (9). 
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Sequence-related binary variables versus position-related binary variables for the multi-stage 

multi-product flow shop problem with sublots that are allowed to intermingle 

The multi-stage multi-product flow shop problem with sublots that are allowed to intermingle 

can easily be formulated with position-related binary variables as well. At first glance the 

model formulation (1’) to (9’) seems to be very compact and easy to solve, and the model 

formulation with sequence-dependent binary variables (1) to (9) looks more complex. 

However, it turned out to be far easier to solve (1) to (9) than (1’) to (9’). To demonstrate this 

attribute of the two models, the number of sublots used for every product is restricted by (10’), 

so both models become comparable. 

(10’) 
1

P

pj

p

P
x

J=

=∑      j = 1, ..., J 

In Table 2 the number of branch and bound iterations for both models are given. We solved 

lot streaming instances with 2, 3 and 4 products. The notation (taken from our problem 

generator introduced in the following section) indicates the number of products, number of 

stages and number of instance. For example in instance 2_5_1 two products are streamed over 

five stages, while instance number 1 is investigated. 

 

instance 
Sublots per 

product 
Iterations needed by 

model (1) to (9) 
Iterations needed by 
model (1’) to (10’) 

% 

2_5_1 7 190,450 330,637 173.6 

2_5_2 7 155,086 233,450 150.5 

2_5_3 7 168,308 320,189 190.2 

3_5_1 4 3,229,003 3,990,200 123.6 

3_5_2 4 2,133,996 4,066,437 190.6 

3_5_3 4 3,714,000 4,122,178 111.0 

4_4_1 3 8,918,934 14,807,426 166.0 

4_4_2 3 17,678,258 28,017,556 158.5 

4_4_3 3 5,318,975 14,550,500 273.6 

Table 2: Exemplary comparison of the number of branch and bound iterations of the two 

models 

 

Considering the instances given in Table 2, the model with position-related binary variables 

(1’) to (10’) needs on average significantly more iterations than the model with sequence-

related binary variables. We decided not to analyze the difference between the two models 
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further, but to present the formulation (1) to (9) for the multi-stage multi-product flow shop 

problem with sublots that are allowed to intermingle. If only an overall number of sublots is 

given, sequence-dependent binary variables cannot be applied with reasonable effort. 

Therefore we decided to present the model formulation (1’) to (9’) making use of position 

related-binary variables for this extension. This model formulation furthermore has the 

advantage that no-wait and no-idling schedules can be required by formulating (5’) or (6’) as 

equations, respectively.  

 

 

3. Benefit of lot streaming and computational experiments 

Studies to evaluate the potential benefit of lot streaming are rare. To the best of our 

knowledge just two papers tackle this issue: 

• Baker/Jia (1993) present a comparative study of over 6,000 test-problems to evaluate the 

effect of lot streaming in a three stage one-product setting, if non-idling is assumed or 

consistent sublots or equal sublots and non-idling are given. They found diminishing 

improvements in makespan reduction for an increasing number of sublots. For every 

solution procedure, more than half of the potential makespan reduction from ten sublots is 

obtained with just two sublots, while 80% of the benefit of ten sublots is already obtained 

with three sublots (Baker/Jia, 1993, p. 565). 

• Kalir/Sarin (2000) present some approximation forms for the evaluation of the potential 

consequences, if one or multiple products are streamed in a flow shop. If equal sublot 

sizes are assumed, it becomes possible to gain upper-bounds for makespan, mean flow 

time and work-in process in the single product case. Regarding multiple products, the 

problem is approachable only if an identical, i.e. product-unspecific, bottleneck machine 

exists and non-intermingling and unit sized sublots are used. Solely for this limited setting 

approximative upper-bounds on the benefit of lot streaming are derived. 

 

We are not aware of any results on the benefit of lot streaming with multiple products in a 

multi-stage setting for consistent sublots. Moreover, no reproducible instances exist in the 

literature. Along with our computational results we decided to develop a problem generator –

called LSGen– to make our computational results reproducible. Furthermore the possibility to 

replicate benchmark instances may serve as a base for future research on “larger” problems. 

LSGen can easily be downloaded via the following link: http://www.wiwi.uni-
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bielefeld.de/%7Ekistner/mitarbeiter/feldmann/lsgen.exe1. Within LSGen it is just necessary to 

appoint the number of products J, the number of stages M and the number of the instance N, 

to receive the reproducible instance J_M_N. LSGen calculates rjm and Lj, as uniformly 

distributed integers within the following ranges: rjm = {1, ..., 12}; Lj = {10, ..., 40}. 

Additionally, a J×J matrix with cjk = {0, ..., 30} is given, if sequence dependent setup times 

are applied. The pseudo-random numbers used in LSGen are initialized with a seed, calculated 

as a function in S, M, N to assure that all instances are calculated independent to other 

instances and that bigger and smaller instances do not systematically share common 

properties: seed = 3,965,481 + 1,000*J + 100*N + M . In the following the data of instance 

3_4_10 (three jobs: J = 3, four stages: M = 4, tenth instance: N = 10) are given: 

3 10 12 7

10 1 6 10

6 3 12 11
jm

r

é ù
ê ú
ê ú

= ê ú
ê ú
ê ú
ê úë û

 

32

38

18
j

L

é ù
ê ú
ê ú

= ê ú
ê ú
ê ú
ê úë û

 

24 17 5

10 0 17

3 15 9
jk

c

é ù
ê ú
ê ú

= ê ú
ê ú
ê ú
ê úë û

 

 

In Figure 1 the Gantt Chart of instance 3_4_10 depicting an optimal solution with four 

discrete, intermingling and consistent sublots (no setups) is given. The optimal makespan is 

Z* = 909. 

 

<< please insert Figure 1 here >> 

 

In this solution the four sublots of job 3 are scheduled first. Then the first sublot of job 2 

(named 2_1) follows, but job 2 is intermingled by sublots of job 1. The following sequence 

and sublot-sizes are found to be optimal: u31 = 3; u32 = 4; u33 = 6; u34 = 5; u21 = 10; u11 = 7; 

u22 = 11; u12 = 9; u23 = 4, u24 = 13; u13 = 9; u14 = 7. The optimal makespan without 

intermingling sublots is 1,071, which equates to a disadvantage of 17.8 %. 

 

Overall we generated and solved 160 instances (J = {2, 3}; M = {3, 4,... , 10} N = {1, 2,... , 

10}). The number of sublots S was set to be in the interval {1, 2,... , 7} for J = 2 and S = {1, 2, 

..., 4} for those instances with J = 3. Consequently 880 lot-streaming problems were solved. 

Additionally, all calculations are repeated for the non-intermingle case, so in total 1,760 

optimal schedules form the basis for the statistical evaluation. For these settings solutions with 

and without intermingling can be found within a second and up to 45 minutes applying 

                                                           
1 We will gladly distribute LSGen or the collection of instances, used in this paper by mail. 
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LINGO 7.0 on a standard PC (Pentium 4, 1.8 GHz, Windows 2000). In the following we 

survey average results. The details are given in the Appendix. 

First, we investigate whether an increase in S will show a slope that corresponds to the 

findings given by Baker/Jia (1993) and whether the problem size will show any effect on the 

benefit of lot streaming. In Figure 2 the averaged marginal benefit of additional sublots is 

shown. The marginal benefit mbS is calculated by: mbS = (ZS – ZS+1) / ZS where ZS denotes the 

optimal makespan for lot streaming with S consistent sublots. Hence, mbS denotes the 

percentage reduction of ZS if one additional sublot (ZS+1) is allowed. All data of Figure 2 are 

averaged over 10 instances. For example, among the first ten benchmark problems with J = 2 

and 6 stages, i.e. 2_6_1, 2_6_2, …, 2_6_10, allowing two sublots, reduces the makespan by 

34.69% compared to the situation without sublots (i.e. one production lot). Allowing three 

sublots reduces the makespan by an additional 17.21% compared to the situation with two 

sublots. 

 

<< please insert Figure 2 here >> 

 

The benefit of lot streaming in multi-stage settings increases not only with the number of 

sublots but also with a growing number of stages, see Figure 2. This pattern holds across all 

numbers of sublots, i.e. the effect of the 4th additional sublot in an eight stage setting is on 

average higher than the effect of the 4th sublot in a three stage setting. This finding gives 

important advice to production managers if they have to decide which of the production lines 

should be accelerated by lot streaming. Considering 10 stage settings, streaming of two 

products in two sublots reduces makespan compared to the situation without lot streaming by 

39% on average while in three stage settings an improvement of only 25% can be realized. 

The results for lot streaming with three products show the same pattern, thus we decided to 

omit them. 

 

The averaged total benefit of lot streaming is given in Table 3. The total benefit tbS is 

calculated by: tbS = (Z1 – ZS) / Z1. Again, all data of Table 3 are averaged over 10 instances. 

For example: among our benchmark problems with J = 2 and 6 stages allowing 5 sublots, 

reduces the makespan to 54.76% compared to the situation if lot streaming is not applied. 
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         Sublots 

Stages 

2 3 4 5 6 7 

3 25.44% 33.33% 36.77% 38.44% 39.37% 39.94% 

4 29.38% 38.88% 43.42% 46.05% 47.71% 48.78% 

5 33.19% 43.75% 48.57% 51.27% 53.30% 54.50% 

6 34.69% 45.93% 51.48% 54.76% 56.89% 58.38% 

7 35.57% 47.24% 53.11% 56.59% 58.82% 60.36% 

8 36.52% 49.03% 55.18% 58.79% 61.18% 62.83% 

9 38.81% 51.61% 57.92% 61.62% 64.05% 65.75% 

10 39.04% 52.13% 58.60% 62.46% 65.01% 66.85% 

Table 3: Total benefit of lot streaming with consistent intermingling sublots and J = 2, M = 

{3,..., 10}, S = {2,..., 7} 

 

If the situation of multi product lot streaming with versus without intermingling sublots is 

considered, we found the following averaged percentage results (over 100 benchmark 

instances): 

 

S 2 3 4 5 6 7 

Mean 1.39 2.49 3.37 4.05 4.60 5.01 

σ 2.51 3.57 4.71 5.71 6.39 6.97 

Range: Min  0.00 0.00 0.00 0.00 0.00 0.00 

 Max 10.22 15.59 21.65 27.39 31.61 34.92 

Table 4: Comparison of intermingling versus non-intermingling sublots and J = 2, M = (3,..., 
10), S = (2,..., 7) 
 

On average, over 100 benchmark instances, lot streaming with intermingling is 5.01% better 

than lot streaming without intermingling, if seven sublots are allowed for each product. The 

standard deviation, σ, is 6.97% in this case. The minimal deviation is zero and the maximal 

deviation is 34.92%. This means that for at least one of the benchmark instances identical 

optimal schedules for lot streaming with and without intermingling exist. On the other hand 

there is a benchmark instance (2_6_4) where lot streaming with intermingling sublots gives an 

advantage of 34.92% over lot streaming without intermingling; the optimal makespan with 

and without intermingling is 435.74 and 587.93, respectively. Again the results for J = 3 are 

omitted here, as they show a similar pattern. The maximum deviation was found to increase 

with an increasing number of sublots, which is independent on the number of stages. As the 
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mean deviation seems to be quite small, the application of non-intermingling sublots is a good 

recommendation for many instances, especially if setups have to be considered. Nevertheless, 

approaches to calculate solutions with intermingling sublots are valuable, as in some settings 

they may offer remarkable improvements; up to 34.92% for our benchmark instances.  

 

 

4 Summary  

Chang/Chiu (2005, p. 1532) recommend to tackle multiple product lot streaming problems not 

by hierarchical approaches but by simultaneous solution procedures. We have been able to 

present a model formulation to solve the multi-stage multi-product flow shop problem with 

sublots that are allowed to intermingle by standard optimization software. The applicability of 

the model formulation is due to the alleged complexity status of the problem and the 

subsequent use of binary variables somehow limited. However, we have been able to solve 

problems with 2 or 3 products and up to 7 sublots per product to optimality in a reasonable 

time. The number of stages hardly influences the effort to solving the problem; for instance 

solving a problem with 40 stages and 7 sublots per product takes less than 15 minutes.  

 

From the computational results it became obvious that it is, at least for some instances, very 

beneficial to allow the sublots to intermingle in a multi-stage multi-product flow shop 

environment. Thus future research might be directed towards the development of meta 

heuristical solution approaches to solve larger instances of multiple product lot streaming 

problems; the application of meta heuristics for example is recommendable for integer lot 

sizes especially. 
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Appendix 

 

 number of sublots S 
instance 1 2 3 4 5 6 7 
2_3_1 418 283 255.52 242.05 234.95 231.81 229.92 
2_3_2 501 348.53 297.94 273.67 263.59 259.12 256.61 
2_3_3 394 298.75 269.64 256.85 250.35 246.81 244.81 
2_3_4 468 341.68 305.34 297.62 295.4 294.57 294.24 
2_3_5 333 266.45 246.29 238.05 234.49 232.78 231.94 
2_3_6 471 364.38 324.48 306.55 295.95 289.05 284.56 
2_3_7 709 519.61 451.54 419.17 406.49 398.75 393.76 
2_3_8 596 436 383.54 357.95 343.09 333.58 327.11 
2_3_9 772 589.83 527.89 498.97 482.41 471.99 465.05 

2_3_10 526 416.8 387.77 377.26 373.05 371.29 370.55 
        2_4_1 1142 828.5 724 670.45 635.55 615.08 604.57 

2_4_2 792 541.53 460.01 420.68 398.16 384 374.55 
2_4_3 1007 677.83 579.13 534.47 510.04 495.28 485.82 
2_4_4 1146 811.31 697.07 640.91 608.43 585.96 570.52 
2_4_5 540 402 351.88 331.36 319.64 312.7 308.74 
2_4_6 638 446.17 391.66 361.11 344.01 332.67 325.69 
2_4_7 1020 684.67 573.83 524.93 495.84 477.62 465.17 
2_4_8 333 237 205 189 179.4 173 168.43 
2_4_9 1221 897.25 798.07 754.33 732.15 719.96 712.99 

2_4_10 974 691.3 603.7 560.06 535.37 519.07 508.06 
        2_5_1 1020 686.39 591.78 540 507 491.74 479.13 

2_5_2 897 586.33 492.63 444.54 417.73 398.2 385.75 
2_5_3 793 545.31 462.88 420.73 396.64 381.2 370.56 
2_5_4 1476 948.48 756.95 687.25 658.5 639.67 626.39 
2_5_5 889 611.33 537.12 512.74 503.76 500.09 498.47 
2_5_6 1434 931.06 747.78 660.43 605.57 569.57 544.52 
2_5_7 856 586.41 497.59 472.15 453.72 409.87 397.69 
2_5_8 1077 705.03 612.65 566.62 539.27 521.11 508.21 
2_5_9 1251 847 710.5 642.37 606.06 579.75 563.47 

2_5_10 1026 687.95 572.11 512.95 482.14 466.34 456.54 
        2_6_1 1246 801.68 679.83 617.04 582.82 557.98 542.25 

2_6_2 1967 1315.27 1099.47 992.2 929.23 886.52 857.51 
2_6_3 1140 785.09 674.08 619.6 589.32 570.87 558.98 
2_6_4 1008 682.68 568.23 510.16 475.22 452.69 435.74 
2_6_5 1432 922.36 758.26 676.39 629.33 599.85 579.37 
2_6_6 838 533.26 434.22 391.35 366.57 352.22 341.74 
2_6_7 2257 1472.25 1218.37 1093.24 1019.43 970.43 935.69 
2_6_8 1827 1114 876.25 756.02 684.34 636.15 600.47 
2_6_9 1219 772.6 624.3 550.51 503.31 473.73 454.17 

2_6_10 1406 951.22 804.02 732.54 689.54 662.92 643.32 
Table 5: Optimal makespan of 2-job lot streaming instances with intermingling (Part I) 
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 number of sublots S 

instance 1 2 3 4 5 6 7 
2_7_1 1458 927.44 790.38 729.27 697.28 680.01 668.9 
2_7_2 1291 864.11 712.89 633.43 585.08 552.61 529.35 
2_7_3 2508 1626.25 1334.89 1189.2 1100.89 1042.49 1000.96 
2_7_4 1994 1244.96 994.43 867.18 791.17 741.24 705.97 
2_7_5 1372 923.55 769.69 699.16 659.1 633.66 617.45 
2_7_6 1436 923.24 753.01 661.02 609.28 576.68 558.01 
2_7_7 619 402.78 331.09 293.18 271.86 257.7 247.27 
2_7_8 1653 1049.38 849.96 751.57 693.58 655.77 629.46 
2_7_9 1680 1103.74 912.45 815.93 757.1 718.51 691.23 

2_7_10 1023 620.59 486.49 419.46 377.11 351.15 333.49 
        2_8_1 1525 917.5 715 619.12 561.76 523.93 498.87 

2_8_2 1879 1168.95 913.51 783 707.7 659.66 624.98 
2_8_3 2030 1266.97 1014.18 886.49 810.03 759.5 723.12 
2_8_4 783 529.35 441.04 398.94 375.83 361.11 351.51 
2_8_5 1158 762.78 623.62 557.7 517.79 491.99 475.19 
2_8_6 2900 1792.75 1423.93 1236.24 1127.85 1058.7 1011.56 
2_8_7 1400 872 700.57 617.8 569.19 537.16 514.56 
2_8_8 2668 1727.48 1389.47 1224.37 1132.64 1069.15 1024.52 
2_8_9 2421 1493.82 1170.27 1020.68 930.72 868.53 826.88 

2_8_10 1096 722.86 601.3 538.43 499.55 473.15 453.93 
        2_9_1 1494 878.1 672.85 579 524.52 488.96 463.87 

2_9_2 2427 1473.68 1157.67 998.1 907.42 845.73 801.93 
2_9_3 1606 982.48 782.99 681.96 618.93 579.41 552.12 
2_9_4 1974 1230.42 983.28 850.68 770.87 719.58 683.62 
2_9_5 1892 1160.85 918.54 799.6 729.11 683.14 649.69 
2_9_6 1363 870.56 705.06 625.26 576.84 545.8 523.33 
2_9_7 2488 1467.29 1130.7 974.06 890.17 835.21 796.68 
2_9_8 1681 1058.01 830.42 724.01 661.36 620.9 592.93 
2_9_9 2507 1580.96 1270.18 1115.74 1023.31 961.15 918.27 

2_9_10 2616 1535.25 1227.97 1067.02 974.48 907.92 866.99 
        2_10_1 1842 1079.37 826.14 700.94 627.52 578.26 543.75 

2_10_2 2030 1253.7 994.22 852.9 771.21 718.17 679.92 
2_10_3 1672 1022.32 807.64 698.57 632.74 589.28 558.12 
2_10_4 2682 1641.01 1260.95 1075.11 968.64 897.58 844.17 
2_10_5 1460 906.09 721.8 639.58 592.93 563.23 541.74 
2_10_6 2216 1412.04 1119.6 980.59 892.99 835.95 795.11 
2_10_7 2396 1460.21 1143.42 985.12 885.88 820.42 772.61 
2_10_8 2348 1415.16 1085.75 925.64 827.91 763.47 717.63 
2_10_9 1248 740.27 592.1 519.59 476.12 447.16 426.54 
2_10_10 1754 1063.24 847.1 737.75 673.17 630.79 600.01 

Table 6: Optimal makespan of 2-job lot streaming instances with intermingling (Part II) 
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 number of sublots S 

instance 1 2 3 4 

3_3_1 636 540 512.57 501.6 
3_3_2 537 454.06 433.29 425.9 
3_3_3 1102 782.58 744.65 742.48 
3_3_4 769 620.2 573.21 551.52 
3_3_5 976 838.22 806.29 797.81 
3_3_6 949 838.85 819.71 816.78 
3_3_7 713 596 572.73 566.62 
3_3_8 1039 875.67 840.78 832.27 
3_3_9 640 571.31 561.53 560.25 
3_3_10 1202 981.15 920.75 894.74 

     3_4_1 1213 896.38 808.94 772.79 
3_4_2 1210 951.02 879.98 849.04 
3_4_3 686 495 470.76 465.31 
3_4_4 920 728.61 666.85 639.31 
3_4_5 1086 831.49 739.76 693.89 
3_4_6 833 622.97 555.54 526.18 
3_4_7 1885 1412.63 1271.98 1209.12 
3_4_8 1634 1114.38 941.23 854.7 
3_4_9 792 611.57 554.81 531.88 
3_4_10 1512 1082.37 955.59 901.55 

     3_5_1 2148 1489.69 1271.7 1158.93 
3_5_2 1515 1035.11 886.65 818.14 
3_5_3 1744 1190.64 1001.56 910.72 
3_5_4 1325 892.27 748.21 675.62 
3_5_5 1770 1251.66 1128.19 1073.24 
3_5_6 1953 1342.54 1174.18 1114.82 
3_5_7 1244 884.53 778.17 727.23 
3_5_8 2256 1675.08 1491.59 1412.51 
3_5_9 1277 921.67 808.39 753.78 
3_5_10 640 449.6 387.63 357.73 

     3_6_1 1459 974.03 825.72 753.72 
3_6_2 1756 1184.41 993.02 915.23 
3_6_3 966 716.14 636.67 600.51 
3_6_4 1590 1089.87 927.98 843.58 
3_6_5 1516 1070.02 925.67 853.74 
3_6_6 1346 901.4 763.4 694.81 
3_6_7 2003 1308.52 1095.55 989.2 
3_6_8 1169 803.38 685.52 625.91 
3_6_9 1885 1285.34 1081.89 989.45 
3_6_10 1415 983.52 833.81 764.21 

Table 7: Optimal makespan of 3-job lot streaming instances with intermingling (Part I) 
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 number of sublots S 

instance 1 2 3 4 

3_7_1 1730 1196.96 999.83 899.28 
3_7_2 1989 1233.87 993.9 888.42 
3_7_3 919 635.77 546.17 505.62 
3_7_4 2145 1415.86 1187.77 1077.98 
3_7_5 1524 1046.44 888.26 808.77 
3_7_6 1029 693.08 582.07 526.29 
3_7_7 2222 1419.97 1152.69 1019.09 
3_7_8 1792 1364.78 1172.42 1079.66 
3_7_9 1130 764.02 642.96 588.16 
3_7_10 1518 970.44 810.68 751.17 

     3_8_1 1962 1190.82 945.43 822.84 
3_8_2 2003 1274.17 1027.31 905.64 
3_8_3 1670 1031 819.18 713.06 
3_8_4 2610 1692.11 1386.23 1240.26 
3_8_5 1154 700.6 562.08 497.47 
3_8_6 2057 1297.82 1044.9 918.54 
3_8_7 2360 1576.63 1311.92 1178.54 
3_8_8 2170 1310.77 1106.95 1029.69 
3_8_9 2110 1449.55 1243.06 1143.97 
3_8_10 1571 1048.5 866.32 784 

     3_9_1 1363 887.72 725.36 699.06 
3_9_2 1184 759.17 614.74 542.68 
3_9_3 2239 1465.72 1202.65 1074.49 
3_9_4 1602 1013.8 824.98 730.04 
3_9_5 2772 1692 1335.23 1165.02 
3_9_6 1276 829.98 687.86 620.6 
3_9_7 2209 1548.39 1322.92 1201.34 
3_9_8 2053 1242.35 991.18 871.11 
3_9_9 2161 1317.55 1045.38 908.45 
3_9_10 2320 1420.93 1112.43 962.84 

     3_10_1 3087 1916.54 1570.87 1408.19 
3_10_2 1864 1125.92 909.03 796.77 
3_10_3 2325 1412.87 1100.29 959.9 
3_10_4 2865 1806.4 1457.62 1281.24 
3_10_5 2540 1621.28 1306.11 1145.8 
3_10_6 3288 1919.44 1460.06 1232.45 
3_10_7 2218 1413.33 1141.84 1013.7 
3_10_8 2500 1613.81 1314.8 1179.46 
3_10_9 1419 830.54 651.45 566.29 
3_10_10 2303 1433.23 1142.21 995.99 

Table 8: Optimal makespan of 3-job lot streaming instances with intermingling (Part II) 
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Figure 1: Optimal solution of instance 3_4_10 with S = 4 intermingling discrete sublots 
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Figure 2: Marginal benefit of lot streaming with consistent intermingling sublots and J = 2, M = {3,..., 10}, S = 

{1,.., 7} 
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