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LSIIT UMR-7005 CNRS-ULP, Pôle API, Blvd Sébastien Brant, PO Box 10413,

67412 Illkirch Cedex, France

Abstract

The extension of mathematical morphology to colour, and more generally to mul-
tivariate image data, continues to be an open problem. As its underlying theory
is defined in terms of complete lattices, the main challenge lies in introducing a
complete lattice structure on the image intensity range, hence vectorial extrema
computation methods are necessary. In this paper, we circumvent the need for a
multivariate ordering, and propose a method for directly computing the multi-
variate extrema of vector sets. To this end the α-trimming principle is employed
in combination with lexicographical ordering. The resulting pseudo-morphological
operators, although deprived of important properties, present the advantage of a
“collective” calculation, taking into account the distribution of vectors within the
structuring element. They are tested against state of the art methodologies in ap-
plications treating noise reduction and texture classification, where they are shown
to exhibit superior performances.

Key words: Multivariate mathematical morphology, vector ordering, vectorial
processing, colour images, colour morphology

1 Introduction

Mathematical morphology (MM) is an algebraic image analysis framework,
nowadays fully developed for binary and greyscale images. Its extension how-
ever to colour, and more generally to multivariate image data, has not yet
been resolved. With the formalisation of its underlying theory during the early
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1990s [5,17,18], the complete lattice theory was accepted as its appropriate al-
gebraic basis, making it possible to define morphological operators on any type
of image data, as long as a complete lattice structure could be introduced on
the image intensity range. In other words, at least a partial ordering is re-
quired in order to calculate the extrema of pixels. The ambiguity however of
vector ordering, has been the main challenge before extending these opera-
tors to multivariate images. Several methods have been developed to this end,
leading to various multivariate morphological frameworks, of which none has
yet been widely accepted. Besides the inherent difficulty of ordering vectorial
data, the nature of colour has also proven to be an additional obstacle in this
regard. A comprehensive survey on the different approaches, not limited with
lexicographical orderings, can be found in [2].

Since the ordering of vectors is a non trivial issue, the efficiency of which also
depends on the application at hand, various authors have considered circum-
venting the need for an ordering, in the sense of a binary relation, and have
concentrated directly on computing the vectorial extrema necessary for defin-
ing the fundamental dilation and erosion functions, thus leading to pseudo-
morphological operators. In this paper, we follow this approach and propose
a modification to the widely used lexicographical ordering, based on the prin-
ciple of α-trimming, borrowed from the area of noise reduction where it has
been long employed against impulsive noise in the form of the α-trimmed mean
filter and its variants [15]. The proposed α-trimmed lexicographical extrema
computation scheme, results in a flexible solution, capable of modifying the
priority of vector dimensions according to its argument α. We further dis-
cuss the choice of this parameter and propose an unsupervised computation
method to this end.

Moreover, a means of transforming this type of pseudo-morphological oper-
ators into theoretically sound ones is also introduced. The practical interest
of the proposed pseudo-morphological operators is illustrated in the case of
colour image processing, by means of a series of comparative tests treating
noise reduction and texture classification, where they exhibit a superior per-
formance against state of the art morphological approaches.

The rest of the paper is organised as follows. Section 2 introduces briefly
the theoretical aspects of extending morphological operators to multivariate
images and some of the related methodologies. In section 3, the proposed
approach is presented and its theoretical properties are elaborated. Then, in
section 4, we discuss the results obtained from the comparative tests. Finally
section 5 is devoted to concluding remarks.
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2 Multivariate Mathematical Morphology

In this section we review briefly the main issues concerning the extension of
MM to multivariate images, as well as some of the existing approaches and
their limitations. For an in-depth study of this topic the reader can refer to
the fundamental references [5,18].

2.1 Theoretical background

After experimenting with different methods, such as the umbra approach and
the threshold set approach, in order to extend binary morphology to greyscale
images, the one based on complete lattices received the widest acceptance
and is now considered as the right mathematical framework for MM [17].
According to this last approach, defining a complete lattice structure on the
“grey levels” or intensity range of an image is sufficient for the formulation of
valid morphological operators.

More precisely, given an image f : E → T with E an arbitrary non empty
set, a complete lattice structure is imposed on the intensity range T . In other
words, T must be a non empty set equipped with a partial ordering such that
every non empty subset P ⊆ T has a greatest lower bound

∧

P (infimum)
and a least upper bound

∨

P (supremum). Consequently, the set of images
F(E , T ) is also a complete lattice. For more details on lattice theory refer to
[4].

For example, as far as grey-scale images are concerned, T = Z or R or even a
finite interval [a, b], hence the scalar order is employed for ordering the pixel
values. However, this becomes a much more challenging task with multivariate
images, where usually T = Z

n
or T = R

n
with n > 1, since there is no natural

ordering relation for multivariate data.

Indeed, given such a vectorial ranking scheme <, the vectorial versions of the
two fundamental morphological operators, erosion (εb) and dilation (δb) can
be immediately derived by means of the vectorial extrema operators supv and
infv based on the given ordering:

εb(f)(x) = infv
s ∈ b
{f(x + s)} (1)

δb(f)(x) = supv

s ∈ b

{f(x− s)} (2)

where f denotes a multivalued image and b a flat structuring element (SE).
Therefore, the main obstacle preventing the extension of morphological op-

3



erators to multivalued images, consists in defining a vector ordering relation
that will induce a complete lattice structure on the pixel intensity range.

2.2 Computing vectorial extrema

According to the classical paper of Barnett (1976) [3], most ordering ap-
proaches can be classified into the following categories:

Marginal or M-ordering, which is a partial ordering realised in a component-
wise mode, hence neither exploiting the inter-channel relations nor preserving
the original vectors. This last property renders marginal ordering inadequate
for colour images as it introduces false colours.

Reduced or R-orderings on the other hand, first reduce vectors into scalar
values, and then order them according to the natural scalar order. However,
unless the reduction transformation is injective, this approach results in pre-
orderings that do not lead necessarily to unique extrema.

Conditional or C-orderings, order vectors by means of some of their marginal
components, selected sequentially according to different conditions, with the
lexicographical ordering <L being a widely known example of this group:

∀ v,v′ ∈ R
n, v <L v′ ⇔ ∃ i ∈ {1, . . . , n} , (∀ j < i, vj = v′

j) ∧ (vi < v′
i) (3)

From a theoretical point of view, lexicographical ordering is a total ordering,
thus preserving the input vectors and producing unique extrema. Due to these
properties as well as to its ease of customisation (i. e. changing the dimension
comparison order) most efforts in the area of multivariate morphology, and
colour in particular, are based upon it [1,11].

2.2.1 Improving lexicographical ordering

Despite its theoretical advantages, the use of lexicographical ordering as de-
fined in equation (3) is limited in practice to cases where the first dimension of
the compared vectors holds the majority of the data of interest compared to
the rest of the image channels. Indeed, the reason is simply the fact that the
second, and remaining dimensions, do not participate in the lexicographical
comparison process, unless an equality takes place in the first. Consequently,
this situation leads to an inefficient exploitation of the inter-channel relations
[7]. In order to remedy this problem, a first attempt was made by Ortiz et al.
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[14], that proposed the α-lexicographical ordering :

∀ v,v′ ∈ R
n, v < v′ ⇔











v1 + α < v′
1, or

v1 + α ≥ v′
1 and [v2, . . . , vn]T <L [v′

2, . . . , v
′
n]T

(4)
where α ∈ R

+. The α argument is thus used to the end of increasing the
equality probability within the first dimension, since a given scalar value v
becomes “equal” to all values contained in the interval [v − α, v + α], hence
allowing comparisons to reach more frequently the second dimension. Never-
theless, expression (4) is not transitive, and that is why it does not represent an
ordering from an algebraic point of view. A theoretically sounder methodology
was introduced by Angulo [1], the α-modulus lexicographical ordering :

∀ v,v′ ∈ Z
n, v < v′ ⇔ [⌈v1/α⌉, v2, . . . , vn]T <L [⌈v′

1/α⌉, v
′
2, . . . , v

′
n]

T
(5)

which once more aims to create equality groups within the first dimension.
It relies on a quantisation through division by a constant α followed by a
rounding off, which reduces the dynamic margin of the first dimension, thus
allowing a greater number of comparisons to reach the second.

2.2.2 Direct computation of extrema

Considering the ambiguity of ordering vectorial data, an alternative approach
that relaxes partially this requirement consists in directly computing the ex-
trema of a given set of vectors, without ordering them by means of a binary
relation. By being able to obtain unique extrema from any given set of vectors,
one can then define dilation and erosion as illustrated in equations (1) and (2)
respectively, and subsequently the rest of the morphological operators.

Some examples of this approach, include the extrema obtained by cumulative
distances, where the minimum of a set of vectors is defined as the median
vector and the maximum as the most distant. Given V = {vi} a set of vectors:

max V = arg max
vi







∑

j 6=i

d(vi, vj)







(6)

min V = arg min
vi







∑

j 6=i

d(vi, vj)







(7)

where d(·, ·) denotes a distance [16]. Further examples of multivariate mor-
phology based on direct extrema calculation can be found in [10], where a
graph based approach based on minimum spanning trees is employed, as well
as in [9], where fuzzy subsethood degrees determine the extrema.
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Fig. 1. From left to right, three sets of bi-dimensional vectors and their min-
ima (circled), computed according to equation (7) using the Euclidean distance:
A = {(1, 1), (3, 4), (1, 7)} and minA = (3, 4), B = {(1, 2), (1, 4), (3, 4), (1, 6), (5, 4)}
and minB = (3, 4), and C = A ∪B, minC = (1, 4).

Nevertheless, since there is no underlying binary ordering relation, standard
properties such as increasingness and idempotence can no longer be guaran-
teed. That is why the operators obtained in this way cannot be characterised as
morphological, but rather pseudo-morphological (figure 1). Although a serious
handicap, the lack of an underlying ordering relation does not hinder however
the practical use of pseudo-morphological operators. On the contrary, the very
“disadvantage” of a collective extremum calculation, conversely to a binary
one, can be presumed to allow them to better exploit the distribution of vec-
tors under the SE. An example of classification using multispectral remote
sensing images is provided by Plaza et al. in [16], where the extended mor-
phological profiles are calculated based on operators employing equations (6)
and (7).

3 Pseudo-morphology based on α-trimmed lexicographical extrema

In this section, we present a means of computing the extrema of a set of vectors,
based on a modified version of lexicographical ordering using the principle of
α-trimming, which results in pseudo-morphological operators.

3.1 Definitions

The α-trimming principle has long been used in filters such as the α-trimmed
mean filter (αMF) and its variants [15] against impulsive noise. Given a vector
v ∈ R

n, containing the sorted scalar pixels under the filtering window, the
underlying idea of α-trimming consists in computing their mean by ignoring
the 2α extreme:

αMF(v) =
1

n− 2α

n−α
∑

i=α+1

vi (8)
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Algorithm 1 The α-trimmed lexicographical maximum computation algo-
rithm

Input: a set V = {vj} of k, n-dimensional vectors; α ∈ ]0, 1]
Output: max V
for i← 1 to n− 1 do

Sort in increasing order the vectors of V with respect to their ith dimension
k ← ⌈α× k⌉
V ← the greatest k vectors in V as well as those equal to the kth vector
if (|V | = 1) then

return v ∈ V
end if

i← i + 1
end for

return the greatest vector within V with respect to the nth dimension

where α ∈ [0, n/2], and n is odd. Similarly, in the case of multidimensional
vectors we can apply a likewise principle to each dimension in an iterative
mode. Specifically, in the case of the maximum, starting from the first dimen-
sion, we can sort all k vectors according to this dimension, and then keep
the ⌈α× k⌉ greatest. By repeating this simple process for each dimension, at
each step the initial set of vectors will get smaller. In the eventual case where
more than one vectors remain at the end of this procedure, the last dimension
is used for determining the sought extremum. A more formal description for
computing the maximum based on this procedure, is given in algorithm 1.
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Fig. 2. A set of vectors in a three dimensional space D1×D2×D3, and the three
iterations of the α-trimmed lexicographical maximum computation with α = 0.5
(left to right). According to the proposed approach, the maximum is the greatest,
with respect to the third dimension, of the remaining three vectors a, b and c in
the middle.

As to the minimum, it can be obtained in a likewise mode by simply sorting in
a decreasing order. Consequently, the resulting extrema can be used in order
to define the operators in equations (1) and (2) for multivariate pixels. An
illustration of this approach on a three dimensional space D1×D2×D3 is
given in figure 2. The “advantage” of a collective extremum calculation comes
however with an increased computational burden. More precisely, assuming an
optimal sorting procedure is used, in the worst scenario, where all n dimensions

7



 0

 20

 40

 60

 80

 100

 1  2  3  4  5
P

er
ce

nt
an

ge
 o

f c
om

pa
ris

on
s

Number n of vectors kept at each iteration with n = ceil(α x 25)

Dimension 1
Dimension 2
Dimension 3

Fig. 3. The plot of comparisons decided by each dimension of the image Lenna
(figure 8 left) in the I1I2I3 colour space, during a dilation with a square shaped SE
of size 5× 5 pixels, for various numbers of vectors kept at each iteration.

would need to be sorted, with k vectors the complexity would be in the order
of O(n × k × log k). On the other hand, with the standard lexicographical
ordering and the same scenario, the complexity would be O(n× k). Note that
as k represents in practice the size of the SE in use, its value is relatively small.

3.2 Setting α

The extrema obtained in this way, depend of course directly on the value of
α. As a matter of fact, with an α approaching zero, from each dimension i,
only the extreme (i. e. maximum or minimum) vector is kept along with those
equal to it with respect to dimension i. In other words the procedure becomes
identical to the standard lexicographical ordering. On the other hand, when α
approaches one, priority is shifted gradually to the last dimension, and almost
all initial vectors reach the last dimension where the comparison is finally
decided.

This transition of priority is illustrated in figure 3. When keeping only a sin-
gle value at each dimension, identically to a standard lexicographical ordering,
the first dimension decides the outcome of the majority of comparisons. The
final decision is shifted rapidly to the last dimension by slightly increasing
the number of kept vectors. The main difference with respect to other lexico-
graphical ordering approaches, such as those presented in section 2.2.1, is the
collective extremum calculation, conversely to a binary one. Specifically, even
if the final extremum choice is made in the last dimension, unless α = 1.0,
all previous dimensions contribute to this choice by trimming the set of vec-
tors accordingly. Additionally, more complicated priority relations among the
available channels can be established by means of different α values for each
vector dimension.

In practice however, it is often necessary to set these arguments in an unsu-
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pervised mode. Here we introduce a simple parameter setting model based on
the standard deviation (σ) of each dimension. More precisely, if the data are
relatively concentrated with respect to their ith dimension, or in other words
if this image channel does not contain much of the total variational informa-
tion, we consider using a large α to be more pertinent, thus decreasing the
influence of this dimension by carrying the majority of the input to the next
dimension with minor trimming. On the other hand, if the data are highly
dispersed with respect to the other dimensions, meaning that this channel
represents relatively important variational information, a small α would be
used leading to major trimming. Given n dimensions, one way of obtaining
the corresponding αi value of dimension i would be:

∀ i ∈ {1, . . . , n} , αi = 1−
σi

∑n
j=1 σj

(9)

where σj denotes the standard deviation of dimension j. A more effective way
of employing this principle would be to first apply a principal components
transformation on the image data and then use the variances of each new
dimension to this end.

0
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40

D210 20 30 40

a

Fig. 4. Example of problematic vector distribution. The vector a is chosen as max-
imum with α = 0.4, while being “far” from the cluster of important vectors with
respect to dimension D1

3.3 Variations

In this section, we introduce some variations to the algorithm presented in 1.
Using the α argument as a cardinality limit at each iteration of the algorithm
can lead to undesirable situations, such as the one shown in figure 4. Indeed,
by taking simply the ⌈α× k⌉ extreme vectors with respect to dimension D1
the a vector is chosen as maximum, while being “far” from the cluster of
important vectors with respect to the same dimension.

This situation can be easily countered by using α as a distance measurement.
Specifically, instead of keeping the ⌈α× k⌉ greatest vectors with respect to the
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ith dimension, one can keep only the vectors whose ith dimension is at most at
distance α with respect to the greatest vector of the same dimension. Details
are given in algorithm 2.

Algorithm 2 The α-trimmed lexicographical maximum computation algo-
rithm based on distances.

Input: a set V = {vj} of k, n-dimensional vectors; α ∈ ]0, 1]
Output: max V
for i← 1 to n− 1 do

Calculate vmin and vmax, the smallest and largest vectors
with respect to their ith dimension

V ← the set of vectors vj satisfying di(vmax, vj) ≤ α× di(vmax, vmin),
where di is the scalar distance of their ith dimension

if (|V | = 1) then

return v ∈ V
end if

i← i + 1
end for

return the greatest vector within V with respect to the nth dimension

As previously mentioned, a more important “disadvantage” however of α-
trimmed lexicographical extrema is the lack of an underlying binary ordering
relation. Nevertheless, given any extremum computation method, it is pos-
sible to construct from it an ordering. In particular, considering a discrete
multi-dimensional space, one can employ the collective extremum computa-
tion method at hand, in order to calculate the maximum or minimum of this
space, and then repeat for the remaining points, up until the entire space is
ordered. The formal procedure is described in algorithm 3.

Algorithm 3 The ordering of a multi-dimensional space using a collective
minimum computation method (CollectiveMinimum)

Input: a set V := {vi}1≤i≤k containing all the vectors of a discrete multi-
dimensional space
Output: the ordered sequence V ′ :=
{

v′
j ∈ V | ∀m,n ∈ {1, . . . , k} ,m ≤ n, v′

m ≤ v′
n

}

containing the vectors
of V
for j ← 1 to k do

v′
j ← CollectiveMinimum {V \ {v′

i | i ∈ {1, . . . k} , i < j}}
j ← j + 1

end for

return V ′ ←
{

v′
j

}

1≤j≤k

Moreover, since α-trimmed lexicographical extrema are unique, this approach
leads to a total ordering. The exact algebraic properties of the result however
depend strongly both on the extremum computation method used (e. g. α-
trimmed lexicographical, cumulative distances, etc) as well as on the extremum
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employed (i. e. minimum or maximum) during its construction. Furthermore,
considering its computational cost, one can also limit the procedure described
in algorithm 3 only to the points of the multi-dimensional space occurring
within the image to be processed, thus obtaining an “image-specific” ordering.

3.4 Case study: colour pseudo-morphology

The so far discussed extrema computation mechanisms have been indepen-
dent of the underlying multi-dimensional space. In this section, we study the
specific case of colour images, and illustrate the application of colour pseudo
morphological operators in this context.

Since lexicographical ordering in general is most adequate for data spaces
where an inherent priority exists among the dimensions, using the RGB colour
space, where all three dimension are equally important, is considered inappro-
priate. Instead, an intuitive colour space based on the notions of hue (H),
saturation (S) and luminance (L) is chosen, the improved HLS (IHLS) space
based on the max-min norm [8], which remedies important drawbacks of the
standard cylindrical HLS space (e. g. dependence between saturation and lu-
minance, etc).

Fig. 5. From left to right, the original image Lenna, its dilation and erosion, both
with a square shaped SE of size 7×7 using α-trimmed lexicographical extrema with
α set by equation (9) in the IHLS colour space.

Since the human vision system is largely known to attribute greater impor-
tance to brightness variations with respect to colour, it is decided to set the
lexicographical comparison order as L followed by S and finally H where all
components are normalised to [0, 1]. As far as the periodicity of hue is con-
cerned, its ordering is realised in terms of angular distances from a reference
hue h0 [6]:

h÷ h0 =











|h− h0| if |h− h0| < 0.5

1− |h− h0| if |h− h0| ≥ 0.5
(10)

which for the sake of simplicity is set as h0 = 0.0. Image specific reference
points have been additionally tested, however as the hue occupies the last
position of the lexicographical cascade, their impact on the end results has
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been observed to be negligible in the context of these experiments. The hue
values are then ordered according to their distances from h0:

∀ h, h′ ∈ [0, 1], h < h′ ⇔ h′ ÷ h0 < h÷ h0 (11)

where hues closer to h0 are considered greater. Consequently, the dilation and
erosion operators can be defined by calculating the necessary colour extrema
according to algorithm 1, using the order of dimensions as L, S and H. Fig-
ure 5 illustrates the application of the two operators on the Lenna image.
The effect of α-trimmed extrema can be better observed from figures 6 and 7,
which illustrate respectively the average values of each image channel for di-
lations computed based on the proposed trimmed extrema (algorithm 1) and
α-modulus lexicographical ordering (5), using varying values for α. Note that
erosions lead to symmetrical plots with respect to the horizontal axis.
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Fig. 6. The plots of average luminance (a), average saturation (b) and average hue
distance (c) from h0 = 0.0, computed with (10), of the Lenna image, during dilations
with a square shaped SE of size 5×5 pixels using the trimmed extrema of algorithm
1 combined with varying values of α.
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Fig. 7. The plots of average luminance (a), average saturation (b) and average hue
distance (c) from h0 = 0.0, computed with (10), of the Lenna image, during dilations
with a square shaped SE of size 5 × 5 pixels using the α-modulus lexicographical
ordering (5) combined with varying values of α.

As far as luminance is concerned (figure 6a), since small values of α render
the ordering an approximation of its standard lexicographical counterpart, one
can clearly observe a monotonic decrease in the average value, conversely to
the case of α-modulus lexicographical ordering which exhibits a more unstable
behaviour (figure 7a). By increasing α and hence the number of vectors kept
from each dimension, comparison priority is rapidly shifted towards the second
channel, i. e. saturation (figure 6b). Whereas the hue (figure 6c), as the value
of α approaches one, determines almost exclusively the outcome of vector
comparisons, thus modifying the image’s average distance from the reference
hue accordingly.
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As to the behaviour of α-modulus lexicographical ordering, one can remark the
lower in average luminance levels (figure 7a), as well as the greater distances
to the reference hue (figure 7c), while saturation is much more privileged
for relatively high values of α (figure 7b). This result is obviously due to
the fact that the division taking place within the first dimension of vectors
favours almost exclusively the second. Furthermore in the case of α-modulus
lexicographical ordering, also worth noting is the decrease of luminance below

the initial level of the input for higher α values, hence leading to a darker
image after dilation. As these results are provided as mere indications and
are dependent on the image at hand, we further proceed to realise a series of
comparative tests among the different approaches in order to better evaluate
their performances.

4 Applications

In this section, we present the results of a series of comparative tests carried
out with the purpose of both illustrating the practical advantages of the pro-
posed extrema computation scheme with respect to state-of-the-art method-
ologies, as well as asserting some of the remarks made in previous sections
with experimental results.

The comparison of ordering approaches in multivariate mathematical mor-
phology is relatively problematic since their performance depends on several
criteria (e. g. data space, image data, employed operators, evaluation method,
etc). That is why here it has been chosen to employ two easily quantifiable
tasks, colour noise reduction and texture classification. For their processing,
the setup presented in section 3.4 has been used. The extrema computa-
tion approaches that have been tested are luminance only (Lum), satura-
tion only (Sat), hue only (Hue), lexicographical (Lex), α-lexicographical with
α = 0.01 (α-Lex), equation (4), α-modulus lexicographical with α = 10 (α-
modLex), equation (5), α-trimmed lexicographical with α = 0.45 against un-
correlated noise and α = 0.15 against correlated noise and feature extraction
(α-trimmed-Lex) or computed according to equation (9) (α-trimmed-adaptive-
Lex), and finally the total ordering resulting from the use of algorithm 3 on
the IHLS space, with an α-trimmed lexicographical minimum where α = 0.45
(α-trimmed-Lex-ordering) and the modified version of α-trimmed lexicograph-
ical extrema based on distances with α = 0.3 (α-trimmed-Lex-distances). As a
reference, the marginal ordering on RGB (MargRGB) has also been included.
The arguments have been empirically set to their optimum values.
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Fig. 8. From left to right, Lenna (Lenna) 512×512, the image of happiness (Happy)
552× 421 (by Abidin Dino), cat with umbrella (Cat) 576× 420 (by Gamze Aktan)
and the curious (Curious) 502× 512 (by Gamze Aktan).

4.1 Noise reduction

The images of figure 8 were corrupted in the RGB colour space with uncor-
related (σ = 0.125, ρ = 0.0) and highly correlated zero-mean Gaussian noise
(σ = 0.125, ρ = 0.95) so as to form two test sets, and in order to quantify the
relative performances, the relative normalised mean squared error (RNMSE)
was calculated, also in RGB:

RNMSE =

∑

x,y ‖f(x, y)− ff (x, y)‖2

∑

x,y ‖f(x, y)− fn(x, y)‖2
(12)

where f(x, y), fn(x, y), ff (x, y) denote the vector pixels at position (x,y) re-
spectively of the original, the noisy and filtered images, while ‖·‖ represents
the Euclidean norm. The images were filtered using a square shaped SE of sise
(3× 3) and the open-close close-open filter (OCCO):

OCCO(f) =
1

2
φ(γ(f)) +

1

2
γ(φ(f)) (13)

where φ and γ denote respectively the vectorial closing and opening operators.

The filtering results against uncorrelated noise are shown in table 1. Judging
from the obtained values, the superiority of the marginal approach is obvious.
By not being limited with the input vectors it is capable of approximating
much better the original image, while the introduction of false colours is also
unavoidable. Moreover, we can additionally observe the superiority of lumi-
nance over the other two dimensions, hence justifying our choice to set lumi-
nance at the first position of the lexicographical comparisons. Furthermore,
one can also remark the priority attributed to the first dimension during lexico-
graphical ordering, since its performance is very close to using only luminance.
Of the first two α based approaches only α-Lex leads to an improvement over
Lum, with their difference however not being sufficiently large to draw sound
conclusions.

Two of the four trimming based extrema on the other hand, clearly outper-
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Table 1
100×RNMSE errors against uncorrelated Gaussian noise (σ = 0.125, ρ = 0.0)

Method
Images

Lenna Happy Cat Curious Average

MargRGB 14.07 14.57 18.44 24.38 17.87

Lum 43.12 43.31 48.43 53.75 47.15

Sat 53.10 61.62 57.03 70.91 60.67

Hue 49.83 53.57 59.01 69.48 57.97

Lex 43.20 43.31 48.50 53.72 47.18

α-Lex 43.11 43.28 48.35 53.53 47.07

α-modLex 43.51 43.92 48.74 53.79 47.49

α-trimmed-Lex 29.97 39.74 35.77 45.16 37.66

α-trimmed-adaptive-Lex 29.86 39.96 36.12 45.37 37.83

α-trimmed-Lex-ordering 79.67 87.69 81.83 95.26 86.11

α-trimmed-Lex-distances 48.48 44.49 49.27 55.53 49.51

Table 2
100×RNMSE errors against correlated Gaussian noise (σ = 0.125, ρ = 0.95)

Method
Images

Lenna Happy Cat Curious Average

MargRGB 13.94 14.57 18.65 24.21 17.84

Lum 16.19 16.34 22.69 27.73 20.74

Sat 59.84 64.15 60.70 73.67 64.59

Hue 59.88 63.70 65.07 79.26 66.98

Lex 16.18 16.33 22.66 27.70 20.72

α-Lex 16.32 16.49 22.76 27.85 20.86

α-modLex 16.98 17.05 23.22 28.39 21.41

α-trimmed-Lex 15.94 16.44 21.94 27.41 20.43

α-trimmed-adaptive-Lex 16.43 16.85 23.04 28.12 20.83

α-trimmed-Lex-ordering 56.64 72.78 69.48 84.75 70.90

α-trimmed-Lex-distances 17.22 17.00 23.28 29.16 21.66

form their counterparts. Despite resulting in pseudo-morphological operators,
collective extrema computation is presumed to aid their performance. Fur-
thermore, although the empirically set constant α = 0.45 provides in average
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the best results, the adaptively set dimension specific arguments exhibit only
slightly superior error levels. The image specific α-trimmed lexicographical or-
dering as well as the distance based variation however have been disappointing,
clearly showing that further work is necessary on these approaches.

As far as the case of correlated Gaussian noise is concerned (table 2), although
the marginal approach continues to outperform the rest, the differences are
much smaller. Besides, despite using an empirically set optimum α value,
this time α-trimmed lexicographical extrema hardly surpass the performance
of their counterparts. A possible explanation for this result is the presence
of correlated noise in its majority, within the luminance dimension, hence
rendering it relatively redundant to take into account saturation and hue.
Additionally, one can also observe the satisfying results obtained once more
with the adaptively set arguments, asserting the robustness of the proposed
model.

Fig. 9. Examples of the 68 textures of Outex [12].

4.2 Texture classification

As far as texture classification is concerned, here we employ the colour textures
of Outex13 (figure 9) [13]. The question whether colour should be processed
separately or jointly from texture is still an open problem [12], and vectorial
morphological feature extraction operators represent in their majority the lat-
ter case. As colour texture descriptor we employ the morphological version of
the autocorrelation operator, namely morphological covariance. The vectorial
version of morphological covariance K ′ of an image f , is defined as the vol-
ume Vol of the image (i. e. sum of pixel values), eroded by a pair of points P2,v

separated by a vector v:

K ′(f ; P2,v) = Vol
(

εP2,v
(f)

)

(14)
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In practice, K ′ is computed for varying lengths of v, and most often, as also
here the normalised version K is used for measurements. Besides, since using a
SE formed of only two points would be of no practical interest with trimming
based approaches, here we employ P2,v,b, a pair of b SEs separated by a vector
v, with b being a 3x3 cross:

K(f) = Vol
(

εP2,v,b
(f)

)

/ Vol (f) (15)

The covariance based feature vectors were calculated using four directions for
the SE pairs (0◦, 45◦, 90◦, 135◦), each along with distances ranging from 1 to
49 pixels in steps of size two. Consequently 25 values were available for each
direction, making a total of 100 values for every channel after concatenation.
The final image descriptor has been obtained by concatenating the marginal
feature vectors of each channel, hence leading to descriptors of size 300. Table
3 contains the classification accuracy rates, computed as the fraction formed
by the number of successful classifications divided by the total number of
subjects.

Table 3
Classification rates in % for the textures of Outex13, using vectorial erosion based
covariance.

Method Accuracy

MargRGB 77.65

Lum 73.82

Sat 66.91

Hue 55.29

Lex 74.26

α-Lex 74.57

α-modLex 76.62

α-trimmed-Lex 81.47

α-trimmed-adaptive-Lex 79.89

α-trimmed-Lex-ordering 54.35

α-trimmed-Lex-distances 73.74

The overall performances appear to be relatively close. Presumably, since inter-
channel relations represent an important source of discriminative information
as far as content description is concerned, the marginal approach loses its
superiority over its vectorial counterparts. Furthermore, the pertinence of lu-
minance over both saturation and hue is once more observed, showing that
colour information is in this case just an auxiliary component. As expected,
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Lum and Lex exhibit almost identical performances, a result showing the level
of priority attributed to the first component, ignoring totally the remaining
two dimensions.

Minor improvements are obtained with α-Lex and α-modLex as they allow
saturation to participate at a slightly higher degree in the process of computing
covariance. However, hue remains largely unexploited. With the use of α-
trimmed extrema, the chrominance dimensions increase their contribution to
the final result. As a matter of fact, the empirically set α = 0.15 also leads to
an overall best, while the unsupervised model once more provides a relatively
sufficient approximation. Nevertheless, no improvements are observed with the
last two variations.

5 Conclusion

In this paper, a multivariate extrema calculation method has been presented,
based on the α-trimming principle, with the purpose of developing pseudo-
morphological operators. As the ambiguity of vector ordering led to a plethora
of orderings approaches, the lexicographical option has been widely experi-
mented with in this regard, as it possesses desirable theoretical properties.
The proposed extremum computation scheme, aims to remedy its main draw-
back, which is the highly asymmetrical prioritisation of the first dimension.
The use of the α parameter provides a flexible solution, where the contribu-
tion of each dimension to the computation outcome can be directly controlled.
Moreover, a model was proposed for setting the α argument according to the
standard deviation of each dimension.

The proposed methodology, along with its variants, has been tested against
state-of-the-art ordering mechanisms used in colour morphology, in the context
of noise reduction as well as texture classification. Despite empirically set ar-
guments for all compared methodologies, α-trimming lexicographical extrema
outperformed their counterparts, with the proposed adaptive α calculation
model also proving to be a robust and unsupervised solution for parameter
setting.

Future work will concentrate on the use of α-trimmed lexicographical extrema
on multispectral imagery, as well as on more elaborate parametrisation models.
In particular, the ordering derivation process will be studied, since a pertinent
solution to this problem would immediately make it possible to render pseudo
operators as morphologically valid.
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