A. Zimprich, S. Biskup, P. Leitner, P. Lichtner, M. Farrer et al., Mutations in LRRK2 Cause Autosomal-Dominant Parkinsonism with Pleomorphic Pathology, Neuron, vol.44, issue.4, pp.601-607, 2004.
DOI : 10.1016/j.neuron.2004.11.005

C. Paisan-ruiz, S. Jain, E. W. Evans, W. P. Gilks, J. Simon et al., Cloning of the Gene Containing Mutations that Cause PARK8-Linked Parkinson's Disease, Neuron, vol.44, issue.4, pp.595-600, 2004.
DOI : 10.1016/j.neuron.2004.10.023

I. F. Mata, W. J. Wedemeyer, M. J. Farrer, J. P. Taylor, and K. A. Gallo, LRRK2 in Parkinson's disease: protein domains and functional insights, Trends in Neurosciences, vol.29, issue.5, pp.286-293, 2006.
DOI : 10.1016/j.tins.2006.03.006

A. Brice, J. Aasly, C. P. Zabetian, S. Goldwurm, J. J. Ferreira et al., Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's disease: a case-control study, Lancet Neurol, vol.7, pp.583-590, 2008.

S. Biskup and A. B. West, Zeroing in on LRRK2-linked pathogenic mechanisms in Parkinson's disease, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1792, issue.7, 2008.
DOI : 10.1016/j.bbadis.2008.09.015

C. Paisan-ruiz, P. Nath, N. Washecka, J. R. Gibbs, and A. B. Singleton, in publicly available Parkinson's disease cases and neurologically normal controls, Human Mutation, vol.44, issue.4, pp.485-490, 2008.
DOI : 10.1002/humu.20668

V. S. Anand and S. P. Braithwaite, LRRK2 in Parkinson???s disease: biochemical functions, FEBS Journal, vol.9, issue.22, pp.6428-6435, 2009.
DOI : 10.1111/j.1742-4658.2009.07341.x

A. B. West, D. J. Moore, S. Biskup, A. Bugayenko, W. W. Smith et al., From The Cover: Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity, Proceedings of the National Academy of Sciences, vol.102, issue.46, pp.16842-16847, 2005.
DOI : 10.1073/pnas.0507360102

E. Greggio, S. Jain, A. Kingsbury, R. Bandopadhyay, P. Lewis et al., Kinase activity is required for the toxic effects of mutant LRRK2/dardarin, Neurobiology of Disease, vol.23, issue.2, pp.329-341, 2006.
DOI : 10.1016/j.nbd.2006.04.001

M. Jaleel, R. J. Nichols, M. Deak, D. G. Campbell, F. Gillardon et al., LRRK2 phosphorylates moesin at threonine-558: characterization of how Parkinson's disease mutants affect kinase activity, Biochemical Journal, vol.405, issue.2, pp.307-317, 2007.
DOI : 10.1042/BJ20070209

URL : https://hal.archives-ouvertes.fr/hal-00478755

R. J. Nichols, N. Dzamko, J. E. Hutti, L. C. Cantley, M. Deak et al., Substrate specificity and inhibitors of LRRK2, a protein kinase mutated in Parkinson's disease, Biochemical Journal, vol.320, issue.1, pp.47-60, 2009.
DOI : 10.1042/BJ20070797

S. E. Reed, E. M. Staley, J. P. Mayginnes, D. J. Pintel, and G. E. Tullis, Transfection of mammalian cells using linear polyethylenimine is a simple and effective means of producing recombinant adeno-associated virus vectors, Journal of Virological Methods, vol.138, issue.1-2, pp.85-98, 2006.
DOI : 10.1016/j.jviromet.2006.07.024

M. Morrice, N. A. Mackintosh, and C. , Differential 14-3-3-affinity capture reveals new downstream targets of PI 3-kinase signaling, as manuscript BJ20100483 THIS IS NOT THE VERSION OF RECORD -see doi, p.10, 1042.

. Licenced-copy, Copying is not permitted, except with prior permission and as allowed by law, p.14

G. Moorhead, P. Douglas, V. Cotelle, J. Harthill, N. Morrice et al., Phosphorylation-dependent interactions between enzymes of plant metabolism and 14-3-3 proteins, The Plant Journal, vol.10, issue.970, pp.1-12, 1999.
DOI : 10.1074/jbc.272.43.27281

L. Wang, C. Xie, E. Greggio, L. Parisiadou, H. Shim et al., The Chaperone Activity of Heat Shock Protein 90 Is Critical for Maintaining the Stability of Leucine-Rich Repeat Kinase 2, Journal of Neuroscience, vol.28, issue.13, pp.3384-3391, 2008.
DOI : 10.1523/JNEUROSCI.0185-08.2008

D. R. Alessi, Regulation of the polarity kinases PAR-1/MARK by 14-3-3 interaction and phosphorylation, J Cell Sci, vol.119, pp.4059-4070, 2006.

C. Mackintosh, Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes, Biochemical Journal, vol.381, issue.2, pp.329-342, 2004.
DOI : 10.1042/BJ20031332

M. B. Yaffe, K. Rittinger, S. Volinia, P. R. Caron, A. Aitken et al., The Structural Basis for 14-3-3:Phosphopeptide Binding Specificity, Cell, vol.91, issue.7, pp.961-971, 1997.
DOI : 10.1016/S0092-8674(00)80487-0

J. Alegre-abarrategui, H. Christian, M. M. Lufino, R. Mutihac, L. L. Venda et al., LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model, Human Molecular Genetics, vol.18, issue.21, pp.4022-4034, 2009.
DOI : 10.1093/hmg/ddp346

Y. Tong, A. Pisani, G. Martella, M. Karouani, H. Yamaguchi et al., R1441C mutation in LRRK2 impairs dopaminergic neurotransmission in mice, Proceedings of the National Academy of Sciences, vol.106, issue.34, pp.14622-14627, 2009.
DOI : 10.1073/pnas.0906334106

J. R. Hutchins, D. Dikovskaya, and P. R. Clarke, Cdc25C by protein phosphatase-2A is inhibited by 14-3-3 binding, FEBS Letters, vol.7, issue.1-3, pp.267-271, 2002.
DOI : 10.1016/S0014-5793(02)03327-6

B. W. Moore and V. J. Perez, Specific acidic proteins of the nerous system. Pysiological and Biochemical Aspects of Nervous Integration, pp.343-359, 1967.

D. Berg, C. Holzmann, and O. Riess, 14-3-3 proteins in the nervous system, Nature Reviews Neuroscience, vol.4, issue.9, 2003.
DOI : 10.1038/nrn1197

H. K. Chen, P. Fernandez-funez, S. F. Acevedo, Y. C. Lam, M. D. Kaytor et al., Interaction of Akt-Phosphorylated Ataxin-1 with 14-3-3 Mediates Neurodegeneration in Spinocerebellar Ataxia Type 1, Cell, vol.113, issue.4, pp.457-468, 2003.
DOI : 10.1016/S0092-8674(03)00349-0

S. Sato, T. Chiba, E. Sakata, K. Kato, Y. Mizuno et al., 3-3eta is a novel regulator of parkin ubiquitin ligase, EMBO J, vol.14, issue.25, pp.211-221, 2006.

N. Ostrerova, L. Petrucelli, M. Farrer, N. Mehta, P. Choi et al., ) alpha-Synuclein shares physical and functional homology with 14-3-3 proteins, J Neurosci, vol.19, pp.5782-5791, 1999.

A. Ubl, D. Berg, C. Holzmann, R. Kruger, K. Berger et al., 14-3-3 protein is a component of Lewy bodies in Parkinson???s disease???Mutation analysis and association studies of 14-3-3 eta, Molecular Brain Research, vol.108, issue.1-2, pp.33-39, 2002.
DOI : 10.1016/S0169-328X(02)00510-7

T. A. Yacoubian, S. R. Slone, A. J. Harrington, S. Hamamichi, J. M. Schieltz et al., Differential neuroprotective effects of 14-3-3 proteins in models of Parkinson's disease. Cell Death and Disease, ) Leucine-rich repeat kinase 2 (LRRK2) interacts with Biochemical Journal Immediate Publication, 2005.

. Licenced-copy, Copying is not permitted, except with prior permission and as allowed by law. parkin, and mutant LRRK2 induces neuronal degeneration, Proc Natl Acad Sci, vol.102, pp.18676-18681

S. Lesage, S. Janin, E. Lohmann, A. L. Leutenegger, L. Leclere et al., LRRK2emph Exon 41 Mutations in Sporadic Parkinson Disease in Europeans, Archives of Neurology, vol.64, issue.3, pp.425-430, 2007.
DOI : 10.1001/archneur.64.3.425

X. Li, D. J. Moore, Y. Xiong, T. M. Dawson, and V. L. Dawson, Reevaluation of phosphorylation sites in the Parkinson's disease associated leucine rich repeat kinase-2, J Biol Chem, vol.34

J. Cox and M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification, Nature Biotechnology, vol.7, issue.12, pp.1367-1372, 2008.
DOI : 10.1038/nprot.2007.261

. Licenced-copy, Copying is not permitted, except with prior permission and as allowed by law