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Abstract 

 

      The Feynman propagator of charged harmonic oscillator in a constant magnetic field 

is found for the first time by a direct calculation using Fock Bargmann space and a new 

generating function of two dimensional harmonic oscillators. The calculations involve 

well-known integrals which an undergraduate should understand.   

 

 

1. Introduction 

 

      Recently the method of path integral is subject of intense work in quantum physics 

[1-10]. Further more, it is well known that the harmonic oscillator and the motion of a 

charged particle in a magnetic field are parts of the undergraduate courses [11-17] so it 

was natural that the search of Feynman propagators for these problems is of great 

interest. But the proposed methods of calculation: the Schwinger's method, the algebraic 

method and the path integral are difficult to teach at undergraduate level [1, 2].  

   So we have proposed the generating function method which is a new direct method for 

the calculation of Feynman propagator [10]. In our method, we use only the generating 

function of the basis of harmonic oscillator and the Fock Bargmann space for integration. 

This method is simple and very useful as an introduction to the methods proposed above 

and moreover it is widely used to study the theory of angular momentum and group 

theory [10, 17-20].  

    In our case, we construct a new generating function of the cylindrical basis, 

eigenfunctions of the Hamiltonian, and using the Bargmann Fock space, we simply find 

the correct expression of Feynman propagator of the charged harmonic oscillator in a 

constant magnetic field.  

   This work is complementary to the paper [10] and it is aimed to undergraduate students. 

   In part 2 of this work we review the charged harmonic oscillator in a constant magnetic 

field. We construct the new generating function of the cylindrical basis of harmonic 

oscillator in part three. Part four is devoted to the calculation of Feynman propagator. 
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2. Isotropic charged harmonic oscillator  

 

Considering an isotropic charged harmonic oscillator with electric charge q and mass μ 

moves in a two-dimensional plane under a uniform magnetic field B perpendiculars to the 

plane and the vector potentials have the following form [11-17]: 

                                       2/,2/ 21 BxAByA                                                       (2.1) 

The Hamiltonian of the system is 
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We have also 0],[ 0 zLH . 

   To determine the eigenfunctions of zLH ,0  we use the polar coordinates of two 

dimensions harmonic oscillators [11-17]. 

We put 

                                       sin,cos  yx                                                      (2.5) 

                                        20,0   

Using the method of separation of variables we find the solution of Schrödinger 

 Equation which is the cylindrical basis: 
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With                          mnj       and      
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The energy of the system can be given as follows: 
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With      .,n  And ,....2,1,02 m . 

  We emphasize that we can build the generating function of the cylindrical basis from the 

generating function of Laguerre polynomials but the calculation is more simpler with the 

generating function that we will build in part three. 
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3. The generating function of the cylindrical harmonic oscillator  

 

    In this part we review the construction of the generating function of the cylindrical 

basis [18] of the harmonic oscillator which is the eigenfunctions of ),( 0 zLH . 

  We know that the Cartesian basis of harmonic oscillator in Dirac notations is  

                                            0,0, ny
y

nx
xyx aann                                                    (3.1) 

This ket is not eigenfunctions of
zL  so to obtain the basis which has this property 

 we must take the transformation [15]   
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The new basis 21, NN can be written in the form  
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This basis is function of 
zL and N with the values 2m and 2j [15]. 
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The new generating function may be written in the form: 
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In term of Cartesian coordinates we write the generating function as: 
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Is the basis of Fock-Bargmann space [10, 19].  
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The measure of integration is: 
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We have also the useful formula    

                                                 )(zdeee zz 

                                                    (3.7) 

 

4. The Feynman propagator of two-dimensional isotropic 

   Charged harmonic oscillator in uniform magnetic field 

 

     In this section, we propose a simple and elementary method for the calculation of 

Feynman propagator of two-dimensional charged harmonic oscillator in uniform 

magnetic field. 

We have: 
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With                              2/)(  iea and 2/)(  ieb  

 

    By substituting the expressions under the integral by (3.5) we write: 
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This integral is invariant by changing 22 zz  , and then we can use the well  

known formula: 
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And                                   iebaX  11)det( 22  

 

By an elementary calculation we find that: 
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Then the propagator may be written: 
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It is easy to verify the following identities      
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Substitute these relations in (4.5) we obtain the exact expression of Feynman 

Propagator of a charged harmonic oscillator in constant magnetic field: 
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    I leave the reader to compare between our method and Schwinger’s method,  

Reference [1] part B.   

  It is important to emphasize that the expression (4.1) may be obtained by the application 

of the transformation from the coordinates representations to the harmonic oscillator 

basis and the formula (3.7). 

 

Conclusion  

 

   The Bargmann Fock space can be found from the expansion of the generating function 

of harmonic oscillator and well known to undergraduates. The introduction of this space 

in the education facilities and minimizes the time of calculation and more, it is very 

useful in the theory of angular momentum and other field [10]. In our papers, and since 

2005, we have been trying to use this space and the generating function to solve many 

interesting applications that allow students to have a very broad view on many fields of 

physics and to give them a useful background for further advanced studies.  

  Finally I hope that people learn to help each other against this difficult life and that is 

the most important thing that we have learned from Sciences. 
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