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Abstract

Light and flexible rotating parts of modern turbine engines operating at super-

critical speeds necessitate application of more accurate but rather computationally

expensive 3D FE modeling techniques. Stacked disks misalignment due to manufac-

turing variability in the geometry of individual components constitutes a particularly

important aspect to be included in the analysis because of its impact on system dy-

namics. A new parametric model order reduction algorithm is presented to achieve

this goal at affordable computational costs. It is shown that the disks misalignment

leads to significant changes in nominal system properties that manifest themselves

as additional blocks coupling neighboring spatial harmonics in Fourier space. Conse-

quently, the misalignment effects can no longer be accurately modeled as equivalent

forces applied to a nominal unperturbed system. The fact that the mode shapes

become heavily distorted by extra harmonic content renders the nominal modal

projection based methods inaccurate and thus numerically ineffective in the context

of repeated analysis of multiple misalignment realizations. The significant numeri-

cal bottleneck is removed by employing an orthogonal projection onto the subspace

spanned by first few Fourier harmonic basis vectors. The projected highly sparse

systems are shown to accurately approximate the specific misalignment effects, to

be inexpensive to solve using direct sparse methods and easy to parameterize with

a small set of measurable eccentricity and tilt angle parameters. Selected numerical

examples on an industrial scale model are presented to illustrate the accuracy and

efficiency of the algorithm implementation.

Keywords: Rotordynamics ; model order reduction ; cyclic symmetry ; multi-stage ;
misalignment ; parametric uncertainty

1 Introduction

Quantification of the effects of inevitable manufacturing variability is of growing impor-
tance to the design of engineering structures. In particular, flexible rotor-bearing systems
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show significant sensitivity of vibration behavior to variability in system properties. One
important issue arising at turbine engine design and assembly stages is accurate predic-
tion of the effects of stacked disks misalignment on rotor assembly flexural behavior.

Many industrial applications benefit from the classical rotordynamics analysis ap-
proaches established on one-dimensional beam type behavior hypothesis. The associ-
ated models have proved particularly effective means in many practical situations being
relatively simple to build (although it may take considerable amount of manual effort
to tune them [18]), leading to low order compact systems to solve. However, mod-
ern light-weight turbine engine designs feature rotating parts with complex geometrical
configurations composed of flexible bladed disks elastically attached to thin-walled flex-
ible shafts. Consequently, application of classical modeling techniques to such systems
leads to disproportionally large modeling errors. The major shortcomings of 1D models
are manifested in their failure to properly account for inertial coupling effects between
bladed disks and shafts as well as for deformation and stress stiffening effects of shaft
cross-sections [12, 4, 11, 5]. Therefore for that class of problems more accurate but rather
computationally expensive 2D or 3D rotordynamics techniques are unavoidable.

There have been several papers dealing with advanced modeling of rotor contin-
uum. 2D Fourier axisymmetric FE formulation for rotordyanamics analysis has been
studied in [23]. The theory involves some simplification of rotor geometry to a perfect
axisymmetrical configuration. The paper by Jacquet-Richardet et al. [12], see also [3],
describes a full 3D solid FE formulation to analyze spatially periodic systems (such as
rotor assemblies with bladed disks). Practical application of it is somewhat limited by
the assumption of same number of elementary sectors per rotor assembly, which can be
worked around by employing the multi-stage cyclic symmetry coupling technique intro-
duced in [15]. Spatial symmetry hypothesis of these techniques allows to reduce the size
of the original problem by analyzing decoupled spatial harmonics separately.

For the problems of practical interest with deviations from symmetry the computa-
tional effort required to model the rotor continuum using 3D FE formulation is rather
substantial. Both the large dimension of system and the large computational require-
ments render such models inadequate for repeated calculations necessary to examine all
possible combinations of model parameters at various operating conditions. Moreover,
model properties are often functions of rotational speed adding considerably to the de-
gree of complexity. To facilitate the analysis, it is essential to have accurate low-order
models that are significantly faster to solve than the original full model.

In fact, there is an extensive literature in the area of model order reduction methods
applied to rotordynamics problems. Many of these reduction techniques are derived using
a projection-based framework, in which the system variables and governing equations
are projected onto low dimensional subspaces. These methods include either balanced
truncation [20, 8, 14] or projection onto modal subspace [3, 8, 13, 9, 6]. In the context
of parameter-dependent systems analysis, the resulting model is of lower order, but it
is not necessarily valid for all combinations of parameters. Many techniques developed
for non-rotating structures analysis, for the most part straightforward extensions of the
modal projection based algorithms, assume small parameter variation around a nominal
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point allowing to reuse the nominal modal basis vectors [2]. This approach is not always
appropriate leading to significant approximation errors as is the case with large variations
in geometry [10].

The main purpose of this paper is to present a new parameterized model order re-
duction technique to analyze the effects of variations in geometry caused by disk mis-
alignment on rotor global flexural behavior. The nominal rotor with realistic geometry
is discretized using 3D solid FE accounting for all rotational inertia effects in a body
attached frame at selected rotation speeds. Nominal rotational periodicity enables us
to manipulate FE meshes involving only one elementary sector per stage. The proposed
algorithm, for clarity and emphasis, is based on the orthogonal projection of system equa-
tions onto a subspace spanned by a few Fourier basis vectors, namely corresponding to
first three harmonics, which results in highly sparse systems. Most, if not all, of published
work in the area [7, 17, 1, 22, 19] models various deviations from a baseline model, termed
“faults”, (such as mass unbalance, rotor bow, misalignment, etc.) by representing them
in terms of equivalent forces applied to a nominal system. In the proposed method the
disks misalignment is introduced as perturbation to system matrices and corresponding
centrifugal forces. One of the main results of this paper is to carry out the idea of using
the discrete Fourier transform to decouple perfectly symmetrical systems (cyclic symme-
try) one step further and to show that in fact, the subspace spanned by Fourier basis
vectors can be efficiently reused to project certain type of geometrical perturbation terms
owing to their special structure. It is shown that in so doing decent approximation prop-
erties can be achieved, while computational efficiency is retained, and above all, costly
modal reanalysis for each misalignment realization can be avoided. Special attention
has been given to parametrization of the ROM (Reduced Order Model). Disk misalign-
ment “faults” are generated on-line as multiplicative perturbation terms, a function of
small number of measurable eccentricity and tilt angle parameters, without resorting to
FE software. Together with provided computational strategies it significantly simplifies
and accelerates repeated ROM update and solution using modern direct sparse meth-
ods. The numerical examples illustrate harmonic contamination of low frequency modes
brought about by the additional blocks coupling neighboring spatial harmonics in Fourier
space. This leads to some insights that appear to be new as well as simple explanation
of known physical phenomenæ, i.e., discussed in the literature effects of misalignment on
the harmonic content of vibration response.

The article is organized as follows. In Section 2 the 3D rotordynamics formulation for
systems featuring cyclic symmetry is reviewed and the basic notions used in the construc-
tion of our computational technique are introduced. Section 3 contains the numerical
examples examining the effects of disk misalignment on system response, confirming the
accuracy of the proposed algorithm and presenting a statistical analysis case. Concluding
remarks are given in Section 4.
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2 Theoretical background

2.1 3D rotordynamics equations of motion

Consider a FE model of a lightly damped rotating structure. The equations of motion
in the body fixed coordinate frame assuming constant angular velocity can be expressed
as [12, 11]

[KE + KG(uS)− KC(Ω
2)]uS = FC(Ω

2) (1)

MüD + C(Ω)u̇D + [KE +KG(uS)− KC(Ω
2)]uD = F (2)

where M ∈ R
n×n is a symmetric positive definite mass matrix, KE ∈ R

n×n is a symmetric
semi-definite elastic stiffness matrix. Two rotational aspects are taken into account. The
Coriolis forces proportional to the velocities are introduced through a skew-symmetric
positive semi-definite pseudo-damping matrix C ∈ R

n×n. The centrifugal forces generate
spin softening matrix KC(Ω

2) ∈ R
n×n and a geometric stiffness matrix KG(uS) ∈ R

n×n

representing stress stiffening effects. FC ∈ R
n denotes the nodal centrifugal forcing

vector, Ω is the rotational speed. uS ∈ R
n is the static equilibrium position of the

structure under centrifugal loading found by solving nonlinear equation (1), uD ∈ R
n is

the small dynamic displacement around the static equilibrium and F ∈ R
n is a harmonic

excitation vector. Note the dependence of system matrices on rotor speed Ω.
Nominal bladed disks-shaft assemblies at each individual stage feature rotational

periodicity that in a cylindrical coordinate frame implies the block-circulant structure
of system matrices [25]. Using that property, we can decouple both static (1) and
dynamic (2) equations at an individual stage level into N/2 smaller problems by applying
discrete Fourier transform

(W∗ ⊗ I )[KE + KG(uS)− KC(Ω
2)](W ⊗ I )(W∗ ⊗ I )uS = (W∗ ⊗ I )FC(Ω

2) (3)

(W∗ ⊗ I )M(W ⊗ I )(W∗ ⊗ I )üD + (W∗ ⊗ I )C(Ω)(W ⊗ I )(W∗ ⊗ I )u̇D+

(W∗ ⊗ I )[KE + KG(uS)− KC(Ω
2)](W ⊗ I )(W∗ ⊗ I )uD = (W∗ ⊗ I )F (4)

where the discrete Fourier transform expressed in matrix form is defined as

W =
1√
N




1 1 · · · 1

1 e−j 2π
N · · · e−j

2(N−1)π
N

1 e−j 4π
N · · · e−j 4(N−1)π

N

...
...

. . .
...

1 e−j 2(N−1)π
N · · · e−j 2(N−1)(N−1)π

N




here N denotes the number of elementary sectors. The system equations of motion then
become

[K̃hE + K̃hG(ũhS)− K̃hC(Ω
2)]ũhS = F̃hC(Ω

2) (5)
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M̃h
¨̃uhD + C̃h(Ω) ˙̃uhD +

[
K̃hE + K̃hG(ũhS)− K̃hC(Ω

2)
]
ũhD = F̃h (6)

where subscript h describes the association to a Fourier harmonic. In most practical
situations one can strongly reduce the order of the problem by selecting first harmonics
h = 0 and h = 1 (h = 0 corresponds to torsion and longitudinal displacements, h = 1 to
bending). Truncated higher order harmonics are mainly responsible for disk dominated
motion or for deformation of shaft cross section having little to no effect on the global
bending behavior of the rotor assembly [11].

2.2 Modeling of disk misalignment

Consider a multi-stage system of S cyclic symmetrical structures sharing the same axis
of rotational symmetry. As it is known, the result of changes due to manufacturing
imperfections in the geometry on inter-stage interfaces may result in static or dynamic
imbalances in rotor plus non-isotropic variations of stiffness [21]. Assuming that other
imperfections of each stage are negligible, i.e. they preserve rotational symmetry, we
can describe these effects by orientation and position of an individual stage given by an
arbitrary rotation in terms of two Euler angles θx, θy and two offsets ∆x,∆y, as shown
in Fig. 1.

Z

W

Y

qy

qx

X

∆y

∆x

X

Y

Figure 1: Stacked disks assembly misalignment (exaggerated) expressed in terms of two
Euler angles θx, θy and two offsets ∆x,∆y.

Thus the perturbed position of a node that belong to nth sector of sth stage in
cylindrical coordinate system in which the Z-axis is coincident with the shaft axis of
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rotation can be computed in three steps as follows

{x
y
z

}
= Rz

{r
θ
z

}

{x′

y′

z′

}
= RyRx

{x+∆x
y +∆y

z

}

{r′

θ′

z′

}
= R

T
z R

′T
z

{x′

y′

z′

}

(7)

where the rotation matrices

Rx =



1 0 0
0 cos θx − sin θx
0 sin θx cos θx


 ,Ry =




cos θy 0 sin θy
0 1 0

− sin θy 0 cos θy




Rz =



cosα − sinα 0
sinα cosα 0
0 0 1


 ,R′

z =



cos∆θz − sin∆θz 0
sin∆θz cos∆θz 0

0 0 1




α = 2(n−1)π/N denotes nth elementary sector rotation angle about the axis of symmetry
and ∆θz is the perturbation of that angle due to rotations and translations in Cartesian
coordinate frame.

∆θz = arccos(x′/r′)− arccos(x/r) if y′ ≥ 0

∆θz = −(arccos(x′/r′)− arccos(x/r)) if y′ < 0

Using the definitions above we can write the equations motion of a misaligned stage in
cylindrical coordinate frame

[PT (KE − KC(Ω
2))P + K̂G(ûS)]ûS = F̂C(Ω

2) (8)

P
TMP¨̂uD +P

TC(Ω)P ˙̂uD + [PT (KE − KC(Ω
2))P+ K̂G(ûS)]ûD = F (9)

here P = Bdiag
i=1,...,nnodesN

{RzR
′
zR

T
yxR

T
z }, and nnodes denotes the number of nodes in an

elementary sector.
Several basic simplifying assumptions can be taken to reduce computational effort

without compromising the accuracy. As pointed out in [16], the form of the mass matrix
of 3D solid finite elements does not change under orthogonal coordinate transformation,
i.e. P

TMP = M. The cost of FE reevaluation of the nodal centrifugal force for each
misalignment scenario can be avoided by employing the lumped mass formulation, i.e.
the ith nodal centrifugal force can be expressed in the form

f̂iC(Ω
2) ≈ Ω2µir

′

i (10)
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where µi is the lumped mass entry, r′i is perturbed radial coordinate in the cylindrical
frame.

Because the deformations due to centrifugal forcing are assumed to be small in this
problem due to low rotational speeds Ω and low magnitude of uncertain parameters
(θx, θy,∆x,∆y), the perturbed centrifugal stiffening matrix can be reasonably approxi-

mated as the elastic stiffness matrix, i.e. K̂G(ûS) = P
TKG(uS))P. The validity of that

assumption will be verified numerically on the industrial scale model later in the paper.
Employing these simplifications, the equations of motion of the misaligned stage take

form
P

T (KE + KG(uS)− KC(Ω
2))PûS = F̂C(Ω

2) (11)

M¨̂uD +P
TC(Ω)P ˙̂uD +P

T (KE + KG(uS)− KC(Ω
2))PûD = F (12)

Eq. (11) can be interpreted simply as follows: the effect of misalignment is introduced by a
multiplicative perturbation to stiffness matrix accounting for its non-isotropic variations,
plus centrifugal forcing that includes mass imbalance forces.

2.3 Misalignment representation in Fourier domain

The preceding discussion was primarily concerned with modeling of misalignment in
cylindrical coordinate system. For reduced order model formulation we explore the
Fourier domain representation of the multiplicative perturbation matrix P. Let the
nominal elastic plus geometric stiffness matrices be partitioned into H harmonic blocks,
then we can introduce the misalignment as follows

̂̃
K = (W ⊗ I )PT (W∗ ⊗ I ) B̃diag

h=0,...,H
{K̃hE + K̃hG − K̃hC}(W ⊗ I )P(W∗ ⊗ I ) (13)

The Discrete Fourier Transform (DFT) of each component of P can be evaluated sep-
arately, moreover one may consider the multiplication P̃ = (W ⊗ I )P(W∗ ⊗ I ) as
application of the transform ndofndof times to N ×N matrices, where ndof is the num-
ber of degrees of freedom of an elementary sector, N is number of sectors. Clearly,
the rotation matrices Rx and Ry constant for all sectors are invariant under transform
(W ⊗ I )RyRx(W

∗ ⊗ I ) = RyRx.
It can be shown that a DFT of a harmonic train that generate cosine and sine entries

of the rotational matrices Rz and R
′
z are of the form [24]

cos

(
2πnr

N

)
δ(|n −m|) ⇔ 1

2
(δ(|u− v| − r) + δ(|u − v| − (N − r)))

sin

(
2πnr

N

)
δ(|n −m|) ⇔ 1

2
(−jδ(u − v − r)− jδ(u − v − (N − r))+

+ jδ(v − u− r) + jδ(v − u− (N − r)))

(14)

where δ is the Dirac delta function, n,m, u, v = 1, . . . , N are row and column indices of
an N × N block and its transform correspondingly. The details of derivation are given
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in the Appendix. For rotational matrix Rz, where frequency of the harmonic periodic
train is r = 1, this leads to tri-diagonal matrices of the form

R̃cosα =




0 0.5 0.5

0.5
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . 0.5
0.5 0.5 0




R̃sinα =




0 −j0.5 j0.5

j0.5
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . −j0.5
−j0.5 j0.5 0




Note that for real conjugate-even sequences with real-valued DFT employed the entries
0.5 and ±j0.5 at δ(|u − v| − (N − r)) locations disappear. It follows readily that the
transform (W ⊗ I )Rz(W

∗ ⊗ I ) need not be evaluated numerically.
The non-zero structure of the transform of matrix R

′
z is again banded due to nearly

harmonic periodic nature of ∆θz with frequency r = 1. Therefore the transformed entries
cos∆θz will be dominated by double frequency r = 2 components, while sin∆θz entries
will retain the same r = 1 frequency. Observe, that the exact values of the transformed
matrices will be dependent on the phase of the periodic train as a function of misalignment
parameters (θx, θy,∆x,∆y) and thus have to be computed.

With the assumption of small in norm perturbation the product of the nominal block-
diagonal stiffness matrix with Fourier domain representation of the misalignment matrix
given in Eq. (13) will essentially result in a block-banded matrix

̂̃
K =




B0 B0,1 B0,2

BT
0,1

. . .
. . .

. . .

BT
0,2

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . BH−2,H

. . .
. . .

. . . BH−1,H

BT
H−2,H BT

H−1,H BH




where 2ndof ×2ndof submatrix Bh is an original perturbed harmonic block and Bh,h+1 is
a 2ndof ×2ndof term introduced by pre- and post-multiplication that couples neighboring
harmonics, such that ‖Bh,h+1‖ ≪ ‖Bh‖ for small variations of parameters (θx, θy,∆x,∆y).
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Then other coupling off-diagonal blocks of higher order are negligible in norm ‖Bh,h+2‖ ≪
‖Bh,h+1‖. In particular, that result implies that one may obtain a reasonable accuracy
reduced order system to analyze harmonic one behavior through a simple truncation by
retaining first three harmonic blocks with respective coupling terms.

2.4 Interstage coupling and assembly

Employing small magnitude perturbation assumption that does not significantly change
interstage interface the connection of misaligned adjacent stages can be achieved through
multi-stage cyclic symmetry coupling. Consider the displacements compatibility condi-
tion between adjacent stages s and s+ 1 defined in physical coordinates by

Au
s
b − u

s+1
b = 0 (15)

in which A is a Boolean connectivity matrix which makes the two interstage meshes
compatible. The multi-stage cyclic symmetry coupling procedure defines independent
compatibility relations between compatible (in terms of harmonic index) cyclic compo-
nents of adjacent stages. Accordingly, given a cyclic harmonic of the rotor n, Eq. (15)
is rewritten using cyclic harmonics ps(n) and ps+1(n) defined according to aliasing of
respective Fourier bases of stage s and s+ 1:

(ws+1
ps+1(n)

∗ ⊗ I)A(ws
ps(n)

⊗ I)ũs
b,ps(n)

− ũ
s+1
b,ps+1(n)

= 0 (16)

w
s
ps(n)

a column of Fourier transform matrix associated with harmonic ps(n) ∈ [0, Ns] of
stage s, subscript b denotes degrees-of-freedom on the inter-stage boundary. For further
details, please refer to [15]. In order to eliminate the duplicated cyclic components of the
interstage boundary of stage s+ 1 a rectangular coupling matrix is defined as

T =




I b,s 0 0 · · ·
0 I i,s 0 · · ·
Bp 0 0 · · ·
0 0 I i,s+1 · · ·
...

...
...

. . .




(17)

where
Bp = (ws+1

ps+1(n)

∗ ⊗ I)A(ws
ps(n)

⊗ I)

It follows that the equations of motion of the coupled misaligned rotor system, for
h = 0, . . . , 2 can be expressed as

T T
P̃

T [K̃hE + K̃hG − K̃hC ]P̃T ̂̃uhS = ̂̃
FhC (18)

T T M̃hT ¨̃uhD + T T
P̃

T C̃hP̃T ˙̃uhD + T T
P̃

T
[
K̃hE + K̃hG − K̃hC

]
P̃T ̂̃uhD = F̃h (19)
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2.5 Algorithm for repeated ROM evaluation

The main important result of the proposed method is that the complexity of solving
Eqs. (18) and (19) can be greatly reduced if the linear systems are solved sequentially
instead of calculating the matrix product, a highly populated matrix, and then solving it.
However, typically the nominal uncoupled system is severely ill-conditioned due to the
presence of rigid body modes. To improve the conditioning of nominal uncoupled system
we propose to take advantage of the orthogonality properties of Fourier coefficients. If
we define a rectangular coupling matrix

T0.5 = T




0.5I b,s 0 0 · · ·
0 I i,s 0 · · ·
0 0 0 · · ·
0 0 I i,s+1 · · ·
...

...
...

. . .




(20)

the effect of the repeated coupling-uncoupling on the nominal system T0.5T T K̃hT T T
0.5

would amount to just averaging of matrix entries on the interstage boundaries having
negligible effect on perturbed system global dynamic. Furthermore, its LU factors may
be reused for different misalignment realizations. In absence of any perturbation the
repeated coupling-uncoupling does not modify the nominal system

T T T0.5 = I (21)

The combined results of two preceding sections for reduced order unbalance response
analysis are summarized in Algorithm 1. The dynamic response analysis can be imple-
mented in similar fashion.

3 Numerical examples

In this study we consider a rotor assembly consisting of four high pressure compressor
integrally bladed discs composed of 36, 60, 84 and 96 sectors respectively connected to
a turbine disk featuring 120 sectors. The finite-element mesh of elementary sectors is
depicted in Fig. 2. The assembly is analyzed in body attached frame that rotates about
the undeformed centerline of the bearings with a constant speed. It is simply supported at
the extremities, isotropic stiffness and damping at discrete nodal locations are taken into
account. The bearing stiffness and damping coefficients are kxx = kyy = 4.58×108 N/m,
kxy = kyx = 7.63×107 N/m, cxx = cyy = 1.52×106 Ns/m correspondingly, while internal
rotor material damping is neglected.

Lowest frequency complex eigenmodes are calculated at 60 discrete frequency points
10 Hz ≤ Ω ≤ 600 Hz with a step 10 Hz using multi-stage cyclic symmetry approach. The
evolution of complex natural frequencies in rotating frame is given in Fig. 3(a). Same
frequencies in inertial frame are depicted in Fig. 3(b), where the relationship between
the frames is defined as ωrotating = ωfixed±hΩ with h denoting the nodal diameter with

10



Algorithm 1 Reduced order unbalance response analysis of rotors with stacked disks
misalignment effect

1: Let Ω = [Ω1, . . . ,Ωm] be a set of m discrete rotation frequencies
2: Let n be a number of misalignment realizations
3: Extract elementary sector matrices of each stage Ks

E ,K
s
G(Ωi),K

s
C(Ω

2
i ) with FE soft-

ware
4: Form interstage coupling matrices T ,T0.5 for a set of retained harmonics h = 0, . . . , 2

5: for i = 1, . . . ,m do

6: Denote K̃h = K̃hE + K̃hG(Ωi) + K̃hC(Ω
2
i )

7: Factorize nominal coupled matrix T T
K̃hT

8: for j = 1, . . . , n do

9: Generate parameters (θj,sx , θj,sy ,∆xj,s,∆yj,s)

10: Form P̃(θj,sx , θj,sy ,∆xj,s,∆yj,s)

11: Compute centrifugal forcing
̂̃
FC(θ

j,s
x , θj,sy ,∆xj,s,∆yj,s,Ω2

i )
12: Solve the static problem in three steps:

13: ũ = (T T
P̃TT0.5)−1 ̂̃FC

14: ũ = (T T
K̃hT )−1

ũ

15: ũ = (T T
0.5P̃T )−1

ũ

16: end for

17: end for

Figure 2: Finite element model of a multi-stage rotor assembly.
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Figure 3: Evolution of natural frequencies of the nominal system with rotating speed in
rotating frame (a), transformed to inertial frame (b). Synchronous whirl is marked as
dashed line.

sign depending on the traveling wave direction. Note that synchronous and 2X whirls
plotted to locate critical speeds are marked with dashed lines. The first critical speed
in rotating frame occurs at about Ω = 130 Hz corresponding to a forward whirl global
bending mode. However, the first critical speed in inertial frame is observed at about
Ω = 280 Hz, which corresponds to the cancelation of the apparent static stiffness in the
rotating frame [5].

3.1 Effect of misalignment on eigenmodes and system response

First we investigate the effects of stacked disks misalignment on eigenmodes of the system.
A misalignment scenario was introduced through a set of tilt angles and offsets presented
in Tab. 1 applied to a full FE reference model and a set of lowest frequency complex
eigenmodes was computed.

Table 1: Misalignment parameters

Stage number θx,
◦ θy,

◦ ∆x,mm ∆y,mm

1 0.01 0.015 1 -0.95

2 -0.05 -0.09 0.3 0.05

3 -0.06 -0.045 -0.75 -2.8

4 0.0443 0.0225 0.85 0.57

5 0.08 -0.095 -0.39 -0.45

Figs. 4(a) and 4(b) present the difference between nominal and perturbed imaginary
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and real parts of complex eigenvalues calculated at Ω = 200 Hz. It should be noted that
eigenvalues are not significantly affected by the misalignment, with maximum difference
less than 0.3 percent for the lowest frequency mode. The observation strongly correlates
with experimental data indicating that the resonance peaks at critical speeds can be
reliably predicted by the Campbell diagram built from a nominal model. Eigenvec-
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Figure 4: Difference between nominal and perturbed imaginary (a) and real (b) parts of
complex eigenvalues calculated at Ω = 200 Hz.
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Figure 5: MAC value between nominal and perturbed complex eigenvectors calculated
at Ω = 200 Hz. Harmonic 0 and 2 modes are highlighted with red solid and green dashed
boxes respectively.

tors of the nominal and perturbed systems are compared in Fig. 5 in terms of complex
MAC values. It appears that the eigenspace is affected more seriously by the effect of
misalignment as reflected by low MAC values. Clearly, the mode distortion is the ma-
jor reason why nominal eigenvectors cannot be used in modal projection based model
reduction technique. It can also be seen in Fig. 5 that in general, harmonic one modes
seem to be less stable under perturbation featuring lower MAC coefficients, whereas the
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modes of zero and second harmonic are strongly correlated with their original unper-
turbed counterparts. In order to gain better understanding of the effect of perturbation
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Figure 6: Harmonic content of the first bending mode corresponding to 74 Hz natural
frequency at Ω = 200 Hz and expressed in terms of norms of each individual stage. Norm
of real part of nominal eigenvector (a), imaginary part (b), norm of real part of perturbed
eigenvector (c) and imaginary part(d).

on eigenvectors we calculate the harmonic content of real and imaginary parts of the
first bending and the next in spectrum zero nodal diameter modes at Ω = 200 Hz, de-
picted in Figs. 6 and 7 correspondingly. Examination of the harmonic content of the
modes yields significant insight. Both perturbed harmonic zero and harmonic one modes
become contaminated mainly by the closest neighboring harmonics, and display other
harmonic components to a lesser extent. The observation is consistent with the banded
non-zero structure of the perturbed system matrices in Fourier domain - the amount of
harmonic contamination is proportional to the norm of harmonic coupling blocks intro-
duced by perturbation. The acquired additional harmonic content is most discernible in
case of 257 Hz perturbed harmonic zero mode. The norm of harmonic one content in
the imaginary part of eigenvector is higher than the one of the original harmonic zero
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Figure 7: Harmonic content of zero nodal diameter mode corresponding to 257 Hz natural
frequency at Ω = 200 Hz and expressed in terms of norms of each individual stage. Norm
of real part of nominal eigenvector (a), imaginary part (b), norm of real part of perturbed
eigenvector (c) and imaginary part(d).

content (see Fig. 7(d)), which can also be visualized using FE model in Fig. 8.
Next, we examine the effects of disk misalignment on static response. The response

to centrifugal forcing for both nominal and misaligned system calculated at Ω = 200 Hz
is depicted in Fig. 9. While the nominal response is a pure harmonic zero displacement
field, one can notice the dominance of harmonic one component in the response of the
perturbed system. Fig. 10 shows the contribution of first four harmonics to the misaligned
system unbalance response in 0-600 Hz frequency range. The harmonic decomposition
is consistent with [22]. General perception is that both 1X and 2X (two times the
rotation speed) components should be present in the response of a misaligned system
with 1X being dominant, whereas the contribution of 2X vibration grows with severity
of misalignment. The physical source of these effects is identified as a rotor bow and
rotor asymmetry, respectively. Clearly, the magnitude of the response will be affected by
the mode distortion phenomena discussed earlier that characterize misalignment. Thus,
257 Hz harmonic zero mode distorted by harmonic one component may be excited by
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(a) (b)

Figure 8: Perturbed harmonic zero modeshape corresponding to 257 Hz natural frequency
at Ω = 200 Hz rotational speed: real part (a) and imaginary part (b). The imaginary
part of the modeshape is dominated by harmonic one component showing the effect
misalignment.

(a) (b)

Figure 9: Nominal (a) and misaligned (b) system response under centrifugal forcing.

misaligned system centrifugal forcing dominated by both engine orders, zero and one,
contributing significantly to 1X response magnification.

The effect of disk misalignment on harmonic response of the system excited by EO1
and EO2 forward traveling wave applied to bearing support nodes is shown in Fig. 11.
It can be seen that the coupling between harmonic blocks introduced by perturbation,
the reason of harmonic contamination of mode shapes, can cause significant response
amplification, additional resonance peaks not observable in the nominal response as well
as extra harmonic content other than the one of excitation. Observe that the misaligned
system response to EO1 excitation is dominated by harmonic 0 component, whereas EO2
forcing brings about significant harmonic 1 response.
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Figure 10: Comparison of nominal and misaligned systems unbalance response, the latter
is shown decomposed into four harmonic components.
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Figure 11: Comparison of nominal and misaligned system dynamic response under syn-
chronous harmonic 1 (a) and 2X harmonic 2 (b) forward traveling wave excitation. The
misaligned system response is shown along with its dominant harmonic components.

3.2 Accuracy of the proposed method

In the following example the proposed reduction technique is applied to form a reduced
order model. To show its effectiveness the unbalance response is compared against the re-
sults calculated with full (360◦) misaligned rotor-bearing system. Fig. 12(a) shows ROM
accuracy in terms of norm of global response, same results are compared in Fig. 12(b) in
terms of MAC correlation coefficients. Obviously, the ROM has been shown to accurately
represent the centrifugal effects over the entire range of operating speeds in both sub-
and super-critical regions. It slightly over-predicts the magnitude of response compared
to the reference model. The MAC value is consistently over 0.97 showing the effect of
deteriorating accuracy as rotation speed increases due to geometrical stiffness approxi-
mation. The response of nominal system excited by same unbalance forces is presented
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Figure 12: Norm of the unbalance response calculated with ROM, full (360◦) FE and
unperturbed model excited by the unbalance forcing (a). Note that the latter consistently
underestimates the response. MAC values of the unbalance response between ROM and
reference FE model (b).

for comparison. It is evident that modeling of misalignment only with equivalent forces
consistently underestimates the global response due to unmodeled effect of harmonic
coupling and equivalently modal distortion.

3.3 Statistical analysis example

In this example, we consider a baseline model of the multi-stage rotor assembly intro-
duced above (see Fig. 2). The reduced order model is constructed by projection, retaining
first three Fourier harmonics, which results in a ROM of order 56,820 DOF. Owing to
the fact that the most significant cause of excessive rotor vibration is rotor mass unbal-
ance, which manifests itself as severe 1X vibration, the dynamic characteristic of primary
interest is steady rotation speed unbalance response. Therefore, in Monte-Carlo simu-
lations we carry out a static analysis under centrifugal loading measuring the deflection
at bearing nodes. For simplicity, the nominal model is first perturbed by a set of mis-
alignment parameters θsx, θ

s
y,∆xs,∆ys generated as statistically independent Gaussian

random variables with zero mean and a standard deviation (0.1◦, 0.1 mm). The random
realizations of the amplitude of unbalance response at both bearing locations are shown
in Fig. 13 along with the ensemble mean and percentiles. Observe, that the unbalance
response levels at 99th percentile can reach from 7, between critical speeds, up to 20, at
a critical speed, times of those at 5th percentile.

Next, MCS with a sample size 2000 is carried out to test the convergence of the
response statistics. Fig. 14 displays ensemble mean and variance with respect to the
number of samples; a sample size 1000 is found to be adequate for accurate analysis.
Fig. 15 shows the pdf obtained from 1000 Monte-Carlo runs for three selected rotation
frequencies, namely in the sub-critical region, at first critical speed and in the area close
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Figure 13: Direct Monte-Carlo simulation of the unbalance response with random mis-
alignment parameters generated as statistically independent zero mean, (0.1◦, 0.1 mm)
standard deviation Gaussian random variables. Norm of 1X harmonic content of the
unbalance response for 100 realizations, 99%, 50% and 5% of points at bearings 1 and 2
are shown in (a) and (b) correspondingly.

0 500 1000 1500 2000
0.5

1

1.5

2

2.5

3x 10
−3

Number of samples

N
or

m
 o

f r
es

po
ns

e,
 m

m

 

 

Brg 1
Brg 2

(a)

0 500 1000 1500 2000
0

0.5

1

1.5x 10
−6

Number of samples

N
or

m
 o

f r
es

po
ns

e,
 m

m

 

 

Brg 1
Brg 2

(b)

Figure 14: Evolution of the population mean (a) and variance (b) with the number of
samples. Each iteration we calculate norm of 1X content of the unbalance response at
two bearings at Ω = 10 Hz.

to the second critical speed. The observable differences in pdf shapes of two bearings at
three rotation speeds are consistent with the corresponding bending modeshapes: larger
variation is expected for a modeshape dominated by motion of that part of structure.

The statistically quantified levels of unbalance response are of importance while se-
lecting robust designs and manufacturing tolerances to avoid large amplitude response
within the operating range. An important ramification of imbalance induced excessive
1X vibration, the passage through a critical speed, is illustrated in the following example.
The 99th percentile of the unbalance response norm is computed at first critical speed
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Figure 15: Probability density functions of the static response at two bearings (1X com-
ponent) obtained at Ω = 10 Hz (a), Ω = 280 Hz (b) and Ω = 590 Hz (c). Note larger
variation in response at second bearing in the subcritical region and at first critical speed.
As we approach the second critical speed, the distribution at first bearing grows wider
consistent with the first and second bending modeshapes.

Ω = 280 Hz with two standard deviation values of misalignment parameters (0.5◦, 0.5
mm) and (1◦, 1 mm) for each stage separately, while those of other disks are kept at
(0.1◦, 0.1 mm) level. Assuming a typical industrial situation where an optimized stack-
ing orientation for each stage of the rotor assembly is a function of all individual disks
random geometries, we introduce a simple decreasing statistical dependence between mis-
alignment parameters θsx, θ

s
y,∆xs,∆ys of different stages s = 1, . . . 5. Thus, the selected

correlation coefficients are ρs,s±1 = 0.9, ρs,s±2 = 0.7, ρs,s±3 = 0.4 and ρs,s±4 = 0.1.
Fig. 16 shows the influence of the amplitude or random geometry variation of each indi-
vidual stage on the variation of global response calculated for two bearings at first critical
speed. The observed changes in 99th percentile of the response level with the additional
uncertainty at one stage agree with the physical intuition. It can be observed that the
relative importance of the manufacturing uncertainties in the geometry of the first and
the last interfaces outweighs the ones of the middle stages suggesting tighter tolerances
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Figure 16: 99th percentile of the unbalance response norm calculated at Ω = 280 Hz
resonance frequency at bearing 1 (a) and bearing 2 (b) obtained by increasing standard
deviation of random input parameters to (0.5◦, 0.5 mm) and (1◦, 1 mm) for each stage
separately, while those of others are kept at (0.1◦, 0.1 mm).

to ensure a reliable performance.
All the numerical experiments were conducted on an Intel Xeon Quad-Core 2.66 GHz

workstation, coded in FORTRAN employing PARDISO direct sparse solver. For com-
parison, one iteration of MCS with the ROM featuring 56,820 DOF requires 0.5 G of
RAM taking approximately 5 s counting both reduced order model update and static
analysis. An equivalent accuracy full order model has 929,160 DOF requiring 4 min for
static analysis and 17 G of memory (in-core version), whereas a realistic introduction of
disk misalignment into the full model would require FE reanalysis.

4 Concluding remarks

In this paper we have introduced a new parameterized model order reduction technique
for vibration analysis of rotor assemblies with variations in geometry induced by disk mis-
alignment using 3D FE formulation. The reduced model has been obtained by orthogonal
projection of system equations onto a subspace spanned by a few Fourier basis vectors
corresponding to first three harmonics. The disks misalignment has been introduced as
perturbation to system matrices as well as corresponding centrifugal forces. It has been
shown that the Fourier subspace can be efficiently reused to project the misalignment
geometrical perturbation terms owing to their special structure. The latter can be gen-
erated on-line as multiplicative perturbation, a function of small number of measurable
eccentricity and tilt angle parameters, without resorting to FE software. Computational
strategies have been provided that significantly simplify and accelerate repeated ROM
update and solution using modern direct sparse solver technology. Of particular interest
is the ability to repetitively introduce variation in geometry where the modal projection
based methods usually fail or numerically ineffective. The algorithm can therefore be
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advantageous in non-intrusive direct uncertainty quantification methods at design stage
and on-line optimum stacking at rotor assembly stage, specifically for modern light flex-
ible rotor designs operating in supercritical regions. The accuracy and performance of
the algorithm implementation has been illustrated with representative simulation exam-
ples, the results have been shown to match reference system over a practical range of
geometrical parameter variations and rotational speeds. The development has also been
instrumental in understanding of the inaccuracy of traditional analysis methods. It has
been shown numerically that the non-isotropic stiffness variation introduced as sparse
blocks coupling neighboring harmonics is the origin of additional 1X and 2X content in
the response of misaligned system. Continuing research effort is still needed with respect
to performance and accuracy of the proposed method and for a more general and effective
methodology accommodating other types of deviations from nominal symmetry over a
larger range of applications.
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5 Appendix

Consider a two dimensional signal

x[n,m] = cos

(
2πrn

N

)
δ(|n −m|)

n,m = 0, . . . , N − 1

Its Fourier domain representation can be expressed as

x[u, v] =

N−1∑

m=0

N−1∑

n=0

w−mv
N wnu

N cos

(
2πrn

N

)
δ(|n −m|) =

=
N−1∑

m=0

w−mv
N wmu

N cos

(
2πrm

N

)
=

1

2

N−1∑

m=0

w
m(u−v−r)
N +

1

2

N−1∑

m=0

w
−m(v−u−r)
N =

=
1

2
δ((u − v)− r)mod N +

1

2
δ((v − u)− (N − r))mod N =

=
1

2
δ((u− v)− r) +

1

2
δ((u− v)− (N − r)) +

1

2
δ((v − u)− r) +

1

2
δ((v − u)− (N − r))

u, v = 0, . . . , N − 1

where w−mv
N denotes complex exponential e−j 2π

N
mv, δ is the Dirac delta function.
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