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ANALYSIS OF STANDARD ORDERING POLICIES 

WITHIN THE FRAMEWORK OF MRP THEORY 

Robert W. Grubbström* and Thi Thu Thuy Huynh 

Department of Production Economics 

Linköping Institute of Technology 

S-581 83 Linköping, Sweden 

rwg@ipe.liu.se and thuy.huynh@ipe.liu.se

Abstract 

A number of different standard ordering policies are presented within the methodology 

of Material Requirements Planning (MRP), such as Lot-For-Lot (L4L), Fixed Order 

Quantity (FOQ), Fixed Period Requirements (FPR), etc.  

In MRP Theory the time development of the production-inventory system is determined 

by a set of fundamental equations for available inventory, total inventory and backlogs 

using Input-Output Analysis for capturing the Bill of Materials and Laplace transforms 

for describing the advanced timing requirements.  

This paper aims at formally introducing standard ordering policies into the fundamental 

equations of MRP Theory in order to analyse the possibility to obtain closed-form 

expressions for the time development of the system, when such rules are applied. 

Keywords 

Material requirements planning, ordering policy, lot-for-lot, fixed order quantity, fixed 

period requirements, Laplace transform, input-output analysis. 
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1 INTRODUCTION 

The ordering policies in an MRP system have a direct impact on the outcome data. In 

for instance Orlicky (1975), some standard ordering policies such as Lot-For-Lot (L4L), 

Fixed Order Quantity (FOQ), Fixed Period Requirements (FPR) are defined. The MRP-

calculation in Orlicky (1975) for operations management and production economics in 

tables are described in formulas in Segerstedt (1996). 

The fundamental equations of MRP Theory have been developed in several earlier 

papers, beginning with Grubbström and Ovrin (1992) and in some earlier unpublished 

studies. These equations are balance equations in the frequency domain explaining the 

development of total inventory, available inventory, backlogs and allocations. Input-

Output Analysis is used for capturing the Bill of Materials and Laplace transforms for 

describing the advanced timing requirements (lead times). In Grubbström and Tang 

(2000) an overview is presented.  

The current paper analyses the question of developing closed-form expressions for 

production when applying basic ordering rules. Order sizes are to be decided in time 

when inventories are zero or near to zero.  

In Grubbström and Ovrin (1992) the problem treated here was touched upon. In that 

paper the processes took place in discrete time, and the z-transformation was applied. 

Grubbström and Molinder (1994) and Molinder (1995) also followed up some research 

into this issue in the continuous time case.  

Below, we will limit our attention to the three ordering policies L4L, FOQ, and FPR. 

We will also be limiting our attention to deterministic situations. 

The L4L rule, being the simplest (also called “as required”) involves an order to be 

placed exactly large enough to cover requirements. This means that available inventory 
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is kept at a zero level (assuming no initial inventories). In L4L, both the size of the 

order and the interval between orders will vary over time in a general case. Production, 

by this rule, is therefore adapted directly to requirements. 

With the FOQ policy, the order size is always the same. An order is placed as soon as 

there is not enough available inventory to cover requirements. If demand fluctuates, the 

interval between orders also must fluctuate. In general, available inventory will only 

reach a zero level on occasion. 

Applying the FPR policy, the interval during which total demand is generated and 

which the order should cover is constant. An order is placed just large enough to cover 

the total requirements during each such interval. At the end of these intervals, available 

inventory will have dropped to zero. 

This paper is structured as follows. We present a brief overview of the fundamental 

equations of MRP Theory in Section 2. This is followed by deriving the basic properties 

of production for the three ordering policies in relation to this theory in Section 3. 

Section 4 and 5 are devoted to solving for the production development.  

The following basic notation is used: 

s complex Laplace frequency. 

D(t) external demand  

P(t) Production 

dj coefficient of Laurent expansion, j = … -2,-1, 0, 1, 2,… 

R(t) available inventory 

τ lead time 

H input matrix (Bill-Of-Materials) 
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ˆ ( )D t requirements (external + internal demand) 

n̂ number of production batches during period considered 

jt , jT time of requirements event or production event 

 

Tildes or the operator { }£ ⋅ are used to denote Laplace transforms of the corresponding 

time functions, i. e. { }
00

( ) £ ( ) ( ) nstst
n

n
f s f t f t e dt f e

∞ ∞
−−

=

= = =∑∫% for a continuous time 

function f(t), and bars are used for denoting cumulative functions, like 

0

( ) ( )
t

f t f dα α= ∫ . Boldface characters represent vectors and matrices. 

 

2 THE FUNDAMENTAL EQUATIONS OF MRP THEORY 

 

Figure 1. Flowchart of the fundamental equations  

of MRP Theory (Grubbström and Tang 2000). 
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The fundamental equations of MRP Theory are balance equations describing the time 

development of total inventory, available inventory, backlogs, and allocations (see 

Grubbström and Tang, 2000). With the policies we are studying, backlogs will not occur 

in deterministic demand cases. In such cases, the fundamental equations for total 

inventory and available inventory may be written: 

( )(0) ( ) ( )
( )

s s
s

s
+ − −

=
S I H P D

S
% %

% , (1) 

( )(0) ( ) ( ) ( )
( )

s s s
s

s
+ − −

=
R I Hτ P D

R
% %%

% , (2) 

where S% is the column vector of items in inventory (including allocations), R% is the 

column vector of items in available inventory (total inventory less allocations), D% is the 

vector of external demand, P% is the vector of items produced, H is the input matrix (the 

Bill of Materials), and I is the identity matrix. The lead time matrix ( )sτ% is a matrix 

with lead time operators in its diagonal positions: 

1

2

0 0
0 0

( )

0 0 N

s

s

s

e
e

s

e

τ

τ

τ

 
 
 =
 
 
  

τ

L

L
%

M M O M

L

. (3) 

Internal (dependent) demand is given by ( ) ( )s sHτ P%% , since the input matrix and lead 

time matrix together determine all advanced requirements of sub-components in amount 

and timing, given a production schedule ( )sP% .

The main problem treated in this chapter, is how production P% is determined by each of 

the policies, when facing a given external (independent) demand D% .
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In one-item systems, there is no internal (dependent) demand and, thus, independent and 

dependent demand, on the one hand, and available and total inventory, on the other, will 

coincide. The fundamental equations (1)-(2) then collapse into:  

(0) ( ) ( )( ) R P s D sR s
s

+ −
=

% %
% . (4) 

Properties of cumulative requirements 

The minimum necessary production to meet external (independent) requirements is 

always given by 

( ) ( ) ( )1 2 3( ) ... ( )s s 
 
 

−− = + + + +I Hτ D I Hτ Hτ Hτ D% %% % % % , (5) 

where the Neumann expansion has been used (Grubbström, 1999). This expansion is 

valid as long as the numerical values of all characteristic roots of H are less than unity. 

For assembly systems, in which H is triangular with zeros along its main diagonal and 

above, this is indeed so. The expansion will converge in at most N terms, where N is the 

dimension of H.

Assuming only one end product at the top level, we have 

1

0
( )

0

D

s

 
 
 =
 
 
  

D

%

%
M

, (6) 

and minimum cumulative requirements become 

( ) ( ) ( )1 2 3
1 1

1 1
/ ... /

col col
sD D s−   = + + +      

− +I Hτ I Hτ Hτ Hτ% %% % % %  (7) 

The triangular nature of H for an assembly system creates the following first elements  

( ) 1
1

1
/ /

row
s D s− − = I Hτ D% %% (8) 

( ) 1
1

21 1
2

/ /s

row
s e H D sτ− − = I Hτ D% %% (9) 
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( ) ( )1 2
1

13 32 21 1
3

/ /s s

row
s e H H H e D sτ τ− − = + I Hτ D% %% (10) 

( ) ( )3 2 31 2
1 ( )

14 42 21 43 31 43 32 21 1
4

/ /s ss s

row
s e H H H e H H e H H H e D sτ τ ττ τ− + − = + + + I Hτ D% %% (11) 

This reveals that requirements occur at times in advance of external demand in such a 

way that steps are generated sums of lead times ahead of top-level requirements. The 

further down in the product structure tree, the more opportunities for additional steps 

exist. For instance, on level 4, if all relevant ijH are non-zero, then, generated by an 

external demand event at t , items will be required at the points in time 1t τ− , 1 2t τ τ− − ,

1 3t τ τ− − , and 1 2 3t τ τ τ− − − , whereas on level 3, items may be required only at 1t τ−

and 1 2t τ τ− − . The total number of possible times increases geometrically, but all need 

not exist. One may also note that all possible times at a higher level are repeated again 

at all lower levels. Therefore the set of possible times for the entire system can be found 

by studying the lowest level in the system. But zeros in the matrix below the diagonal 

will rule out some combinations.  

A sequence of external demand events together with the set of lead times will thus 

generate a sequence of possible internal demand events. On levels above the lowest 

level, the sequence will be a subset of the sequence at the bottom level. Certain points in 

time may be covered more than once at least two reasons, (i) if external demand 

includes events at distances equal to combinations of lead times, and (ii) if combinations 

of lead times happen to be equal (such as if 2τ were equal to 3τ above).  
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Figure 2. Cumulative requirements as a staircase. 

In total, we can therefore regard cumulative requirements on any level (including the 

top level) to be made up of a staircase of steps occurring at the times 0t , 1t , 2t , … , of 

which several steps may have a zero height.  

These requirements are given by  

( )ˆ ( ) ( ) ( ) /s s s s= +D Hτ P D
% % %% , (12) 

for a general production policy, and in the general L4L case by (see Section 3.1 below) 

( ) 1ˆ ( ) ( ) /s s s−
= −D I Hτ D

% %% (13) 

When there is only one end item in the L4L case, we have 

( ) 1
1

1
ˆ ( ) ( ) /

col
s s D s− = − D I Hτ

% %% . (14) 

The staircase is illustrated in Figure 3.2 for an individual item. 
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3 TIME DEVELOPMENT OF PRODUCTION FOR BASIC ORDERING 

POLICIES 

3.1 Lot-For-Lot (L4L) policy 

Figure 3. The Lot-for-Lot Policy. Production of an item (thick staircase) follows exactly 

total requirements (sum of independent and dependent demand, thin staircase). 

 

In the L4L case, with zero initial available inventory R(0)=0, the solution is perfectly 

simple, also in the multi-item case with non-zero lead times. It is then just a matter of 

keeping available inventory at a zero level. This means 

( )(0) ( ) ( ) ( )
( )

s s s
s

s
+ − −

= =
R I Hτ P D

R 0
% %%

% , (15) 

from which production is determined as 

( ) 1 ˆ( ) ( ) ( ) ( )s s s s−= − =P I Hτ D D% %% , (16) 

as is illustrated in Figure 3. If there are non-zero initial available inventories, the 

expression needs to be adjusted slightly. 
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3.2 Fixed order quantity (FOQ) case 

A fixed order quantity policy may be specified for any item in an MRP system. 

However, in practice it would be applicable to items with ordering cost sufficiently high 

to rule out ordering in net requirement quantities, period by period. The replenishments 

occur as available inventory approaches to zero. 

With the FOQ policy, having Q as the fixed order size, production for an individual 

item will behave according to 

ˆ 1

0
( ) n

n
sT

n
P s Q e

−
−

=

= ∑% , (17) 

where nT is the time when the nth batch is completed (made available), see Figure 4. 

These are the variables that need be determined by the policy. When production is other 

than L4L, the requirements on lower levels will depend on production on levels above. 

This implies, in the general case, that new sets of possible times of requirement events 

might be introduced.  

Figure 4. The Fixed Order Quantity Policy (FOQ). Production of an item is made in 

equally-sized batches as late as possible without avoiding negative available inventory. 
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Available inventory of this individual item will then be 

ˆ 1
1

0

ˆ( ) (0) ( )n

n
sT

n
R s R Q e D s s

−
− −

=

 
= + − 
 

∑ %% , (18) 

and the policy is to make all nT as late as possible without causing R(t) to become 

negative. 

3.2 Fixed period requirements (FPR) case 

Figure 5. The Fixed Period Requirements Policy (FPR). Production of an item is made 

in as small batches as possible to cover future requirements during a constant period, 

without creating a negative available inventory. 

 

Under the FPR policy, the ordering interval is constant and the quantities are allowed to 

vary. Production of a certain item will thus obey 

ˆ 1

0
( )

n
snT

n
n

P s Q e
−

−

=

=∑% (19) 

where T denotes the constant time interval between orders and nQ is the batch size at 

time nT nT= . The FPR policy is demonstrated in Figure 5.  

The FPR policy requires the nQ to be made as small as possible without violating the 

non-negativity condition for available inventory. This implies that available inventory is 

likely to take on a zero value during finite time intervals, which is not the case, other 
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than by chance (or at the end), with the FOQ policy, as seen when comparing Figures 4 

and 5.  

 

4 SOLUTIONS TO NON-NEGATIVITY CONDITIONS FOR AVAILABLE 

INVENTORY WITH REQUIREMENTS AS DISCRETE EVENTS 

As shown above, the L4L policy provides an immediate explicit expression for the 

production on all levels. For the other two policies, this is not equally simple.  

In the FOQ case we need to solve for the latest as possible batch times 0T , 1T , 2T , … ,

such that available inventory R(t) is kept non-negative. The solution in the time domain 

is simple for the individual item, given the requirements ˆ ( )itD at the times when there 

are steps 0t , 1t , 2t ,…  

Examining, for successive values of n, ( )1
ˆ ˆarg max ( ) ( ) 0

i

i i
t

D t nQ D t− ≤ < ≥ , there will be 

a unique index i assigned to each n, which we denote ni . So, 
nn iT t= will be the latest 

time that batch n can be produced. Hence, the solution to the FOQ production staircase 

is: 

ˆ 1

0
( ) /in

n
sT

n
P s Q e s

−
−

=

= ∑% . (20) 

In the FPR case instead, we need to solve for the smallest possible batch size at times 0, 

T, 2T, … , not violating the non-negativity of available inventory. The sequence of 

batches nQ generated by 

1

0

ˆ (( 1) )
n

n i
i

Q D n T Q
−

=

= + −∑ , (21) 

or, equivalently, 
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ˆ ˆ(( 1) ) ( )nQ D n T D nT= + − , (22) 

for successive values of n = 0, 1, 2, … , will uniquely determine the production staircase 

satisfying the conditions. Hence, the production staircase becomes:  

( )ˆ 1

0

ˆ ˆ( ) (( 1) ) ( ) /
n

snT

n
P s D n T D nT e s

−
−

=

= + −∑% . (23) 

Until now, we have investigated consequences of the non-negativity requirements in the 

time domain.  

A corresponding set of non-negativity conditions in the frequency domain is given in 

Feller (1971) as the following provisions. If a time function ( )f t having the transform 

( )f s% is non-negative in the time domain, then the following property must hold 

( ) ( ) ( )( )1 1 ( ) 0
j

j j j
j

d f s f s
ds

− = − ≥
%

% , (24) 

for all integers j > 0 and all real s.

In our case, we are looking at available inventories which for the FOQ policy are given 

by (assuming initial available inventory to be zero) 

{ }
ˆ 1

1 1 1

0

ˆ( ) £ ( ) £ ( )n

n
sT

n
R t R s Q e D s s

−
−− − −

=

  
= = − =  

  
∑ %%

( )( )ˆ 1
1 1

1
0 1

ˆ ˆ£ ( ) ( ) 0n l

n
sT st

l l
n l

Q e D t D t e s
−

− −− −
−

= =

  
= − − ≥  

  
∑ ∑  (25) 

Choosing the situation for the interval of the ith requirements step and mth batch, and 

writing 

( )( )1

1
0 1

ˆ ˆ( ) ( ) ( )n l

m i
sT st

l l
n l

f s Q e D t D t e
−

− −
−

= =

= − −∑ ∑% , (26) 

1( )g s s−=% , (27) 

we apply Euler’s formula  
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( )( ) ( ) ( )

0
( ) ( ) ( ) ( )

jj k j k

k

j
f s g s f s g s

k
−

=

 
=  

 
∑% %% %  (28) 

to Eq. (26). Differentiating ( )f s% and ( )g s% the number of times required, we obtain 

( ) ( ) ( )1
( )

1
0 1

ˆ ˆ( ) ( ) ( )n l

m i
k ksT stk

n l l l
n l

f s Q T e t D t D t e
−

− −
−

= =

= − − − −∑ ∑% , (29) 

1( ) ( 1) ( )!j k j k j kg s j k s− − − − += − −% , (30) 

and thus 

( ) ( ) ( )
( ) ( ) ( )

0

!1 ( ) ( ) 1 ( ) ( )
!( )!

jjj j k j k

k

jf s g s f s g s
k j k

−

=

− = − =
−∑% %% %  

( ) ( ) ( )1

11
0 0 1 0

! ˆ ˆ( ) ( )
! !

n l

k kj jm i
n lsT st

l lj
n k l k

sT stj Q e D t D t e
s k k

−
− −

−+
= = = =

 
 = − −
 
 
∑ ∑ ∑ ∑  

( )1

! ˆ ( ) 0lj
j mQ D t

s +→ − ≥ , (31) 

for large values of j. This again provides the result in (20). 

 

5 SOLUTIONS TO NON-NEGATIVITY CONDITIONS FOR AVAILABLE 

INVENTORY WITH REQUIREMENTS AS CONTINUOUS EVENTS 

In cases when the cumulative requirements are assumed to be a continuous time 

function given by an analytical expression, we may apply Cauchy’s Residue Theorem 

for solving for production in the FOQ and FPR policy cases. A residue is the coefficient 

of the first negative power in a Laurent expansion around a pole, i. e. where the 

numerator of an expression evaluates to zero. 

For the FOQ policy, we need to solve for the points in time when available inventory 

drops to zero.  
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{ }
1ˆ 11 1

0

ˆ( ) £ ( ) £ ( )n

n
sT

n
R t R s Q e D s s

−
−− − −

=

  
= = −  

  
∑ %% . (32) 

Assuming zero initial inventories and writing the Laurent expansion of ˆ ( )D s% as  

ˆ ( ) j
j

j
D s d s

∞

=−∞

= ∑
%

(33) 

for the nth batch, we have 

1 ˆ( ) / ( )
2

i
wt

w i

R t nQ w D w e dw
i

β

βπ

+ ∞

= − ∞

 = − 
 ∫

%
, (34) 

which evaluated by the Residue Theorem will be 

1 ˆ( ) / ( )
2

i
wt

w i

R t nQ w D w e dw
i

β

βπ

+ ∞

= − ∞

 = − = 
 ∫

%

0
ˆRes ( ) wt

w residues

nQ D w e
w=

   = − =  
  

∑
%

0

( ) 0
!

k
j

j
residues j k

wtnQ d w
k

∞ ∞

=−∞ =

 
= − = 

 
∑ ∑ ∑ . (35) 

As an example, when requirements increase linearly and cumulative requirements 

therefore increase quadratically, cumulative requirements behave according to 

3ˆ ( )D s as−=
%

,

where a is the slope of the linearly increasing requirements. Then, the Laurent 

expansion collapses into 

3j
j

j
d w aw

∞
−

=−∞

=∑ , (36) 

with the only non-zero coefficient 3d a− = . In this case, the only pole is at w = 0, so 

3 2

0 00 0

( ) ( )Res Res / 2!
! !

k k
j

jw wj k k

wt wtd w aw at
k k

∞ ∞ ∞
−

= =
=−∞ = =

   
= =   

  
∑ ∑ ∑ , (37) 
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and 

2( ) / 2 0R T nQ aT= − = . (38) 

The time of the nth batch will be 2 /T nQ a= . Hence, cumulative production in the 

FOQ case will follow 

2 /( ) /s nQ a

n
P s Q e s−= ∑% . (39) 

In the FPR case instead, production has the structure  

ˆ 1

0
( )

n
snT

n
n

P s Q e
−

−

=

=∑% , (40) 

and available inventory will be  

{ }
1ˆ 11 1

0

ˆ( ) £ ( ) £ ( )
n

snT
n

n
R t R s Q e D s s

−
−− − −

=

  
= = −  

  
∑ %% . (41) 

At the end of the nth step of the production staircase (at t = nT), we have 

1

0

1 ˆ( ) / ( )
2

i n
wnT

m
mw i

R nT Q w D w e dw
i

β

βπ

+ ∞ −

== − ∞

 
= − 

 
∑∫

%
, (42) 

which evaluated by the Residue Theorem will be 

1

0

1 ˆ( ) / ( )
2

i n
wnT

m
mw i

R nT Q w D w e dw
i

β

βπ

+ ∞ −

== − ∞

 
= − = 

 
∑∫

%

1

0 0

ˆRes / ( )
n

wnT
mw m residues

Q w D w e
−

= =

   = − =     
∑ ∑

%

1

0 0

( ) 0
!

kn
j

m j
m residues j k

wtQ d w
k

− ∞ ∞

= =−∞ =

 
= − = 

 
∑ ∑ ∑ ∑ . (43) 

In the quadratically increasing requirement case with cumulative requirements 

3ˆ ( )D s as−=
%

, we thus obtain 

Page 16 of 24

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

17 

21
3

3w=00

( )( ) Res
2!

n

m
m

wnTR nT Q d w
−

−
=

 
= − = 

 
∑

21

0

( ) 0
2!

n

m
m

nTQ a
−

=

= − =∑ . (44) 

The size of the nth batch is therefore 

( ) ( ) ( )
2 2

2( 1)
1/ 2

2n

n T nT
Q a n aT

+ −
= = + , (45) 

and the cumulative production staircase becomes: 

( )
ˆ ˆ1 1

2

0 0
( ) 1/ 2

n n
snT snT

n
n n

P s Q e aT n e
− −

− −

= =

= = +∑ ∑% . (46) 

 

6 OPTIMAL FOQ AND OPTIMAL FRP WHEN EXTERNAL DEMAND IS 

STOCHASTIC 

We now assume that external demand is a stochastic process D(t) of the renewal type, 

i.e.  

1 1
( ) ( )

j

k
j k

D t tδ τ
∞

= =

= −∑ ∑ , (47) 

which is made up of sequence of unit impulses ( )δ ⋅ , i.e. Dirac delta functions. Here kτ

is the stochastic interval between the (k-1)th and kth demand event, 0kτ ≥ , k = 1, 2, 3... 

These are considered stochastically independent for different values of k.

Let { }£ ( ) ( )f t f s= % be the Laplace transform of the probability density function of any 

individual kτ . From Grubbström (1996), we then obtain the probability of demand 

during any given interval t to have the value: 

Page 17 of 24

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

18 

{ }1

1

Pr( ) £ ( )
Q

Q
k

tk
t dt f s dtτ −

=

 = =  ∑ % . (48) 

The transform of expected cumulative demand is therefore 

0

1 1E( ( )) (1 )
1

j

j

fD s j f f
s s f

∞

=

= − = ⋅
−∑
%% % %
%

. (49) 

Assuming a zero safety stock, the FOQ policy implies that Q is ordered at 1iT + ,

whenever 1( ) ( )i iQ D T D T+≥ − .

Total production will now have the transform; 

1 2 31 1 2

0
( ) ...isT sT sT sTsT sT sT

i
P s Q e Q Qe Qe Qe

∞
− − − −− − −

=

= = + + + +∑% . (50) 

Because the Ti are independent, we may drop the index i:

E E Ej ksT sT sTe e e− − −     = =     . (51) 

We also have 

10

E Pr( )
Q

sT sT
k

kT

e T e dTτ
∞

− −

==

  = =  ∑∫ { }1

0

£ ( ) ( )Q sT Q

T
T

f s e dT f s
∞

− −

=

 = = ∫ % % , (52) 

so that expected total production obeys: 

( )1 1 2E ( ) 1+E E E ...
1 ( )1 E

sT sT sT
QsT

Q QP s Q e e e
f se

− − −
−

       = + + = =         −−  
%

%
. (53) 

Let ( )tν denote the setup frequency (Molinder, 1995), 

0 0
( )

i

j
i j

t t Tν δ
∞

= =

 
= − 

 
∑ ∑ , (54) 
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where ( )δ ⋅ again denotes the Dirac delta function. Then we have the expected setup 

frequency: 

[ ] 1 1E ( )
1 ( )1 E QsT

s
f se

ν
−

= =
  −−  

%
%

. (55) 

By multiplying E ( )P s  
% by s and taking the limit 0s → , we obtain the long-term 

average of production: 

10 0 0
lim E ( ) lim lim

1 ( ) (́ ) ( )average Q Qs s s

sQ QP s P s
f s f s Qf s −→ → →

 = = =  − −
%

% % %
 . (56) 

But from the moment generating property of the transform (Grubbström and Tang, 

2006), we also have 

0 0
0

2 22

0
0

(0) 1,

(0) lim ( ) lim ( ) ( ) E ,

(0) lim ( ) ( ) ,

st
js s

t

st

s
t

f

f f s t f t e

f t f t e

τ

τ τ

τ µ

µ σ

∞
−

→ →
=

∞
−

→
=

=

′ ′  = − = − − = − = − 

′′ = − = +

∫

∫

%

% %

%

where τµ and τσ are the mean value and variance of τ respectively. Then, the average 

production and setup frequency may be written: 

1
averageP

τµ
= , (57) 

[ ]
0

1lim E ( )average s
s s

Q τ

ν ν
µ→

= =% . (58) 

Assuming the net present value (NPV) of out payments to be minimised, we investigate 

the optimal value of  Q FOQ= . The NPV of the cash flow can be written: 

Page 19 of 24

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

20 

[ ]NPV= E ( ) E ( )
1 ( )1 E QTs

cQ K cQ Kc P s K s
fe ρρ

ν
ρ−=

+ +   + = =     −−  
% %

%
, (59) 

where c is unit production cost and K is setup cost. On differentiating NPV with respect 

to Q we obtain 

( )
( )2

( ) ln ( )NPV =
1 ( ) 1 ( )

Q

Q Q

cQ K f fc
Q f f

ρ ρ
ρ ρ

+∂
+

∂ − −

% %

% %
=

( ) ( )

( )2

1 ( ) ( ) ln ( )
0

1 ( )

Q Q

Q

c f cQ K f f

f

ρ ρ ρ

ρ

− + +
= =

−

% % %

%
. (60) 

which is the necessary optimisation condition. Using a second-order approximation of 

( )f ρ% provides us with the following optimal order quantity:  

22EOQ averageKDK
c cτρ µ ρ

= = , (61) 

which has the standard format. 

Instead, in the fixed period requirement (FPR) case, the quantity ( ) ( )n n nQ D t T D t= + −

is ordered at the beginning of each interval of length T.

Expected production will then be: 

( )
0

E ( ) E ( ) ( ) nst
n n

n
P s D t T D t e

∞

=

   = + −    
∑% =

( )2 1E ( ) 1 ...
1

sT s T
sT

TD T e e
eτµ

− −
− = + + + =  −

. (62) 

Average production is obtained as: 

0 0

1 1lim E ( ) lim
1average sT sTs s

sT TP s P s
e Teτ τ τµ µ µ− −→ →

 = = = =  −
% , (63) 

and the average setup frequency 
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[ ]
0 0

1lim E ( ) lim
1average sTs s

ss s
e T

ν ν −→ →
= = =

−
% . (64) 

The net present value of the cash flow will be: 

[ ] 1NPV= E ( ) E ( )
1 1T Ts

T Kc P s K s c
e eρ ρρ

τ

ν
µ − −=

   + = +   − −
% % . (65) 

To find the optimum interval T, we take the derivative of NPV with respect to T:

( )

( )2

1
NPV = 0

1

T T T

T

c e T e K e

T e

ρ ρ ρ

τ

ρ

ρ ρ
µ

− − −

−

− − −
∂

=
∂ −

. (66) 

Using again a second-order approximation of Te ρ− , the following optimal interval is 

obtained: 

* 2 2

average

K KT
c cD

τµ
ρ ρ

= = . (67) 

This shows that in both of the cases FOQ and FPR, the optimal policies are obtained as 

when using the traditional average inventory approach with the inventory holding cost 

interpreted as cρ , i.e. interest rate times unit production cost. 

7 CONCLUSIONS  

The objective of this article has been to analyse the fundamental equations of MRP 

Theory in view of the basic ordering policies Lot-For-Lot (L4L), Fixed Order Quantity 

(FOQ) and Fixed Period Requirements (FPR). Our aim has been to find closed-form 

Laplace transform expressions for the time development of production, when given 

properties of external demand. When leaving the L4L policy, we have shown that such 

expressions are possible to derive, but they become considerably more complicated.  
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In future research, other optimisation aspects within the frequency domain should be 

considered. Important work into these issues has been started by Bogataj and Bogataj 

(2004). 
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