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ABSTRACT previous proposed global key estimation approaches intiad

key dependency on the harmonic and the metric structures. Ha
mony is directly related to the musical key. In Western tanat

sic, the chord progression determines the harmonic steictua
piece of music. It is strongly related to the musical key & th
piece. A musical scale can be associated with each key. €hord
that are specific to the key can be constructed around this.sca
Although the idea to use chords to find the key of a musical ex-
cerpt has already been explored [12], to our knowledge, ecige
study about the relationship between the two attributesbeas
conducted, in particular in the case of local key estimatidhis
partly comes from a lack of databases labeled in chords and lo
cal key. One contribution of this work is to present such a\tu

In this paper, we present a method for estimating the logal ke
of an audio signal. We propose to address the problem of kegal
finding by investigating the possible combination and esi@mof
different previous proposed global key estimation appgneacThe
specificity of our approach is that we introduce key depeaglen
the harmonic and the metric structures. In this work, we $owul
the relationship between the chord progression and thé kega
progression in a piece of music. A contribution of our work is
that we address the problem of finding a good analysis window
length for local key estimation by introducing informaticelated
to the metric structure in our model. Key estimation is nat pe

formed on empirical-chosen segment length but on segmieats t on classical music pieces labeled in chords and keys camgain

are adapted to the analyzed piece and independent frormtipe te many modulations. The problem of finding a good analysis win-

We eval_uate an(_j an_alyze our results on a new database C(I'mposedow length for local key estimation has been evoked in the, pas
of classical music pieces.

without any satisfying answer. Another contribution of ework
is that we address this problem by introducing informatielated
1. INTRODUCTION to the metric structure in our model. Key estimation is nat pe

_ o ) formed on empirical-chosen segment length but on segmieats t
Tonality analysis is one of the most important aspects ofteYas are adapted to each piece.

tonal music. Tonality analysis describes the relationsiefveen The structure of the paper is as follows. First, in section@,
the different musical keys present in a piece of music. A walsi  review some previous works on global and local key estimatio
key implies a tonal center that is the most stable pitch (dhéc) We then present in section 3 our model for local key estimatio

and a mode (major or minor). The elements of the melody and the hich relies on a probabilistic model for simultaneous dharo-
harmony of a musical fragment are related to each other iyithe  gression and downbeat locations estimation. The local &&gna-
sical key. This aspect of music has interested researatveaddng  tjon is based on the harmonic and metric structures of theepie
time because key detection task has many applications tebn Eventually, in section 4, the proposed model is evaluated set

based music information retrieval such as classificatiegiren- classical music pieces. A conclusions section closes tiaear
tation, indexing or summarization. Various approache hmen

proposed in previous works for estimating the global key pitae

of music. Some approaches were proposed for symbolic dsta, u 2. RELATED WORK
ing template-based approaches [1], [2], [3], or geometrsell ap- ) . ) ) .
proaches [4]. Others were proposed for audio data, using|éee In this section, we review some previous works on key estima-

based approaches [5], [6], [7], [8],[9], geometry-basestaaches tion. We stqrt by templatg-ba;ed approaches proposeddbalgl
[10], or HMM-based approaches [11]. Finding the main key of a kgy estimation that have inspired our work.. We.then presest p
piece of music is only a little part of tonality analysis. &etl, vious methods proposed for local key estimation and comclud
even if a piece of music generally starts and ends in a particu the Section by reviewing key estimation methods based oricho
lar key referred to as the main or global key of the piece, it is Progression. A large part of audio global key finding systésns
common that the composer will move between keys, sometimesPased on the use of key profiles/templates. Pitch Class esafil
without definitely establish them. A change in the musicglie ~ Chroma features are extracted from the signal and then aexipa
called a modulation. In this paper, we are interested in toe-p to theoretical temp_lat_es that indicate the perceptual apoe of
lem of local key estimation: we aim at segmenting the musicgi ~ NOtes or chords within a key. [1] proposes a method called the
according to the points of modulation and finding the key ahea ~ Probe tone methothat gives a measure quantifying the hierar-
segment. Little work has been conducted on this topic. Is thi ChY Of notes in a given tonal context. For major and minor keys
paper we propose to address the problem of local key finding by 12-dimensional vectors representing the perceptual itapoe of

investigating the possible combination and extension fiémint the 12 semitones of a chromatic scale in the considered key ar
proposed. These key profiles are used to estimate the key of a

* This work was supported by the Quaero Project MIDI melodic line, by correlating it with a vector contairgrthe
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relative duration of each of the 12 pitch classes within th®M
sequence. [13] extends the model proposed in [1] to the dase o
polyphonic audio files by considering that the profile valoe d
given pitch class represents also the hierarchy of a chadjiven
key. The polyphonic profiles for the 24 different keys areltbui
considering only the three main triads of the keys (tonibdsun-
inant and dominant). This cognition-inspired method is pared
with several machine-learning techniques. The methodetoare
evaluated over a large audio database, achievifig% of cor-
rect overall tonality (mode and key-note) estimation. lis gtudy

it is found that the use of machine learning algorithms teisul
very little improvements over the cognitive-based techaig[11]
compares a cognitive-based method similar to the one peaten
in [13] to an HMM-based approach. Two hidden Markov models
are trained on a labeled database in order to learn the ¢barac
istics of the major and minor modes. From these two models, 24
hidden Markov models corresponding to the 24 keys are dirive
The key of the audio file is then obtained by computing the-like
lihood of its chroma sequence given each HMM and selectiag th
one giving the highest value. It was found that the HMM-based
approach leads to a lower recognition rate. Note that, swiairk,

, Contalyl, September 1-4, 2009

ment musical signals according to the key changes and ttifigen
the key of each segment. The front-end of the system is based
on the calculation of a chromagram. The key detection task is
divided into two steps: first the key is estimated withoutgidn
ering the mode because diatonic scales are assumed ariderelat
modes share the same diatonic scale. The mode (major or mi-
nor) is then estimated. Classical piano music is employddsb

the performances of the proposed method using three msasure
recall, precision and label accuracy. [20] proposes anéstig

new model for detecting modulations and labeling local kesiag

a non-negative matrix factorization method for segmeoitatiTo
identify sections that are candidates for unique local kgysups

of contiguous chroma vectors are used as input in the segment
tion stage. The length of the window is chosen empiricallize T
local keys are then found using a correlation model. The atkth

is evaluated on three different data sets: pop songs, cssusic

and Kosta and Payne corpus.

Because chords and musical keys are musical attributeslylos
related to each other in Western tonal music, the idea tohese t
chord progression of a piece to find the keys comes out natural

the states in the HMMs have no musical meanings. [6] presentsin the framework of global key estimation, [21] proposes-key

a template-based key finding model. The key is estimated by co
relating spectral summary information obtained from audlith
precomputed templates. The templates are obtained frannrea
strument sounds. For this, the spectra of the sounds arédigeig
by key profiles, which approximate the pitch distributiorevéral
key profiles are compared: Krumhansl's probe-tone ratiigs [
Temperley’s profiles [2] and a flat diatonic profile (12-diremal
vectors containing 1 at pith classes that are compriseceicon-
sidered diatonic scale, 0 elsewhere). The combinationeoT&m-
perley’s and diatonic profiles was found to give the bestltesu

Concerning the problem of local key estimation, even if, eom
pared to the problem of global key estimation, little worls feen
conducted on this topic, various approaches have alreadyre-
posed for this task. [14] presents a method for determingigte
of modulation in a piece of music in the symbolic domain us-
ing a geometric model for tonality called the Spiral Arrayigr
incorporates simultaneously pitch, interval, chord any ksla-
tions. This method has been extended to the audio case in [10]
[15] presents an approach for detecting multiple keys andtio
ing the key boundaries in the melody of popular songs in MIDI
format. Overlapping segments are first extracted form thiedye
using a diatonic scale model, each one corresponding togéesin
mode. Segments of unrelated modes are eliminated. Keyslabel
and boundaries are determined by grouping the remaining seg
ments. Another geometric tonality model describing refahip
between keys has recently been proposed in [16]. [17] pespos
a method for detecting changes in the harmonic content of-mus
cal audio signals. A new model for equal tempered tonal sjzace
introduced. Segmentation of audio signal and preprocgssage
for chord recognition and harmonic classification alganshus-
ing HMMs are the main potential applications. [18] preseris
approach to derive an appropriate representation of tonteise
based on the audio signal using constant Q profiles. Thear3t
profiles are 12-dimensional vectors where each componésrsre
to a pitch class. They are derived from sampled cadentiaidcho
progressions and small pieces of music. Tonal centers ofsicmu
piece are tracked by computing cg-profiles of the piece artdhwma
ing every given cg-profile with a profile of the reference ss&hg

a fuzzy distance. [19] proposes an HMM-based method to seg-
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dependent chord HMMs trained on synthesized audio for chord
recognition and global key estimation. In this approachk@y
dependent HMMs, one for each major and minor keys are built.
Key estimation and chord recognition are performed simela
ously selecting the model whose likelihood is highest. bl
served that the proposed method is similar to [11] but, waeene
[11] the states in the HMMs have no musical meanings, in [21],
hidden states are treated as chords, which also allowsifiglagt

the chord sequence. [22] presents a technique to estinefmeh
dominant key in a symbolic musical excerpt. A HMM is used
where the hidden states are the 24 major and minor keys and the
observations are pairs of consecutive chords. Human ettt

of harmonic relationships is encoded in the model usingltesu
from perceptual tests. The parameters of the HMM are trained
using hand-annotated chord symbols. This work was extetaled
the audio case in [12]. Although this model has only been-eval
uated on the case of global key estimation, it could be used fo
local key estimation. A recent work [23] proposes a prolistil
framework for simultaneously estimating keys and chordsveM
observation likelihood model and chord/key transition eledare
proposed that are derived from music theory of Lerdahl.

3. PROPOSED APPROACH

In this paper we are interested in the problem of local key-find
ing in polyphonic audio files. We propose to combine and ekten
methods proposed for global key finding to the case of local ke
finding. We rely on the above-mentioned method for global key
estimation [13] based on key reference profiles, which areeeo
lated with input pitch class profiles. The underlying ideala$
work is that in case of polyphonic music, the chords can be use
to estimate the musical key. However, in this previous waskin
[11], there is no estimation of the chords and no investigatf
their relationship to keys. We study this relationship ie gnesent
work. To integrate the concept of key modulating over time, w
propose to use an HMM where the hidden states are the keyk whic
can be observed through observable data that are the chidrds.
use of the HMM allows us to integrate some musical infornmatio
about key changes, as proposed in [22]. As shown in the last se
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tion, HMM have already been used for local key estimatio]([1
[19]). However, this was done using a frame-by-frame anglys
contribution of the present work is that we introduce infation
related to the metric structure of the audio file in order t&enthe
local key estimation robust. One of the problems when segmen
a piece of music into sections with different keys is to aately
choose the length of the analysis window used for key esitmat
In the case of global key estimation, only the first secondhef
piece are used to estimate the key. Several studies have shatv
the choice of the duration of the analyzed excerpt has afgignt
impact on the key estimation results (see for instance [§1@}).
Concerning local key estimation, the length of the analysis
dow was found empirically in previous works. After compatin
chroma vectors on short overlapping frames, [19] or [18fqren

a frame-by-frame musical key analysis. An interestingraive

to sliding window key center tracking techniques has been pr
posed by [20] where a segmentation stage which identifies sec
tions that are candidates for unique local keys is perforpréat

to local key estimation. Groups of contiguous chroma vectoe
used as input. Heavily overlapped groups of chroma vectars a
averaged over a span efseconds. The value of the parameter
is found empirically {.4s) after testing several window sizes. The
question of optimal segment length remains an open probkem.
too small window size would focus the chromagram on indigidu

chords more than on keys whereas the use of a too large window

size would lead to segments containing several keys and kely m
ulations points would become ambiguous. The drawback ofgusi
an empirically chosen window size is that, if the testseta@ios

for instance some pieces with a fast tempo compared to the oth
ers, the window length will probably be too long and chandges o
keys will be ignored by the algorithm. For pieces with a slow
tempo, chords more than keys will be estimated. Ideallywtime

dow length should be related to the tempo of the piece. We get
around this difficulty here by segmenting the piece accaordm

the metric structure. We perform a beat-synchronous aisallyer
local key estimation, the temporal unity, which is used lier&ey
analysis, is the musical bar. The analysis window lengththas

a musical meaning.

3.1. Model

In this section we present a model that allows estimatinddbal
keys of a musical excerpt using the underlying chord praioes
which characterize the harmonic structure, and the doviribea
cations, which characterize the metric structure. Mettmael is

a hierarchical structure. The beat or the tactus level isbst
salient metrical level and corresponds to the foot-tappaite. Mu-
sical signals are divided into units of equal time valueeththea-
suresor bars One important attribute of the metric structure is
the downbeat®r the first beats of each measure. Here, the chords
and the downbeats are estimated simultaneously using dt&lou
states” HMM where a state is a combination of a chord type and
a position of the chord in the measure. We consider here achor
lexicon composed of thé = 24 Major and minor triads (C Major,
..., B Major, C minor, ..., B minor). The local key estimation
model is close to the chord estimation model. The 24 key space
is modeled by an ergodic 24-states HMM, where each statesepr
sents one of the 24 major and minor keys. In our model, thesidd
states (keys) can be observed through observable datar¢had-a
lated to the chord progression of the piece. At each timenst
the chords imply a local key. At each time instant, the key-gen

DAFX-
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erates an observable 24-dimensional vector represetgngrob-
ability of each of the 24 chords to have been emitted. Given th
observations, we estimate the most likely key sequencetowaer

in a maximum likelihood sense. The flowchart of the system is
represented in Figure 1.

’ Audio mono signal 11025 Hz ‘
I

v

’ Preprocessings (Tuning) ‘

v

’ Chromagram computation ‘

v

’ Beat-related chroma vectors ‘

v

’ Chords/downbeats (C/D) initial state distribution

v

C/D observation
probabilities computation

FEATURE
EXTRACTION

Instantaneous
chord
probabilities

Cognitive-based
chord transition
matrix

q

Viterbi decoding

Chord progression and downbeats

v

bar-related key observation
vectors

!

Key initial state distribution; key observation
probabilities computation

HARMONIC & METRIC
STRUCTURES ESTIMATION STAGE

<

STAGE

key transition
matrix

q

A
Viterbi decoding

Succession of local keys over time

LOCAL KEY ESTIMATION

Figure 1: Flowchart of the local key estimation system.

3.2. Featurevectors

As most of chords and key detection systems, the front-ediof
system is based on the extraction of a set of feature vedtats t
represent the audio signal, the Pitch Class Profiles [2¢hmma
vectors [25]. The succession of chroma vectors over timaadsvk
aschromagram The chroma vectors are in general 12-dimensional
vectors that represent the spectral energy of the pitcketasf the
chromatic scale. For chromagram computation, we use thieadet
we proposed in [26]. To integrate the metric structure ofdieee,
we built meter-related features by averaging the chromé#ovgc
according to the beat locations so that we obtain one featater
per beat.

1This supposes to integrate a beat-tracker as a front-erite afyfstem.
In our experiments, the beat locations have been annotatdtid be-
cause the testset is composed of classical music pieceasirogt lots of
deviations in tempo that results from the expressivity assical music.
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3.3. Harmonic and metric structures

The harmonic structure is defined by the chord progressiah an
the metric structure is defined by the downbeat locationses&h
two musical attributes are estimated simultaneously aiegrto

the method we proposed in [26]. This method is briefly summa-
rized here. We consider an ergodie K -states HMM where each
states;, is defined as an occurrence of a cheydi € [1: []ata
“beat location in the measuréy, k € [1; K|: sy = [ci, be]. In

our casel = 24 chords andX = 4 for a song built on constant
four-beats meterX’ = 3 for a song built on constant three-beats
meter. Each state in the model generates with some pratyaduili
observation vectoO(t,,) at timet,, defined by the observation
probabilities. Given the observations, we estimate thet filady
chord sequence over time and the downbeat locations in & maxi
mum likelihood sense.

Initial state distribution: The prior probabilityr;, for each state
is the prior probability to observe a specific chegtccurring on
a beat location in a measusg. Since we do not knowa priori the
chord and the beat location the piece begins with, we iiigat
at -1 for each of thel = K states.

Observation chord symbol probability distribution: The obser-
vation probabilities are computed as:

P(O(tm)|sik) = P(O(tm)|ci) P(O(tm)|bk) (€))
where P(O(tm)|c;) corresponds to the chord symbol observation
probabilities andP(O(t,,)|bx) corresponds to the beat location
in the measure observation probabilities. The observatimrd
symbol probabilities are obtained by computing the cotiahebe-
tween the observation vectors (the chroma vectors) and af set
chord templates which are the theoretical chroma vectang-co
sponding to thd = 24 major and minor triads. In what follows,
the succession of these 24-dimensional vectors is refesrasithe
chordgram The computation of thehordgramis detailed below.
The beat location in the measure observation probabiigiesn-
sidered here as uniform.

Statetransition probability distribution: The transitions between
chords result from musical rules which are modeled in theesta
transition matrixI". These rules are based on the harmonic struc-
ture and the metric structure. The transition maffixised in our
HMM takes into account both the chord transitions and their r
spective locations in the measure. To integrate harmotés rwe
derive thel x K-states transition matri¥ from a /-states chord
type transition matrixl. based on music-theoretical knowledge
about key-relationships. This matrix is the same than tlyerea-
sition matrix described below. We integrate metric rulegha
I« K-states transition matrix relying on the following statement:
chords are more likely to change at the beginning of a medlare
at other beat locations [27]. To favor chord changes on deats)
we attribute a lower self-transition probabilitféa the state transi-
tion matrix7" for chords occurring on th&*" beat. The transition
matrix is for a four-beat meter song represented in Figurétz
harmony is more likely to change after a chord occurring @n th
4*" beat of the measure than after a chord occurring 8ff deat

of the measure.

2Here, a self-transition means a transition between twotickrchord
types, for instance from a CM chord to a CM chord.
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T, T
/\A
CM C#M
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12341234
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CHM CM bklj ]
==
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Figure 2: Chord transition matrix for a singles-state HMMf{],
transition matrix in the case of a double-states HMM takimig i
account the position of the chord in the measure [right].

Chord progression and downbeats detection: The optimal suc-
cession of stat€fs;, bx] over time is found using the Viterbi decod-
ing algorithm [28] which gives us the most likely path thrbuge
HMM states given our sequence of observations. We obtainlsim
taneously the best sequence of chords over time and the éatvnb
locations.

3.4. Chordgram

The chordgram is a succession of 24-dimensional vectorg+ep
senting the probability that each chord has been emittedct e
tactus-frame. These instantaneous chord probabiliteslaained
by computing the correlation between the chroma vectors2dnd
chord templates. Each chord template is a 12-dimensiorabrve
that contains the theoretical amplitude values of the ramtelgheir
harmonics composing a specific chord. The chord templates ar
constructed considering the presence of the higher haosafi
the theoretical notes it consists of, relying on the modesented
in [5]: the amplitude contribution of the'" harmonic composing
the spectrum of a note is set@a”~*. The chordgram is used for
local key estimation.

3.5. Extraction of key observation vectors

The key observation vectors are derived from the chordshén t
evaluation part, we will compare two methods. In the firstecas
the key observation vectors are built from ti@rdgramusing the
instantaneous chord probabilities. In the second casgatiedbuilt
directly from the estimated chord progression. In genéhnalmu-
sical key of a music piece changes much less often that threlgho
and remains the same during several bars. We segment tlee piec
into overlapping segments whose length is related to thesonea
delimited by the downbeat. The local key is thus estimateskon
ments that have a musical meaning. Because musical phrase ha
often length duration of 8 or 4+4 bars, we have chosen to segme
the pieces into 2-bars segments with 1-bar overlap. Bedeayse
changes occur in general on the first beat of a measure it igrimp
tant that the analysis starts on a downbeat. In our expetgwes
have tested the algorithm using other window analysis leagt
found that the local key estimation results accuracy deeewith
longer windows. This is discussed below in section 4.3. Tée k
observation vectors are 24-dimensional vectors obtaiyeavbr-
aging thechordgramor the estimated chord progression along the
overlapping 2-bars length segments.
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3.6. Key estimation from chordsusing hidden Markov models values can be circularly shifted to give the transition atabties

for keys other than C major and C minor. In order to have prob-
abilities, all the values are made positive by adding 1, duaah t
normalized to sum to 1 for each key. The size of the final key
transition matrix is 24 x 24.

The optimal succession of states over time is found using the
Viterbi decoding algorithm that gives us the best sequef&eys
over time. The music piece is thus segmented into segmestts th
are labeled by a key.

From the key observation vectors, we estimate the sucees$io
keys in the track. The method is very similar to the one we pro-
posed for chord estimation. The initial state distributadrkeys

is uniform (2—14 for each of the 24 states) since we have no reason
to prefer a key above another. The observation key protiakili
P(k;|O(tn)) are obtained by computing the correlation between
the key observation vectors and a set of key profiles thaesept

the importance of each triad within a given key.

The key profiles are obtained using a method similar to the
one proposed in [13]. In the monophonic case, Krumhansl pro- 4. EVALUATION
poses probe tone ratings [1] that represent the distribuifahe
pitches according to the musical key. Two types of rating-vec 4.1. Testset
tors are proposed, one for the major mode and one for the minor
mode. Temperley has modified these key profiles in [2]. [6} pro
posed Temperley-Diatonic pitch-distribution profiles whiwere
extended in [11] to the polyphonic case. In part 4, we will eom
pare all these key templates and propose a new one whereesl no
have the same weight in the template but the one corresppndin
to the tonic which has a triple weight. As in [11] and [13] the
polyphonic profiles for the 24 different keys are built calesing
the three main triads of the keys (tonic, subdominant andi-dom
nant). For instance, for a C major key, only C major, F majat an
G major chords are considered. We detail below the key psofile
computation for major mode, the minor key profiles are oletgin

Classical Mozart piano pieces were used to evaluate theitigo
Trained musicians manually annotated the ground truthHoras
and local key by hand. Beat locations have first been anmbtate
using the softwar&Vavesurfer Trained musicians had provided
a list of the chords and key with their duration in beats. Tike |
has been then automatically mapped to the beat location#t-res
ing in the ground truth we uée The testset consists in 5 move-
ments of Mozart piano sonatas: KV 283 #1 & 2, KV 309 #1 ,
KV 310 #land KV 311 #2 corresponding to about 30 minutes of
music. Each piece contains several modulations and thise©b
the main reasons why they were selected. It has to be notiegd t

h o M - ; it is very hard to label Mozart pieces in chords and musicg| ke
in a similar way. Let/;", i € [1,12] denote the monophonic ma-  gyen for 4 well-trained musician because on the one hantk the
jor key templates. Th&"” polyphonic major key templates are  5re 3 |ot of ornamental notes (such as appoggiaturas, fispen
computed according to the following equation: passing notes etc.) and on the other hand, harmony is fréguen
incomplete (some notes of the chord are missing). This migdees

TMP (k) TM(z), if k=1, choice of chords labels very difficult. Changes from one legrt-
TM ((i 4+ 5)[12]), if k= (i + 5)[12] other are often ambiguous, in particular when they are vieoyts
_ TM((Z D02, k= (i+ 702 2 Moreover, modulation is very often a smooth process, it ed® t

several bars to establish properly a tonal center. Segneents-
sponding to transition from one key to another have beerliddbe
where a[m] denotes the mathematical operatoodulg the re- as transition parts.
mainder wher is divided bym.

The observation key probabilitieB(k;|O(t,,)) are obtained 42 Evaluation measure
according to Equation (3) and normalized so that

=0 otherwise

Chord estimation evaluation measure: The result of chord es-
Z P(O(tm)|ki(tm)) = 1. timation we give corresponds to the mean and standard deviat
of correctly identified frames per song. Parts of the piecheres
no chord can be labeled (for instance when a chromatic ssale i
played) have been ignored in the evaluation.
O(tm). Ty L ocal key estimation evaluation measure: Concerning local key
m estimation, we consider, as in .[19]’ two aspects Qf the tx?:sul
the label accuracy (how the estimated key is consistent thih
ground truth) and the segmentation accuracy (how the detect
modulation points are consistent with the actual locajiorizor
Key modulations in a music piece follow musical rules that evaluating local key label accuracy, we use a measure sitoila

LetT?,4 € [1,24] denote a key template.

For i=1...24, P(O(tm)lki(tm)) =

can be reflected in the state transition matrix. To integnatei-  the one used for evaluating chord label accuracy. For et/alua
cal meaning in key transition, we adopt the key transitiorima ~ iNng segmentation accuracy, we use two metrics proposedin [1
proposed in [22] already used as a chord transition n¥athin1], Precision(P) is defined as the ratio of detected transitions that
Krumhansl studies the proximity between the various miikizgs are relevant.Recall(R) is defined as the ratio of relevant transi-

using correlations between key profiles obtained from geze tions detected. We also give tlfie-measure(F’) which combines
tests. These key profile correlations have been used ing2@+t  the twoF = 2RP/(R + P). A change of key can take several
rive a key transition matrix in the context of local key esiiionas ~ bars. Two established keys are often separated by a tampit
described below. Krumhansl| gives numerical values cooredp  Where no key is firmly established. These parts, which haee be
ing to key profile correlations for C major and C minor keyseTh labeled as transition parts T in the ground truth, need takent

3Chords and key are musical attributes related to the hamsomicture 4The ground-truth chords and keys progression in beats cahthmed
and can be modeled in a similar way. by contacting the authors
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Table 1: Chords and local keys label accuracy results usidg a Table 2: Local keys results using a 2-bars length window aed t
bars length window and the newly proposed templates. Method newly proposed templates in case of method 1), when the kady an
1): based on the chordgram. Method 2): based on the chord pro-ysis windows are set according to the downbeat locations (DD
gression. downbeats) and when the starting point is not a downbeat (D,
keys method 1) keys method 2)| chords| downbeats). The tolerance windowis= 1 bar.
label accuracy%) 80.22 74.11 61.43 oD ND
label accuracy%) 80.21 | 76.43
segmentation f-measurge 0.52 0.50

into account in the evaluation of segmentation accuracyttis, a
tolerance windoww is used in the following way. If a modulation .
is detected at frame; and close enough to a relevant modulation changes occur in general on downbeats. When the chordgram or

of the ground truth labeled at frame such thain, — na| < w, the chord progression are averaged against the downbediblos,

Itis considered as correct. The greatest the value isf the high- some passages with different local keys may be mixed. There i

est the precision and recall are. We present below resullswi clear difference in the key segmentation results. Thisabaioly

corresponding to 1 or 2 bars. due to the smoothness of the modulations (see below). Gonsid
ering the metrical structure allows to improve the key eation
results.

4.3. Resultsand discussion

We have carried out several experiments to evaluate thecingpa
various parameters on the local key estimation resultsicehaof

the key templates, choice of the length of the analysis win#ey Effect of the length of the analysiswindow: In classical music,
estimation from thehordgramor from the estimated chord pro- ~ Musical phrases have in general a length of 4 or 8 bars. This is
gression, influence of the tolerance window. particularly true for Mozart’s piano sonatas. Usually, thesi-

cal key remains constant within a phrase or at least withihdfa

Relationship between chords and local key: We have evaluated the phrase (whereag the harmony changes several times).isThi
two different methods for local key estimation. In the firseo ~ Why we chose to estimate the local key on segments of length co
(method 1), the probability of each chord at a given timeainsts responding to musical phrases. We have evaluated the taigori
used to estimate the key. In the second one (method 2), thdgho With different window lengths: 2, 4, 8 and 16 bars. The best re
are first estimated using a hidden Markov model and the lamal k sults were obtan_wed using a 2-bar length analysis W|ndoy|s iBh
is derived from the estimated chord progression. Labelracgu  Pecause, especially in slow movements, some modulatiang oc
results are presented in Table 1. It is difficult to selecttibet after only 2 bars. Passages with different local keys arg likely
between the two presented methods. Indeed, the best lapel ke t0 be mixed when a longer analysis window is used. The acgurac
results are obtained with (method 1) but it can be seen ireTabl ~ Of the results decreases with the length of the analysisowines
that method 2) slightly outperforms method 2) concerningalo  llustrated in Figure 3.
key segmentation. Tests on a larger database would be needed
clearly evaluate the performances of the two methods.

The analysis of the results piece by piece shows that there is 851 e T
a correlation between the estimation of the chords and tivaas
tion of the key. We expected that a good estimation of thedsor
would lead to a good estimation of the keys. This was corrobo-
rated when evaluating method 2). A good estimation in thedtho
estimation resulted in a good estimation in the local keysneas
a poor estimation of the chords resulted in a poor estimasfon
the local keys. A deeper analysis showed that if the choithest
tion errors consisted in confusions with harmonically elokords
(such as dominant or subdominant chords), the key was tiyrrec
estimated.

key label accuracy (%)

502

. , . . . .
4 6 . 8 10 12 14 16
window size (bars)

Figure 3: Key estimation results in case of method 1) and 2) ac

Importance of the metric structure: In Table 2, we present the ~ cording to the length of the key analysis window.

label accuracy results when the key analysis windows aracset

cording to the downbeat locations (OD, on downbeats) anchwhe Effect of the choice of the key templates: Several key templates
the starting point is not a downbeat (ND, no downbeats). Fo in have been proposed for global key estimation based on key tem
vestigate the hypothesis of the importance of the metricciire plates. We investigated the impact of the type of used key tem
on the local key estimation, we have positioned the stapiigt plates on the results. We evaluated the algorithm with 5gype
of the key analysis windows on a second beat in case of ND (no of templates: Krumhansl, Temperley, diatonic, a combaratf
downbeats). It can be seen that the label accuracy resaltsear Temperley and diatonic and finally a newly proposed key tetepl
ter when the starting point is a downbeat. This is because keywhere all notes have the same weight in the template except th
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Table 3: Local keys segmentation accuracy (SA) resultsguain
2-bars length window and the newly proposed templates. ddeth . ] _
1): based on the chordgram. Method 2): based on the chord pro- [7] Steffen Pauws. Musical key extraction from audiol $MIR,

gression. two tolerance windows: = 1 bar andw = 2 bars.

[6] O. Izmirli. Template based key finding from audio.l{dMC,
pages 211-214, Barcelona, Spain, 2005.

pages 96-99, Barcelona, Spain, 2004.
[8] Y. Zhu and M.S. Kankanhalli. Precise pitch profile featur

keys method 1) | keys method 2)
w=1|lw=2||w=1|w=2

SA precision | 0.5723 | 0.8196 | 0.4489 | 0.6805
SA recall 0.4730 | 0.6874 | 0.7131 | 0.8691
SAf-measure| 0.5170 | 0.7327 | 0.5451 | 0.7514

one corresponding to the tonic, which has a triple weight bést

results were obtained using the newly proposed templatée T
next best results were obtained with the combination of T&amp

ley and diatonic key templates. This corroborated the éxyatal
results obtained in the case of global key estimation infié][41].

Smooth modulations: The key segmentation accuracy results are

presented in Table 3 with two tolerance windows:= 1 bar and

(9]

(10]

(11]

w = 2 bars. It can be seen that the segmentation accuracy result§12]

increase a lot when we use a larger tolerance window. Thi®ean
explained by the fact that changes in keys are a very smooth pr

cess that often takes several bars. It is thus difficult tonede the
precise local keys boundaries. It would be interesting tmfdate
and add a “local key transition” state in the model. This fsfier

future works.

5. CONCLUSION AND FUTURE WORKS

(13]

(14]

In this paper, we have presented a local key finding model that [15]

segments an audio file in sections labeled with local keyse Th
method combines and extends several previous methodssepo

for global key estimation. The local key progression overetiis
modeled according to the harmonic and the metric structdites

local key segmentation has a musical meaning and is indepénd
of the tempo of the piece. Encouraging results are obtainea o

set of classical pieces with complex harmony structure &ogvs
that the key progression is clearly related to the harmonitthe
metric structures. Analysis of the results shows that aafuit

improvement of key segmentation may be achieved in thedutur
using a more complex model that includes key transitionsspar

We also plan to introduce chord functional analysis infdiorato
improve the results.
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