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ABSTRACT complex mixtures of real sources and that ALESCAF can
In this work we consider the problem of blind identification be applied to the case of real mixtures of complex sources
of underdetermined mixtures using the generating functiomwithin few modifications. However, these are very specific
of the observations. This approach had been successfully apases, which are rarely encountered in practice. On the othe
plied on real sources but had not been extended to the mok@nd, as far as we know, this approach has not been extended
attractive case of complex mixtures of complex sourcess Thito the case of complex mixtures of complex sources although
is the main goal of the present study. By developing the coréhis scenarid] is far more relevant from a practical point
equation in the complex case, we arrive at a particular tens®f view. Most cumulant based algorithms can be directly
stowage which involves an original tensor decompositionapplied in both situations whereas it rapidly turns out that
Exploiting this decomposition, an algorithm is proposed tothe ALESCAF algorithm is not pertinent in the complex
blindly estimate the mixing matrix. Three versions of thiscase. As a consequence, the present work aims at extending
algorithm based on 2nd, 3rd and 4th-order derivatives of théhe CAF approach to the complex case, which often occurs
generating function are evaluated on complex mixtures of 4in practice.
QAM and 8-PSK sources and compared to the 6-BIOME alin this paper, we firstly transpose the theory of the CAF

gorithm by means of simulation results. approach to the complex case: a new core equation is
obtained. By differentiating this core equation, we obtin
1. INTRODUCTION new tensor decomposition from which an estimation of the

. . mixing matrix can be obtained. In order to implement this
Blind Identification (Bl) methods have been SucceSSfu”ymoreggeneral approach a new algorithm is erc))posed. The

applied in vario_us scientific areas, includ_ing fo_r inst_anceCAF approach is available for most applications involving
telecommunlcanonsﬂ[l], aCOUSt'ﬂ [2] or biomedical SlgnalBI. Computer results obtained from simulated telecommuni-

processing|]3]. A large family of Bl methods relies on the __;. : :
theory of Independent Component Analysis (ICH) [4] andcatmns signals are presented in the last part of the paper as

thereby involves second or higher-order statistics. BI of " application example.
underdetermined mixtures (when the number of sources

exceeds the number of sensors) is an important subcategory

of Bl problems which arises in many practical situations,

especially in telecommunications. 2.1 Notations

Several solutions have been proposed in the literature to .
solve this problem (see, e-d] Iﬁ)ﬁi[ﬂ}% 9]). Notably, som ‘ectors, matrices and tensors are denoted by lower case bold

original methods, which do not exploit cumulants but the'@C€(&), upper case boldfadé ) and upper case calligraphic
second characteristic function of the observations, haeab () letters respectivelya; is thei'” coordinate of vectoa
proposed in[[1o] 31, 12, 113] . We are interested here by thandai is thei'" column of matrixA. The(i, j) entry of ma-
approach proposed i} [12], leading to a class of efficient(ix A is denoted\j and the(i, j, k) entry of the third order
algorithms such as the ALESCAF algorithfn][13]. In thattensor/ is denoteds;x. Complex objects are underlined,
work, the authors showed that partial derivatives of theéheir real and imaginary parts are denofefi} andU{ -} re-
second ChAracteristic Function (CAF) can be stored in &pectively. ] denotes the mean value of a random variable.
symmetric tensor. The Canonical Decomposition (CanD)

of this tensor provides a direct estimation of the mixing2-2 Blind Identification Problem

matrix up to trivial sca_ling and permutation indete.rmirm:i Consider a noisy mixture df statistically independent nar-
The ALESCAF algorithm resorts to an Alternating LEastqwband sources received by an arrayNofsensors. The
Squares procedure in order to perform the CanD. vectory(m) containing discrete observations of the received

The CAF approach has a nice advantage, which makes dignal at the sensor outputs is modelled according to the fol
very attractive for the identification of underdeterminedoying linear model:

mixtures. Indeed, for a given number of sensors, the number

of sources is theoretically not limited. . y(m) = Hs(m)+n(m), m=1---M

In [E], ALESCAF has been successfully applied on =

under-determined mixtures of real sources such as BPSK inote that in the following we refer to the real or complex cageen
or 4-PAM. It can be shown easily that the method holds fomboth mixture and sources belongko("real case”) orC ("complex case”).

2. THEORY




whereH = [hy,...,h] e CNV*K s =[s,....,5]T € CX and  wherehy is thek!" column of matrixd. Then, [2.]1) yields:
n € CN are the mixing matrix, source and Gaussian noise

random vectors, respectively. It is assumed that for anglfixe ~ ®y(O{w},O{w}) = Z ¢ (O{w'hi},0{wh;})
sample indexm, s andn are statistically independent. The

problem is to identify the mixing matri¥L (up to trivial col- fFinaIIy, we define two real matrices andB so thatEl —

umn permutation and scallng)_fror’_n the only knowledge OA+ jB. This leads to the the new core equation that copes
the observation vectoy(m), using its characteristic func- :
with the complex case:

tion. Recall that we are interested in the so-called under-

determined case, which means that we have N.
Before to proceed, we describe our working hypotheses: Oy(O0{w}, O{w}) = Zd’k (Z AncO{W, }+
H1. The mixing matrixH does not contain collinear n
columns.
Bk [{w, {w, } — B[O {w, 2.2
H2. The sources; (m),...,s¢(m) are mutually indepen- k(W ;A”k {8} = B {_”}) (22)

dent and non-Gaussian
H3. The number of sources is known. Note that definingby, @, in R?N andR? respectively instead

The theoretical justification of the present approachislam of CN and C? allows their differentiation. Hence, the next
to that of the real case. It consists in successively différe  step is the differentiation of (7.2).

ating the second generating funcfiosf the observations at

different points of the observation space. By working with2.4 Differentiation of @ (0{w}, O{w})

complex mixtures of complex sources, this leads to a newye defineu = O{w}, v = O{w} andw = (u,v). w is an

core equation following a particular tensor decompositiongjement ofk2N and [2.2) can be rewritten as:
By exploiting the structure of this tensor decompositite, t ) '

mixing matrix is estimated.

Dy (w) = Z o« <z AnicUn + Bricvn» ) Anivn — Bnkun)

2.3 The new core equation (2.3)

The first step is to obtain the new core equation. This is
achieved by decomposing the second generating function gfie also introduce three functions, g, andg respectively
the observations as a sum of the individual second gengratijefined by:
functions of the sources. Generating functions of a complex
variable are actually defined by assimilatifigo R?. Thus gu(w) = ZAnkun + BV ; G2(w) = ZAnkvn — BrkUn
the second generating function of tk8 sourceg, taken at n n
the pointz of C is defined as a function of two real variables N 2
(real and imaginary parts @j: 9: R —R

wo —g(w) = (91(w),02(w))
du(0{z}, 0{z}) “log Elexp(0{s}0{z} + D{sd0{z)]  The ¢, functions mapR? to R and we have:

In a more compact form we have: y(w) = Z O (g(w))

¢c(0{z},0{z}) =logElexpU{z's})]  (2.1)
Let teth tial derivati ith t
In the same way, the second generating function of the oqbe tktujg ?g;? IOL(JJnen :e Fl)?.r. I,S) aenrgl ?r:]vae;cr?ggy)p\;\cts \flzsrl? z:

;ervzahltionsby taken at the point of C*" is actually defined ;. N) of w coordinates. The differentiations df (2.3) with
in R by respect tau, andvy, p=1---N yield:

&y (O{w}, O{w}) Elog Elexp(0{y "D {w} + O{y}" O{w})] 00y(w) K 0pu(g),  99u(9) »
dup —kz - pk ( . )

L 0g P 092

thus we have

&y (0{w}, I{w}) = log Elexp(0{w"y})] Dy (w) _ % d¢k(9) Byt dd)k(g)Apk 2.5)
Replacingy by its model yields: OVp & 9% 092
B In order to have a sufficient diversity of equations we have
®y(0{w},O0{w}) = log Elexp(0{w" Hs})] to use higher differentiating orders. In the theoreticat pa

of this study, we limit ourselves to the second order. The

and from the sources mutual statistical independence hypot,<ociated equations at higher orders can be obtained in a

esis we can deduce: similar manner. Hence, we can differentiafe](2.4) dnd (2.5)
®y(O{w}, {w}) = ZIOg Elexp(0{w"h,s})] with respect talg andvg, g =1---N. For instance,
2In order to simplify notations and calculations, withouyaheoretical m = i S 0¢k(g)A k — i % 0¢k(g) Bk
) - P! p!
impact, we prefer using the generating function insteath@fcharacteristic dupduq agl k=1 0uq agz k=1 0Uq

function. (2.6)



Substituting [2}4) and (3.5) if (2.6) yields: 3. ALGORITHM
3.1 Building 7®

9%®y(w) < [02¢k(9) 9°¢x(9) ]
- 7 — A _ B .. . . . ) . )
9Updlq k; pk 90100 Agk 90100, ak X\(lﬁ}g)égl;ln in this section how to build® from the realiza
& B ’¢x(9) ,  9°9x(9) B The entries 0f7® are computed one by one just like in the
k; Pk 00,001 Aek 00,09, ok real case. We cally the first generating function gf defined
by:

2.5 Tensor stowage and decomposition
_ 0° ane feeomp ry(w'®) € Elexpu®T0{y} +vTOfy})]  (311)
In practice, the partial derivatives df, are computed a$ - -

points of R2N denotedw'®. The objective is again to in- S° that®y = logly. In practice, the expected value is esti-
crease the order of the tensor, aiming at achieving a bett&ated by the mean value on all the realisations. Note that

L . 0 92d(g(w')) . this estimator_is con_sist_ent but i_t leads to a biased estima-
estimation quality. Let us defir@y = 57675 5y 1= tion of the partial derivatives aby, if the latter are computed
1,2 ; j = 1,2 (one can note thaBi2 = G2%). This leads to by finite differences of[(3.31). As i []L3], it is preferred to
the three distinct relations: compute formal derivatives, and estimate the obtained ex-

pressions with the help of sample means.

?o,(w) K AALGH K ABGl2 Let us defineD(w!®) as the partial derivatives df,(w(®)
dugdug kzl pkAgkGsc kZl PkEakPsc with respect to the componentsw® andv(®. Examples of
; ; first and second order derivatives are:
BakAkGE + S BpkBGS (2.7) det ATy (w®
& kzl Di(w®) = %p) = D{Xp}ry(w(s))
0°Ty(w'®)
0%, (w'd K K Dig(w!®) E X = Ofy J0{y, }Ty(w'®)
aVY(av b - > BoBaCGsc+ ) BpAaGu + . OVpdUg R M
e kil kil Thus, the elements a7 ® (i.e. second order derivatives) are
i by:
Y AaBaGE+ 3 AnAgGE (2.8) VDY
k=1 k=1 y@ D%la(w(s)) DLFJ)(W(S))DH(W(S))
PR Ty(wl) (W)
92Dy (w'9) K n S 1 DW (w(¥)  DY(w(®)DY(w®)
—_— = AkBstkJr Agk stk* P — pPq P q
dupdvq kZl P kzl ks a2 y(w() r§(wd)
K K W (- (S) U (9\YDV (s (9
> BokBakGal — 5 BukAxGE (2.9) Tea = Dpa(w™) _ Dp(w)Dg(w™) (3.12)
K= =1 Fy(w(®) F)Z,(w(s))

Since\)/as) op andCIIaLe taken ilmo CondSid?jrati;m" equa- 3.2 Estimation of the mixing matrix

tions (2.7)-[20) cover all the partial second order déives. o

In the real case, the second order derivativebére stored | '€ Proposed algorithm is named LEMACAFC-O, where O
in a third order tensor whose CanD gives a direct estimatiof? the order of differentiation. Heggq()a, LEMACAFC-2 con-
of the mixing matrix. This situation is quite different ineth SiSts of iteratively fitting the tenso¥"™ built from the esti-
complex case. Indeed, each of the three previous equatioftated parameters and model equatipng (4.7)-(2.9)taus-
can be seen as a sum of four CanD of third-order tensor@9 the Levenberg-Marquardt(LM) method. The LM method
(p,q,s), involving the elements of the mixing matrix in dif- has been used to perform the CanD of multi-way arrays in
ferent ways. It appears that the CanD of these tensors B4 L5 forexample. _ _

of any combination of those is insufficient here. Therefore/Ve consider the minimization of the following quadraticicos
CanD based algorithms such as ALESCAF are not pertiner¢inction:

in this case. However it is still possible to use a tensor ap- 1 2
proach by jointly exploiting the three forms of derivatives f7(p)= EHe(p)”F =32€ (p)e(p)

in order to build a fourth-order tensgN,N, S 3) with in- - )

creased diversity, noted@®. The last mode of7® contains wheree(p) = vec{.7®(p) — 7%} € C3N"*1 s the residue

the following elements: andp is the parameter vector defined as:
AT
o def 0°®y(w¥) o def 2Dy (W) Pa Veo(éT)
Toast = “oupdug Too2 = T ovedvg Ps veqB')
20, (w' p=| Pgu | =| veqG!T) | eCENSA
79 Cigfd ¢y(W ) 210 Pg12 vec(élﬁ)
pgs3 — ( . ) Y Y
dupdvg Pg22 veq(G27T)



Ns Simulation parameters Median values (10%) and number of acceptable values (%) of f
Mod. | K M SNR | LEMC-2 LEMC-2 LEMC-2 LEMC-3 LEMC-4 | 6-BIOME |
Med. | Na | Med. | Na | Med. | Na | Med. | Na | Med. | Na | Med. | Na
1 | 4-QAM | 4 | 10000| 20 13 | 16 X X X x [ 021]90| 026 | 90| 0.43 | 76
2 | 4-QAM | 4 | 5000 | 50 X X X X 44 | 18| 034 | 78| 042 | 74| 06 | 74
3 | 4-QAM | 4 | 5000 | 20 24 4 45 | 18| 29 | 18| 045 | 76| 05 | 76 | 0.58 | 68
4 | 4-QAM | 5 | 10000| 20 NC | O X X X X 15 40| 1.2 | 40| 1.2 | 46
5 | 4-QAM | 5| 5000 | 30 NC | O X X X X 17 | 34| 15 | 32| 19 | 16
6 | 4-QAM | 6 | 20000| 20 X X X X NC | O 25 | 26| 16 | 40| 19 | 28
7 | 4-QAM | 5| 5000 | 20 NC | O X X X X 6.8 | 12| 3.2 | 14| 42 | 6
8 | 8PSK | 4 | 10000| 20 X X X X 16 | 28| 038|82| 034| 9| NC | O

Table 1:Some comparisons between LEMACAFC algorithms (denoted LEMC here) and 6-BIOME. Ns is the simulation
number. NC means that the corresponding algorithm has mevererged;x means that it has not been evaluated in this
situation.

and where veg} yields a column vector by stacking the Three versions of the algorithm (LEMACAFC-2,
columns of its matrix argument. The LM update is givenLEMACAFC-3, LEMACAFC-4) have been implemented

as follows: and compared in various situations to the well known
1 6-BIOME (Blind Identification of Overcomplete MixturEs)
p(i+1)=p(i)— [JH OMOEZIO 0! algorithm [T], also referred to as “BIRTH” (Blind Identifiea

tion of mixtures of sources using Redundancies in the daTa
where J(i) denotes the Jacobian matrig(i) the gradient Hexacovariance matrix).
vector computed at iterationand A (i) is a positive reg-  Algorithms were evaluated with respect to the estimation
ularization parameter.p and A are updated at every it- error, according to the following normalized measure:
eration. There are many ways to proceed with the LM R R
updates. We retained the scheme described ih [16]. Af- . vec(H—-H)"vec(H - H)
ter convergence, an estimate of the mixture is obtained by fr(H, H) = vec(H)Hvec(H)
H =unvedp; + jpg} (up to column permutation and scal- o o
ing). For each situation a median value (Med.) 9find a number

of "acceptable results” (Na) is obtained from 50 Monte-Garl

4. COMPUTER RESULTS runs. We chose to define Na as the percentage of Monte-

Carlo results for which\f < 1072, These values are re-
ported in Table[|1 according to simulation parameters and al-
gorithms. Figure{ll focuses on simultion 4 results, givirig al

30

[ Jtemacarc— | | LEMACAFC-3, LEMACAFC4 and 6-BIOME results in an
|| ELemacarc-s | histogram form. At each run, the source vectors and the mix-
[ | le-siome ing matrix were changed and the derivatives were computed

at 10 different points§= 10) whose real and imaginary parts
were randomly drawn in the range1; 1JN. Our iterative al-
gorithms were all initialized with the same random entries
and consistently stopped after 60 iterations. Simulatien p
rameters are source modulation (Mod.), source numgr (
sample numberM) and Signal to Noise Ratio (SNR). The
number of sensors is fixed to 3 for each simulations.
Three variations of LEMACAFC-2 were actually computed
with an eye to evaluate the impact of an "unlucky” initial-
. ization. The first one uses only one random initialization
0001 00033 00066 001 0033 0066 while for the second and third ones we compared five and
" ten different initializations respectively and we kept thie
tialization corresponding to the smallest value ofp) after
Figure 1: Distribution (in %) of the relative estimation@rr the 60 iterations. Only one random initialization was used
(fn) computed from simulation 4 results. for LEMACAFC-3 and LEMACAFC-4. Simulation 3 results
show that increasing the number of random initialization ap
preciably improves our two performance criteria.

The performance of the proposed approach is evaluOur simulations on 4-QAM sources can be rank in several
ated for blind identification of underdetermined complexcategories. First of all, LEMACAFC-2 only converge in
mixtures of 4-QAM or 8-PSK sources. Our goal here is tothe most favourable situations (simulations 1,2,3). Alyua
highlight the performance of LEMACAFC through a limited LEMACAFC-2 seems to be not suitable when the number
number of key simulations. of sources exceeds 4. Our simulations are ordered in the as-

Number of values (%)
I N

ol o

T

=
o




cending order of LEMACAFC-3 median values. Hence it[2] F. ASANO and S. IKEDA and M. OGAWA and H.
clearly appears that for simulations 1 toi%{ the easiest ASOH and N. KITAWAKI, “Combined approach of ar-
cases) LEMACAFC-3 provides slightly better results than  ray processing and independent component analysis for
LEMACAFC-4 as opposed to simulations 4 and 5 (middle  blind separation of acoustic signal$EEE Transactions
cases). Finally LEMACAFC-4 is sensibly better for simula- On Speech and Audio Processing, 11, 3, pp. 204-215,
tions 6 and 7 (difficult cases), indicating that the lattestil 2003.

interesting in some difficult situations, notably when tiee U [3] A. KACHENOURA and L. ALBERA and L. SEN-
derdeterminacy level..: the ratio between source number  * HADJ| and P. COMON , “ICA: a potential tool for BCI

and sensor number) is high. _ systems,” |EEE Signal Processing Magazine, special
Taking into account both criteria, LEMACAFC-3 provides issue on Brain-Computer Interfaces, 25, 3, pp. 57—68,

better or comparable results than 6-BIOME in most situa-  2gps.

tions (simulations 1,2,3,5,7) while LEMACAFC-4 is consis- Ié] P. COMON and C. JUTTENHandbook of Blind Source

tently better than the cumulant based approach at the e : .
eption of simulation 4, for which 6-BIOME provides 46 % Separ_amon, Indepen_dent Component Analysis and Ap-
plications. Academic Press, 2010.

of acceptable values against 40 % for LEMACAFC-3 and _ N
LEMACAFC-4. However the histogram plotted in figue 1 [5] J- F. CARDOSO, “Super-symmetric decomposition of
ter estimation of the mixing matrix. For instance, 14 % of ~ Of more sources than sensors,” iRroc. ICASS?'91,
LEMACAFC-4 error values are smaller tharD033 against Toronto, 1991, pp. 3109-3112.

8 % for LEMACAFC-3 and only 4 % for 6-BIOME. In this [6] P. COMON, “Blind identification and source separation
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have been done from every simulation histogram. Further- Process,, pp. 11-22, Jan. 2004.

more the number of LEMACAFC-3 and LEMACAFC-4 ac- 7] L. ALBERA, A. FERREOL, P. COMON, and
ceptable values could be increase by trying several random” p cHEVALIER, “Blind identification of overcom-

initialization entries. - plete mixtures of sources (BIOME),” Lin. Algebra
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LEMACAFC algorithms provide satisfactory results with 8- [8] L. DE LATHAUWER, J. CASTAING, and J-. F. CAR-
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eral initialization entries are compared. In these coadd;j 1 o
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