On generalized Frame-Stewart numbers
Jonathan Chappelon, Akihiro Matsuura

To cite this version:

HAL Id: hal-00512870
https://hal.archives-ouvertes.fr/hal-00512870v2
Submitted on 29 Mar 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
On generalized Frame-Stewart numbers

Jonathan Chappelon* and Akihiro Matsuura†

September 2, 2011

Abstract

For the multi-peg Tower of Hanoi problem with \(k \geq 4 \) pegs, so far the best solution is obtained by the Stewart’s algorithm [15] based on the following recurrence relation:

\[
S_k(n) = \min_{1 \leq t \leq n} \left\{ 2 \cdot S_k(n - t) + S_{k-1}(t) \right\}, \quad S_3(n) = 2^n - 1.
\]

In this paper, we generalize this recurrence relation to

\[
G_k(n) = \min_{1 \leq t \leq n} \left\{ p_k \cdot G_k(n - t) + q_k \cdot G_{k-1}(t) \right\}, \quad G_3(n) = p_3 \cdot G_3(n - 1) + q_3,
\]

for two sequences of arbitrary positive integers \((p_i)_{i \geq 3}\) and \((q_i)_{i \geq 3}\) and we show that the sequence of differences \((G_k(n) - G_k(n - 1))_{n \geq 1}\) consists of numbers of the form \((\prod_{i=3}^{k} q_i) \cdot (\prod_{i=3}^{k} p_i^{\alpha_i})\), with \(\alpha_i \geq 0\) for all \(i\), arranged in nondecreasing order. We also apply this result to analyze recurrence relations for the Tower of Hanoi problems on several graphs.

Keywords: multi-peg Tower of Hanoi, Tower of Hanoi on graphs, Frame-Stewart numbers, generalized Frame-Stewart numbers, recurrence relations, smooth numbers.

MSC2010: 11A99, 68R05.

1 Introduction

The Tower of Hanoi problem was introduced by Édouard Lucas in 1883 [9] for the case of 3 pegs and \(n \) disks of different sizes. Initially, \(n \) disks are placed on one of the 3 pegs with the largest at the bottom. Then, at each time one of the topmost disks is moved to a peg with a larger disk on the top or to an empty peg. The goal of the problem is to transfer all the disks from the initial peg to the peg of destination with the minimum number of moves. A simple recursive argument shows that \(2^n - 1 \) moves are necessary and sufficient to carry

*Laboratoire de Mathématiques Pures et Appliquées, Université du Littoral Côte d’Opale.
†School of Science and Engineering, Tokyo Denki University.
out this task. This Tower of Hanoi problem was then extended to the case of 4 pegs by Dudeney in 1907 [3] and to arbitrary \(k \geq 3 \) pegs by Stewart in 1939 [14]. In 1941, Frame [5] and Stewart [15] independently proposed algorithms which achieve the same numbers of moves for the \(k \)-peg Tower of Hanoi problem with \(k \geq 4 \) pegs. Klavžar et al. [7] showed that seven different approaches to the \(k \)-peg Tower of Hanoi problem, including those by Frame and Stewart, are all equivalent, that is, achieve the same numbers of moves. Thus, these numbers are called the Frame-Stewart numbers [8].

Somewhat surprisingly, the optimal solution for the multi-peg Tower of Hanoi problem with \(k \geq 4 \) pegs is not known yet. So far, the best upper bounds are achieved by the Frame-Stewart numbers and the best lower bounds are obtained by Chen et al. [2]. Since the upper bounds are believed to be optimal, they are called the “presumed optimal” solution.

The Stewart’s recursive algorithm for the \(k \)-peg Tower of Hanoi problem is summarized as follows. For integer \(t \) such that \(1 \leq t \leq n \),

1. recursively transfer a pile of \(n - t \) smallest disks from the first peg to a temporary peg using \(k \) pegs;
2. transfer the remaining pile of \(t \) largest disks from the first peg to the final peg using \(k - 1 \) pegs, ignoring the peg occupied by the \(n - t \) smallest disks;
3. recursively transfer the pile of \(n - t \) smallest disks from the temporary peg to the final peg using \(k \) pegs.

The algorithm chooses the integer \(t \) such that the number of moves \(2 \cdot S_k(n - t) + S_{k-1}(t) \) is minimized. Thus, the Frame-Stewart numbers \(S_k(n) \) satisfy the following recurrence relations:

\[
S_k(n) = \min_{1 \leq t \leq n} \left\{ 2 \cdot S_k(n - t) + S_{k-1}(t) \right\}, \text{ for } n \geq 1, \ k \geq 4,
\]

\[
S_3(n) = 2^n - 1, \text{ for } n \geq 1, \text{ and } S_k(0) = 0, \text{ for } k \geq 3.
\]

When \(k = 4 \) for instance, \(S_4(n) \) is obtained by the following simple formula:

\[
S_4(n) - S_4(n - 1) = 2^{i-1}, \text{ for } \binom{i}{2} < n \leq \binom{i+1}{2},
\]

where \(\binom{i}{2} \) is the binomial coefficient equal to \(i(i - 1)/2 \). In the general case \(k \geq 4 \), \(S_k(n) \) is obtained by several different approaches, e.g., [5, 7, 8, 10, 15].

In [11], the following general recurrence relation was considered to clarify the combinatorial structure latent in the recurrence relation for \(S_k(n) \) and to cope with the recurrence relations for the Tower of Hanoi on graphs in which pegs are placed on vertices of a given graph and disks are only moved along the edges:

\[
T(n) = \min_{1 \leq t \leq n} \left\{ \alpha \cdot T(n - t) + \beta \cdot (2^t - 1) \right\}, \text{ for } n \geq 1, \text{ and } T(0) = 0,
\]

where \(\alpha \) and \(\beta \) are arbitrary positive integers. It was shown that the sequence of differences \((T(n) - T(n - 1))_{n \geq 1}\) consists of numbers of the form \(\beta \cdot 2^i \cdot \alpha^j \), with \(i, j \geq 0 \), arranged in
nondecreasing order. When \(\alpha = 3 \), \(2^i \cdot \alpha^j \) increases as \(1, 2, 3, 2^2, 2 \cdot 3, 2^3, 3^2, 2^2 \cdot 3, 2^4, 2 \cdot 3^2, \cdots \). These numbers are called “3-smooth numbers” [13] and have been studied extensively in number theory, in relation to the distribution of prime numbers [6] and to new number representations [1, 4]. The formulation and analysis of \(T(n) \), however, has some defects such that (i) it is only focused on the 4-peg case with no consideration for the general case \(k \geq 3 \); and (ii) even in the 4-peg case, term \(2^j \cdot \alpha^j \) consists of constant 2 and parameter \(\alpha \), which might admit further generalization.

In this paper, we fully generalize the recurrence relations for the previous \(S_k(n) \) and \(T(n) \) and obtain the exact formulas. Namely, we define the following recurrence relations for two sequences of arbitrary positive integers \((p_i)_{i \geq 3}\) and \((q_i)_{i \geq 3}\):

\[
G_k(n) = \min_{1 \leq t \leq n} \left\{ p_k \cdot G_k(n - t) + q_k \cdot G_{k-1}(t) \right\}, \text{ for } n \geq 1, \ k \geq 4,
\]

\[
G_3(n) = p_3 \cdot G_3(n - 1) + q_3, \text{ for } n \geq 1, \text{ and } G_k(0) = 0, \text{ for } k \geq 3.
\]

Then, we show that the sequence of differences \(G_k(n) - G_k(n - 1) \) consists of numbers of the form \(\prod_{i=3}^{k} q_i \cdot (\prod_{i=3}^{k} p_i^{\alpha_i}) \), with \(\alpha_i \geq 0 \) for all \(i \), arranged in nondecreasing order. In other words, we show the following theorem.

Theorem 1. For every positive integer \(n \) and for two sequences of arbitrary positive integers \((p_i)_{i \geq 3}\) and \((q_i)_{i \geq 3}\), we have

\[
G_k(n) = q \cdot \sum_{j=1}^{n} u_j^k
\]

where \(q = \prod_{i=3}^{k} q_i \) and \(u_j^k \) is the \(j \)th term of the sequence \((u_j^k)_{j \geq 1}\) of integers \(\prod_{i=3}^{k} p_i^{\alpha_i} \), with \(\alpha_i \geq 0 \) for all \(i \), arranged in nondecreasing order.

We call \(G_k(n) \) the generalized Frame-Stewart numbers. Note that \(G_k(n) \) is equal to \(S_k(n) \) when \((p_i, q_i) = (2, 1)\) for all \(i \geq 3 \) and \(G_4(n) \) is equal to \(T(n) \) when \((p_3, q_3) = (2, 1)\) and \((p_4, q_4) = (\alpha, \beta)\).

The remaining of the paper is organized as follows. In Section 2, we show some basic properties of the sequence \((u_j^k)_{j \geq 1}\) defined from \((p_i)_{i \geq 3}\). In Section 3, we prove Theorem 1, the main result of this paper. In Section 4, application of these numbers in obtaining upper bounds of the number of moves for the Tower of Hanoi problem on several graphs is provided.

2 Basic results on smooth number sequences

Let \((p_i)_{i \geq 3}\) be a sequence of positive integers. We consider the sequence \((u_j^k)_{j \geq 1}\) of all the integers of the form \(\prod_{i=3}^{k} p_i^{\alpha_i} \), where \(\alpha_i \geq 0 \) for all \(i \), arranged in nondecreasing order. For instance, for \((p_3, p_4) = (2, 2)\) and \((p_3, p_4) = (2, 3)\), the first few terms of \((u_j^4)_{j \geq 1}\) are \((1, 2, 2^2, 2^3, 2^2, 2^3, \cdots)\) and \((1, 2, 3, 2^2, 2 \cdot 3, 2^3, 3^2, \cdots)\), respectively. When there is some \(i_0 \) such that \(p_{i_0} \) is equal to 1, then by definition \((u_j^1)_{j \geq 1}\) is the constant sequence of 1’s, for
every $k \geq i_0$. We note that $(u_j^k)_{j \geq 1}$ is closely related to smooth numbers which have been explored extensively in number theory. A positive integer is called B-smooth if none of its prime factors are greater than a positive integer B. The sequence $(u_j^k)_{j \geq 1}$ then consists of B-smooth numbers for $B = \max_{3 \leq i \leq k} \{p_i\}$.

In this section, we restrict to the case where all the p_i’s are greater than 1 and prove a simple lemma on a certain “recursive” structure of the smooth number sequence $(u_j^k)_{j \geq 1}$, which will be used to prove Theorem 1 in the next section.

Lemma 1. Let $k \geq 4$ and let $(f_k(j))_{j \geq 1}$ be the sequence of positive integers defined by $f_k(1) = 1$ and $f_k(j) = \min \{ l > f_k(j-1) \mid u_i^k = u_j^k-1 \}$ for $j \geq 2$. Then, for every integer n such that $f_k(j) < n < f_k(j+1)$, we have $u_n^k = p_k \cdot u_{n-j}^k$.

Proof. If $f_k(j+1) = f_k(j)+1$, then the lemma is trivial. Suppose now that $f_k(j+1) - f_k(j) \geq 2$ and let n be a positive integer such that $f_k(j) < n < f_k(j+1)$. First, consider a term $\prod_{i=3}^{k} p_i^{a_i}$ of the sequence $(u_j^k)_{j \geq 1}$. If $a_k = 0$, then $\prod_{i=3}^{k} p_i^{a_i} = \prod_{i=3}^{k-1} p_i^{a_i}$ belongs to $(u_j^k)_{j \geq 1}$ by definition of $(f_k(l))_{l \geq 1}$, otherwise, if $a_k \geq 1$, then $\prod_{i=3}^{k} p_i^{a_i} = p_k \cdot (p_k^{a_k-1} \cdot \prod_{i=3}^{k-1} p_i^{a_i})$ belongs to $(p_k \cdot u_j^k)_{j \geq 1}$. Now, since $f_k(j) < n < f_k(j+1)$, it follows that $u_{f_k(j)}^k \leq u_n^k < u_{f_k(j+1)}^k$ by the growth of the sequence $(u_j^k)_{j \geq 1}$. We deduce that

$$\{ u_i^k \mid 1 \leq i \leq n \} \bigcap \{ u_j^{f_k(l)} \mid l \geq 1 \} = \{ u_j^{f_k(l)} \mid 1 \leq l \leq j \}.$$

Therefore, since a term of $(u_j^k)_{j \geq 1}$ belongs to $(u_j^{f_k(l)})_{j \geq 1}$ or to $(p_k \cdot u_j^k)_{j \geq 1}$, we obtain the following decomposition

$$\{ u_i^k \mid 1 \leq i \leq n \} = \{ u_j^{f_k(l)} \mid 1 \leq l \leq j \} \bigcup \{ p_k \cdot u_i^k \mid 1 \leq i \leq n-j \}.$$

This decomposition with the maximality of u_i^k leads to

$$u_n^k = \max \{ u_i^k \mid 1 \leq i \leq n \}$$

$$= \max \left\{ \max \{ u_j^{f_k(l)} \mid 1 \leq l \leq j \}, \max \{ p_k \cdot u_i^k \mid 1 \leq i \leq n-j \} \right\}$$

$$= \max \{ u_{f_k(j)}^k, p_k \cdot u_{n-j}^k \}.$$

Since the hypothesis $f_k(j) < n < f_k(j+1)$ implies that u_n^k belongs to $(p_k \cdot u_j^k)_{j \geq 1}$, this completes the proof that $u_n^k = p_k \cdot u_{n-j}^k$. \qed

3 Proof of Theorem 1

Let $G_k^1(n)$ denotes the special case of $G_k(n)$ associated with arbitrary sequence $(p_i)_{i \geq 3}$ and with the constant sequence $(q_i)_{i \geq 3}$ with $q_i = 1$ for $i \geq 3$. There exists a simple relationship between numbers $G_k(n)$ and $G_k^1(n)$.
Proposition 1. For every nonnegative integer \(n \) and for every sequence of integers \((q_i)_{i \geq 3} \), we have

\[
G_k(n) = q \cdot G_k^1(n),
\]

where \(q = \prod_{i=3}^{k} q_i \).

Proof. By double induction on \(k \geq 3 \) and \(n \geq 0 \). For \(k = 3 \), we can prove by simple induction on \(n \) that \(G_3(n) = q_3 \cdot G_3^1(n) \) for all \(n \). For \(n = 0 \), we have \(G_k(0) = q \cdot G_k^1(0) = 0 \) for all \(k \). Suppose now that the result is true for \(k-1 \) and all \(n \geq 0 \), and for \(k \) and all \(l \leq n-1 \). By the recursive definition of \(G_k(n) \) and by the assumption of induction, we obtain

\[
G_k(n) = \min_{1 \leq t \leq n} \{ p_k \cdot G_k(n-t) + q_k \cdot G_{k-1}(t) \}
= \min_{1 \leq t \leq n} \left\{ p_k \cdot \prod_{i=3}^{k} q_i \cdot G_k^1(n-t) + q_k \cdot \prod_{i=3}^{k-1} q_i \cdot G_{k-1}^1(t) \right\}
= \prod_{i=3}^{k} q_i \cdot \min_{1 \leq t \leq n} \{ p_k \cdot G_k^1(n-t) + G_{k-1}^1(t) \}
= q \cdot G_k^1(n).
\]

\[\square\]

Lemma 2. Let \(n \) be a positive integer. Suppose that \(p_i > 1 \) for all \(3 \leq i \leq k \). Suppose also that \(\Delta G_k^1(t) = G_k^1(t) - G_k^1(t-1) = u_i^k \) for \(3 \leq i \leq k-1 \) and \(l \geq 1 \) and that \(\Delta G_k^1(l) = u_i^k \) for \(1 \leq l \leq n-1 \). Let \(j \) be the integer such that \(f_k(j) \leq n < f_k(j+1) \). Then, for \(1 \leq t \leq n \), \(G_k^1(n) = p_k \cdot G_k^1(n-t) + G_k^1(t) \) takes its minimum at \(t = j \).

Proof. Since

\[
G_k^1(n) = p_k \cdot G_k^1(n-t) + G_k^1(t) - p_k \cdot G_k^1(n-t) - G_k^1(t)
\]

for every \(1 \leq t \leq n - 1 \), it follows by hypothesis that

\[
G_k^1(n) = -p_k \cdot u_{n-t}^k + u_{t+1}^{k-1} \quad \text{for} \quad 1 \leq t \leq n - 1.
\]

First, when \(1 \leq t \leq j - 1 \), the growth of the sequences \((u_i^k)_{t \geq 1} \) and \((u_i^{k-1})_{t \geq 1} \) yields the following inequalities

\[
u_{n-t}^k \geq u_{n-j+1}^k \geq u_{f_k(j)-j+1}^k, \quad u_{t+1}^{k-1} \leq u_{j}^{k-1} = u_{f_k(j)}^k.
\]
Let \(m = \min \{ l \geq 0 \mid f_k(j + l) - f_k(j + l - 1) \geq 2 \} \). Such \(m \) always exists. By definition of \(f_k(j + l) \), we have \(f_k(j + l) = f_k(j) + l \) for \(0 \leq l \leq m \) and \(f_k(j + m) < f_k(j) + m + 1 < f_k(j + m + 1) \). So we deduce from Lemma 1 that

\[
\sum_{k=1}^{m} u_{f_k(j)+m+1}^k = p_k \cdot u_{f_k(j)+m+1}^k + u_{f_k(j)+m+1}^{k-1} = p_k \cdot u_{f_k(j)+j+1}^k.
\]

Thus,

\[
G_{k,n}^j(t+1) - G_{k,n}^j(t) = -p_k \cdot u_{n-t}^k + u_{t+1}^{k-1} \leq -u_{f_k(j)+m+1}^k + u_{f_k(j)}^k \leq 0
\]

for \(1 \leq t \leq j - 1 \). Therefore, \(G_{k,n}^j(t) \geq G_{k,n}^j(j) \) for all \(1 \leq t \leq j \).

Similarly, when \(j \leq t \leq n - 1 \), we have

\[
u_{n-t}^k \leq u_{n-j}^k \leq u_{f_k(j+1)-j-1}^k, \quad u_{t+1}^{k-1} \leq u_{j+1}^{k-1} = u_{f_k(j+1)}^k.
\]

Let \(m = \min \{ l \geq 0 \mid f_k(j - l + 1) - f_k(j - l) \geq 2 \} \). If such \(m \) does not exist, then \(n = f_k(j) = j \) and we already know that \(G_{k,n}^j(t) \) takes its minimum at \(t = j \). Suppose now that the integer \(m \) exists. By definition of \(f_k(j - l + 1) \), we have \(f_k(j - l + 1) = f_k(j + 1) - l \) for \(0 \leq l \leq m \) and \(f_k(j - m) < f_k(j + 1) - m - 1 < f_k(j - m + 1) \). So we deduce from Lemma 1 that

\[
u_{f_k(j+1)-m-1}^k = p_k \cdot u_{f_k(j+1)-m-1}^k - u_{f_k(j+1)-m-1}^k = p_k \cdot u_{f_k(j+1)-j-1}^k.
\]

Thus,

\[
G_{k,n}^j(t+1) - G_{k,n}^j(t) = -p_k \cdot u_{n-t}^k + u_{t+1}^{k-1} \geq -u_{f_k(j+1)-m-1}^k + u_{f_k(j+1)}^k \geq 0
\]

for \(j \leq t \leq n - 1 \). Therefore, \(G_{k,n}^j(t) \geq G_{k,n}^j(j) \) for all \(j \leq t \leq n \).

Consequently, \(G_{k,n}^j(t) \) takes its minimum at \(t = j \).

We are now ready to prove the main result of this paper.

Proof of Theorem 1. From Proposition 1, it is sufficient to prove that

\[
G_{k}^j(n) = \sum_{j=1}^{n} u_{j}^k
\]

for every positive integer \(n \). We divide into different cases depending on the values of the terms of the sequence \((p_i)_{i \geq 3} \).

Case 1: if \(p_i > 1 \) for all \(3 \leq i \leq k \). We proceed by double induction on \(k \geq 3 \) and \(n \geq 1 \). For \(k = 3 \), it is clear that \(G_{3}^j(1) = 1 \) and, by induction on \(n \geq 1 \), that \(\Delta G_{3}^j(n) = G_{3}^j(n) - G_{3}^j(n-1) = p_3 \cdot (G_{3}^j(n-1) - G_{3}^j(n-2)) = p_{3}^{n-1} = u_{n}^3 \) for all \(n \geq 2 \). It is also clear that, for arbitrary \(k \), \(G_{k}^j(1) = 1 = u_{1}^k \). Now assume that \(\Delta G_{k}^j(l) = u_{l}^k \) for all \(3 \leq i \leq k - 1 \) and all \(l \geq 1 \) and that \(\Delta G_{k}^j(l) = u_{l}^k \) for all \(1 \leq l \leq n - 1 \). Then, we show that \(\Delta G_{k}^j(n) = u_{n}^k \) holds. For \(n \), there exists some \(j \geq 1 \) such that \(f_k(j) \leq n < f_k(j + 1) \). It is divided into two subcases: when \(n = f_k(j) \) (Subcase 1.1) and when \(f_k(j) < n < f_k(j + 1) \) (Subcase 1.2).
Subcase 1.1: for $n = f_k(j)$. We obtain

$$
\Delta G_k^1(n) = G_k^1(f_k(j)) - G_k^1(f_k(j) - 1)
$$

$$
= G_{k,f_k(j)}^1(j) - G_{k,f_k(j)-1}^1(j-1) \quad \text{(since } f_k(j) - 1 \leq f_k(j) \text{ and by Lemma 2)}
$$

$$
= p_k \cdot (G_k^1(f_k(j) - j) - G_k^1((f_k(j) - 1) - (j - 1))) + (G_{k-1}^1(j) - G_{k-1}^1(j - 1))
$$

$$
= \Delta G_{k-1}^1(j)
$$

$$
= u_j^k \quad \text{(by assumption of induction)}
$$

$$
= u_{f_k(j)}^k \quad \text{(by definition of } f_k(j))
$$

$$
= u_n^k \quad \text{(by Lemma 1)}.
$$

Thus, the proof is shown in this case.

Subcase 1.2: for $f_k(j) < n < f_k(j + 1)$. We obtain

$$
\Delta G_k^1(n) = G_k^1(n) - G_k^1(n - 1)
$$

$$
= G_{k,n}^1(j) - G_{k,n-1}^1(j) \quad \text{(since } f_k(j) \leq n - 1 < f_k(j + 1) \text{ and by Lemma 2)}
$$

$$
= p_k \cdot (G_k^1(n - j) - G_k^1(n - j - 1)) + (G_{k-1}^1(j) - G_{k-1}^1(j))
$$

$$
= p_k \cdot G_k^1(n - j)
$$

$$
= p_k \cdot u_{n-j}^k \quad \text{(by assumption of induction)}
$$

$$
= u_n^k \quad \text{(by Lemma 1)}.
$$

Thus, the proof is shown in this case, and this completes the proof of Case 1.

Case 2: if $p_i = 1$ for some $3 \leq i \leq k$. Let $m = \min \{3 \leq i \leq k \mid p_i = 1\}$. It is further divided into two subcases: when $k = m$ (Subcase 2.1) and when $k > m$ (Subcase 2.2).

Subcase 2.1: for $k = m$. If $k = m = 3$, then $p_3 = 1$. In this case, it is clear that $G_k^1(n) = n$ for all $n \geq 1$. If $k = m \geq 4$, that is, if $p_k = 1$ and $p_i > 1$ for all $3 \leq i \leq k - 1$, we proceed by induction on $n \geq 1$. For $n = 1$, we have $G_k^1(1) = 1$. Then assume that $G_k^1(l) = l$ for $1 \leq l \leq n - 1$. By definition,

$$
G_k^1(n) = \min_{1 \leq t \leq n} \{G_k^1(n - t) + G_{k-1}^1(t)\} = \min_{1 \leq t \leq n} \{(n - t) + G_{k-1}^1(t)\}.
$$

Since $p_i > 1$ for all $3 \leq i \leq k - 1$, we know that $G_{k-1}^1(l) = \sum_{j=1}^l u_{j-1}^k$ for $l \geq 1$ from Case 1. It is clear that $u_{j-1}^k \geq 1$ for all $1 \leq j \leq l$. Therefore, we have $G_{k-1}^1(l) \geq l$ for $l \geq 1$. So $G_k^1(t) = (n - t) + G_{k-1}^1(t)$ takes its minimum at $t = 1$ and $G_k^1(n) = (n - 1) + 1 = n$ as announced.

Subcase 2.2: for $k > m$. We proceed by double induction on $k \geq m$ and $n \geq 1$. We know that $G_k^1(l) = l$ for all $l \geq 1$ from Subcase 2.1. We also know that $G_k^1(1) = 1$ for all $i \geq 3$. Now, assume that $G_{k-1}^1(l) = l$ for all $l \geq 1$ and that $G_k^1(l) = l$ for all $1 \leq l \leq n - 1$. We obtain

$$
G_k^1(n) = \min_{1 \leq t \leq n} \{G_k^1(n - t) + G_{k-1}^1(t)\} = \min_{1 \leq t \leq n} \{(n - t) + t\} = n.
$$
This concludes the proof of Case 2, and thus the proof of Theorem 1.

Corollary 1. Let $k \geq 4$ and $j \geq 1$. For every integer n such that $f_k(j) \leq n < f_k(j+1)$,

$$G_k(n) = p_k \cdot G_k(n-j) + q_k \cdot G_{k-1}(j).$$

Proof. From Proposition 1, Theorem 1 and Lemma 2.

We end this section in considering the special case where $p_i = p \geq 1$ for all i.

Proposition 2. Let $p_i = p \geq 1$ for all $3 \leq i \leq k$. Then, for all integers $j \geq 0$ and $n \geq 1$ such that

$$\binom{k+j-3}{k-2} < n \leq \binom{k+j-3}{k-2},$$

$u_n^k = p^j$ and $G^1_k(n)$ can be computed as follows:

$$G^1_k(n) = \sum_{m=0}^{j-1} \binom{k+m-3}{k-3} p^m + \left(n - \binom{k+j-3}{k-2}\right) p^j.$$

Proof. Let j be a nonnegative integer. First, we can determine C_j the number of values of n such that $u_n^k = p^j$. Then, since C_j corresponds to the number of ways to distribute j identical balls into $k-2$ distinct urns or the number of ways of partitioning j into $k-2$ ordered non-negative summands, we have

$$C_j = \binom{(k-2)+j-1}{k-3} = \binom{k+j-3}{k-2}.$$

Now let D_j be the number of values of n such that $u_n^k < p^j$. Here we have

$$D_j = \sum_{m=0}^{j-1} C_m = \sum_{m=0}^{j-1} \binom{k+m-3}{k-3} = \binom{k+j-3}{k-2}.$$

It follows that $u_n^k = p^j$ exactly when $D_j < n \leq D_j + C_j = D_{j+1}$, that is, when

$$\binom{k+j-3}{k-2} < n \leq \binom{k+j-3}{k-2} + \binom{k+j-3}{k-3} = \binom{k+j-2}{k-2}$$

as claimed. This leads to the equality, for $D_j < n \leq D_{j+1}$,

$$G^1_k(n) = \sum_{m=0}^{j-1} C_m \cdot p^m + (n - D_j) \cdot p^j = \sum_{m=0}^{j-1} \binom{k+m-3}{k-3} p^m + \left(n - \binom{k+j-3}{k-2}\right) p^j.$$

\[\square\]
4 Application: the Tower of Hanoi on graphs

Let $G = (V, E)$ be a simple graph with the set of vertices $V = \{v_1, \ldots, v_k\}$ and the set of edges E. A k-peg Tower of Hanoi problem can be considered on G: the k pegs are placed on the vertices v_1, \ldots, v_k and transfer of disks is allowed between the pegs v_i and v_j only if there is an edge between v_i and v_j. The original k-peg Tower of Hanoi problem then corresponds to the Tower of Hanoi problem on the complete graph K_k. The cases of $k = 3$ and $k = 4$ are illustrated in Figure 1.

![Figure 1: The original Tower of Hanoi problem with 3 pegs (K_3) and 4 pegs (K_4).](image)

The main application of the generalized Frame-Stewart numbers is in giving upper bounds of the number of moves for the Tower of Hanoi problem on some simple graphs. For the Tower of Hanoi problem on the complete graph with $k \geq 3$ vertices and $n \geq 0$ disks, we retrieve the Frame-Stewart numbers $S_k(n)$ stated in Section 1. In the sequel of this section, we consider other special cases where G is the path graph P_3 or the star graph S_k.

4.1 On the path graph P_3

The following theorem shows that the optimal number of moves for the Tower of Hanoi problem on the path graph P_3 is given by the generalized Frame-Stewart numbers.

![Figure 2: The path graph P_3.](image)

Theorem 2. Consider the Tower of Hanoi problem on P_3, as depicted in Figure 2. The minimum number of moves to transfer $n \geq 1$ disks

- from peg 1 to peg 3 is $G_3(n) = 2 \cdot \sum_{i=0}^{n-1} 3^i$, where $(p_3, q_3) = (3, 2)$;
- from peg 1 to peg 2 is $G_3(n) = \sum_{i=0}^{n-1} 3^i$, where $(p_3, q_3) = (3, 1)$.

Though the fact of this theorem is rather well-known (e.g., see [12]), we present a short proof to see the connection with the generalized Frame-Stewart numbers.
Proof. We begin with the transfer between peg 1 and peg 3. In order to move the biggest disk from peg 1 to peg 3, we have to first move it from peg 1 to peg 2 and so the $n - 1$ smallest disks must be on peg 3. The $n - 1$ smallest disks are transferred from peg 1 to peg 3 in $G_3(n - 1)$ moves. Then, we move the biggest disk from peg 1 to peg 2. In order to move this disk to peg 3, we transfer the $n - 1$ smallest disks from peg 3 to peg 1 in $G_3(n - 1)$ moves. Finally, we put the biggest disk from peg 2 to peg 3 in 1 move and the $n - 1$ smallest disks from peg 1 to peg 3 in $G_3(n - 1)$ moves. The total number of moves for n disks is then $3 \cdot G_3(n - 1) + 2$, which corresponds to $G_3(n)$ as announced. Since this is the best possible, $G_3(n)$ is the optimal number of moves.

For the transfer between peg 1 and peg 2, as before, in order to move the biggest disk from peg 1 to peg 2, we have to first transfer the $n - 1$ smallest disks from peg 1 to peg 3. As proved above, the minimum number of moves to do this is $G_3(n - 1)$. Moreover, we know that $G_3(n - 1) = 2 \cdot G_3^1(n - 1)$ by Proposition 1. Then, after moving the biggest disk from peg 1 to peg 2, the $n - 1$ smallest disks are transferred from peg 3 to peg 2. It is done in $G_3^1(n - 1)$ moves. Thus, we conclude that the minimum number of moves for transferring n disks from peg 1 to peg 2 is $3 \cdot G_3^1(n - 1) + 1$ as announced.

4.2 On the star graph S_k

We end this section by considering the Tower of Hanoi problem on the star graph S_k with k vertices and $k - 1$ edges. For $k = 3$, the graph S_3 corresponds to the path graph P_3. The star graphs for $k = 4$ and $k = 5$ are depicted in Figure 3.

![Figure 3: The star graphs S_4 and S_5.](image)

Stockmeyer [16] considered the Tower of Hanoi problem on the star graph S_4, where all the n disks are transferred from one leaf of the graph to another leaf (for instance, the problem of transferring disks in the minimal number of moves from peg 2 to peg 3 in Figure 3). He described a recursive algorithm which achieved a good (seemingly the best) upper bound; thus, called it the “presumed optimal” algorithm. Here, we generalize this algorithm to the star graph S_k for arbitrary $k \geq 3$ and show that disks can be transferred from one leaf to another in $G_k(n)$ moves.
Theorem 3. Let \(k \geq 3 \) be an integer. Consider the Tower of Hanoi problem on the star graph \(S_k \) in which \(n \geq 1 \) disks are transferred from one leaf of the graph to another leaf. Then, an upper bound on the minimal number of moves to solve this problem is given by the generalized Frame-Stewart number \(G_k(n) \), where \((p_3, q_3) = (3, 2)\) and \((p_i, q_i) = (2, 1)\) for \(4 \leq i \leq k \).

Proof. By induction on \(k \) of \(S_k \). When \(k = 3 \), as noted before, the star graph \(S_3 \) corresponds to the path graph \(P_3 \). So by Theorem 2, \(G_3(n) \), where \((p_3, q_3) = (3, 2)\), is the minimum number of moves to transfer \(n \) disks from peg 2 to peg 3. For \(k \geq 4 \) and \(n = 1 \), we can transfer one disk from peg 2 to peg 3 in only \(G_k(1) = 2 \) moves. Suppose now that the result is true for any number of disks up to \(S_{k-1} \) and until \(n - 1 \) disks for \(S_k \). Then, \(n \) disks are recursively transferred from peg 2 to peg 3 as follows. For some integer \(t \) such that \(1 \leq t \leq n \),

- transfer the \(n - t \) smallest disks from peg 2 to peg \(k \) in \(G_k(n-t) \) moves;
- consider the remaining \(k - 1 \) pegs and the subgraph obtained after deleting the vertex of peg \(k \), which is the star graph \(S_{k-1} \), and transfer the \(t \) largest disks from peg 2 to peg 3 in \(G_{k-1}(t) \) moves;
- transfer the \(n - t \) smallest disks from peg \(k \) to peg 3 in \(G_k(n-t) \) moves.

We choose the integer \(t \) such that the number of moves \(2 \cdot G_k(n-t) + G_{k-1}(t) \) is minimized. Thus, the number of moves of this algorithm is \(\min_{1 \leq t \leq n} \{ 2 \cdot G_k(n-t) + G_{k-1}(t) \} \), which is, by the assumption of induction, equal to \(G_k(n) \) with \((p_3, q_3) = (3, 2)\) and \((p_i, q_i) = (2, 1)\) for \(4 \leq i \leq k \). This completes the proof of Theorem 3.

Acknowledgements

The authors would like to thank the two anonymous reviewers for the time they spent on the reading of our manuscript and for the comments they posted, especially for the simpler proof of Proposition 2 that one of the reviewers suggested us.

References

Authors’ Address:

- Jonathan Chappelon,
 Laboratoire de Mathématiques Pures et Appliquées,
 Université du Littoral Côte d’Opale
 50 rue F. Buisson, B.P. 699,
 F-62228 Calais Cedex, France
 e-mail: jonathan.chappelon@lmpa.univ-littoral.fr
• Akihiro Matsuura,
 School of Science and Engineering,
 Tokyo Denki University
 Ishizaka, Hatoyama-cho, Hiki, 350-0394, Japan
 e-mail: matsu@rd.dendai.ac.jp