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Abstract

Recent theoretical work has reported that chaos facilitates biodiversity. In this paper,
we study the lowest-dimensional Lotka-Volterra competition model that exhibits chaotic
trajectories, a model with four species. We observe that interaction and growth parameters
leading respectively to extinction of three species, or coexistence of two, three or four
species, are for the most part arranged in large regions with clear boundaries. Small islands
of parameters that lead to chaos are also found. These regions where chaos occurs are, in
the three cases presented here, situated at the interface between a non-chaotic four-species
region and a region where extinction occurs. This implies a high sensitivity of biodiversity
with respect to parameter variations in the chaotic regions. Additionally, in regions where
extinction occurs which are adjacent to chaotic regions, the computation of local Lyapunov
exponents reveals that a possible cause of extinction is the overly strong fluctuations in
species abundances induced by local chaos at the beginning of the interval of study. For
this model, we conclude that biodiversity is a necessary condition for chaos rather than a
consequence of chaos, which can be seen as a signal of a high extinction risk.

Keywords: biodiversity; chaos; Lotka-Volterra; competition model; Lyapunov exponent;
local Lyapunov exponent; simulated annealing

1 Introduction

Chaos was one of the great discoveries of the last century: The study of chaos has demonstrated
that deterministic systems could be unpredictable in the sense that nearby identical states can
tend to diverge at an exponential rate. Taking its roots in the deep and seminal work of
Poincaré (1892) chaos was revealed and “experienced” in the historical paper of Lorenz (1963),
where its system became one of the classic icons of modern nonlinear dynamics. Independently,
Anosov (1963), Arnol’d (1966), and Smale (1967), followed by Ruelle and Takens (1971), to
name a few, introduced the foundational concepts and tools that provided the appropriate
theoretical context declaring chaos a science. Nowadays it is widely recognised that chaos plays
an important role in complex systems such as climate dynamics or geophysical fluid dynamics
(Ghil et al., 2008). Chaos also arises in the most simple population models (May, 1974), and
although empirical observations of chaos in nature are rare, several examples suggest that some
populations indeed exhibit chaotic dynamics (see Oksanen and Oksanen 1992; Costantino et
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al. 1997; Turchin and Ellner 2000, for vole, lemming, and insect populations, and Benincà et
al. 2008, for plankton communities).

In the meantime, biodiversity became one of the principal topics of ecology. Classically, two
approaches can be used to study biodiversity: neutral theories (Bell, 2001; Hubbell, 2001) and
competition models (MacArthur and Levins 1967; Levin 1970; May 1974; Gilpin 1975; May
and Leonard 1975; Smale 1976; Huisman and Weissing 1999. See also, for example, Levins
1969; Durret and Levin 1994; Hanski and Gilpin 1996; Cantrell and Cosner 2003 for spatial
competition models).

In this work, we focus on the second approach. The competitive exclusion principle (Hardin,
1960) predicts that n species cannot coexist on fewer than n resources, although, in some
realistic situations, dozens of species can coexist on a few resources. This is known as the
paradox of plankton (Hutchinson, 1961). Non-equilibrium dynamics (Armstrong and McGehee,
1980), and chaotic fluctuations in species abundances have been proposed as an answer to this
paradox (Huisman and Weissing, 1999) supporting the idea that chaos can be favourable to
biodiversity.

However, is this favourable influence of chaos a general rule in competition models? In this
paper, we study whether, in competition models exhibiting chaotic and non-chaotic dynam-
ics depending on interaction and growth parameters, biodiversity is less or more sensitive to
parameter variations in the chaotic regions of the parameter space.

To deal with this question, we begin at the bottom of the hierarchy of mathematical models
of biodiversity, in the famous class of competitive Lotka-Volterra models (Lotka, 1925, 1932;
Volterra, 1931). For three or fewer interacting species, these models cannot have chaotic so-
lutions (Hirsch, 1982, 1985, 1988, 1989, 1990, 1991). For five or more species, any type of
complicated dynamics can occur (Smale, 1976). In the limit case of four species, Arnéodo et
al. (1982) and, more recently, Vano et al. (2006) have demonstrated that chaotic dynamics can
be exhibited. In that sense, the four-species Lotka-Volterra models are the simplest models of
biodiversity that support chaotic dynamics. Here, the four species compete for four resources
(see Armstrong and McGehee 1980, for an explanation); hence, the competitive exclusion prin-
ciple does not apply. However, as we shall see, competitive exclusion can still occur. Indeed,
extinction of one or more species occurs for a wide region in the parameter space.

For these four-species models, there are twenty determining parameters that render a sur-
gical dissection of the parameter space practically impossible. However, we shall present a
method that provides a partial but significant solution to the distribution of chaos, along with
biodiversity, in the parameter space. To reach this goal, we use an appropriately selected two-
dimensional plane in the 20-dimensional space that intersects parameter regions where chaotic
dynamics occur. Islands of chaos are thus exhibited as regions surrounded by regions leading
to the extinction of three species, or the coexistence of two, three or four species. Unexpectedly
well-organised structures of the parameter space are illustrated by this approach. The study
of biodiversity is then enhanced by this organisation.
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2 Materials and methods

2.1 The model

Models for interacting species have been introduced by Lotka (1925) and Volterra (1931). The
general form of these models is

dNi

dt
= riNi


1−

n∑

j=1

aijNj


 , i = 1 . . . n, (1)

where Ni denotes the population size of the ith species in proportion to its carrying capacity,
ri ≥ 0 denotes its intrinsic growth rate, and aij are intraspecific (if i = j) and interspecific (if
i 6= j) interaction coefficients. Depending on the sign of the coefficients aij , system (1) can
model predator-prey interactions, mutualism, or competition (Murray, 2002). In this paper, we
focus on the situation where each species competes with each other species, corresponding to
aij ≥ 0, for all i, j = 1 . . . n. Furthermore, we assume that the intraspecific competition terms
aii are positive, and because the Ni are expressed in terms of the carrying capacity, we get
aii = 1 for i = 1 . . . n. Under these assumptions, chaotic dynamics can be observed (Arnéodo
et al., 1982) for n ≥ 4. We place ourselves in the lowest-dimensional case, n = 4.

2.2 Measuring biodiversity

In this model, self-organised dynamics can drive one or more species to extinction, as t → +∞.
Several indices exist to measure biodiversity (e.g., Simpson’s index and Shannon’s index, which
take an evenness criterion into account; i.e., the relative abundance of the different species).
However, due to the small number of competing species, we choose to simply enumerate the
persisting species over time instead. For our purpose, we say that a species does not persist if,
after a certain time, it remains below an a priori fixed threshold ε.

2.3 Probing chaos in the parameter space

With a slight abuse of language, we can say that a point (resp. a region) in the parameter
space is chaotic if, for some initial condition, the parameters corresponding to this point (resp.
region) lead to chaotic trajectories.

To study the sensitivity of biodiversity with respect to parameter variations in chaotic
regions compared to non-chaotic regions, we first have to find chaotic regions in the param-
eter space. As underscored by the work of Vano et al. (2006), the quest for these regions is
challenging and requires powerful maximisation algorithms.

Classically, if the largest Lyapunov exponent of a system is positive, the system can be
defined to be chaotic (see e.g. Eckmann and Ruelle, 1985). The Lyapunov exponents are
the average exponential rates of divergence or convergence of nearby orbits in phase space.
The magnitude of the exponent reflects the time scale on which system dynamics become
unpredictable (Shaw, 1981). A stochastic minimisation algorithm applied to a well-chosen
auxiliary functional (Appendix A), permits us to detect three points in the parameter space
with positive positive Lyapunov exponents (by “Lyapunov exponent”, we mean the largest
Lyapunov exponent): (R1,A1), (R2,A2) and (R3,A3), where the Rx correspond to the growth
vectors (ri), and the Ax correspond to the interaction matrices (aij) in the model (1). The
corresponding Lyapunov exponents are λ1 = 0.04, λ2 = 0.01 and λ3 = 0.03, respectively. See
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Fig. 1 for examples of trajectories N(t) obtained with the above parameters. Exact parameter
values of the three chaotic points are provided in Appendix A.

Remark 2.1 Thanks to the algorithm presented in Appendix A, we were able to build several
chaotic points. Each successful run led to a different chaotic point, suggesting that, though rare
in measure in the parameter space, there are numerous chaotic regions. The point (R1,A1) was
chosen close to the chaotic point presented by Vano et al. (2006), but with a higher Lyapunov
exponent, whereas the two other chaotic points, (R2,A2) and (R3,A3), were chosen arbitrarily
among the obtained chaotic points. Incidentally, in the planar section P of the parameter space,
those three points belong to disconnected chaotic regions, showing that the set of chaotic points
in the parameter space is not convex.
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Figure 1: Chaotic trajectories N(t) = [N1(t) N2(t) N3(t) N4(t)], obtained with parameters
(R1,A1) (a), (R2,A2) (b), and (R3,A3) (c), with the initial datum N(0) = [0.1 0.1 0.1 0.1].

2.4 Structure of the parameter space with respect to biodiversity and chaos

We analyse the planar portion P of the parameter space containing the three points (Rx,Ax).
The elements in the two-dimensional plane P are of the following type:

(R,A) = (R1,A1) + α(R2 −R1,A2 −A1) + β(R3 −R1,A3 −A1), (2)

for all real numbers α, β such that the above conditions on (aij) and (ri) are fulfilled.
For 1.2 × 106 elements sampled uniformly in P, we computed the solution of (1), with

random initial data N(0) ∈ (0, 1)4, sampled under a uniform law. The ending time for the
computation was set to T = 4000.

We fixed ε = 10−3, and defined a species i as extinct at time T if its abundance Ni was

smaller than this threshold for all times in (
3T

4
, T ). Then, for each computed solution, we

measured the number of persisting species at time T .
The Lyapunov exponent λ associated with each parameter, and each initial datum N(0),

were computed whenever the number of coexisting species at time T was equal to four (the
Lyapunov exponent was computed at t = 104). As mentioned previously, systems with three or
fewer species cannot exhibit chaotic dynamics, and the computation of the Lyapunov exponent
is therefore of less interest in those cases.
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2.5 Basins of attraction

In Section 2.3, a chaotic point was defined as a point (R,A) leading to chaotic trajectories,
at least for some initial condition. Depending on the initial condition, to each point in the
parameter space may be associated several asymptotic behaviours if two or more attractors
are present. In such cases, each attractor has a basin of initial conditions that lead to that
attractor.

In order to get some insight into the shape of these basins, we analysed the asymptotic
behaviour of the solutions of (1) in terms of the initial condition N(0). Our analysis was
conducted at three chaotic points, ((R1,A1), (R2,A2) and (R3,A3)), and at three non-chaotic
points, (R,A) (defined by (2), with (α, β) = (0.93, 0), (0.4, 0.4) and (0.6, 0.6), respectively).

3 Results

On each pixel of Fig. 2, the maximum number of coexisting species obtained among the 13
sets of parameters and initial data corresponding to this pixel (300× 300 pixels for 1.2 × 106

elements, each one corresponding to 1.2× 106 couples (α, β) and 1.2× 106 initial data N(0)) is
represented. Thus, Fig. 2 depicts the maximum number of species that can survive at time T ,
for parameters in P. Similarly, in pixels where parameters leading to four species were found,
the maximum Lyapunov exponent obtained among those parameters is represented.

Regions of the plane P corresponding to different numbers of coexisting species are mostly
arranged in large geometrical structures with sharp boundaries. The region corresponding to
four species occupies a small proportion of P compared with the other regions.

Every type of region has common boundaries. Hence, infinitesimal changes in parameters
can lead to a jump from one type of region to another. However, away from these boundaries,
the probability that such a change in parameters could lead to a change in the number of
coexisting species remains very low.

Remark 3.1 Some regions in Fig. 2 look like fractals. In fact, as the number of initial data
per pixel (13 in the case presented here) is increased, the boundaries of these regions become
sharper. Compare Fig. 2 with Fig. 3, which was computed with more initial data per pixel. The
occurrence of isolated points with different natures than their surrounding regions seems mainly
to be caused by the sensitivity of the outcome of competition (number of coexisting species)
with respect to initial conditions (see Section 2.5 and e.g. Grebogi et al., 1987; Huisman and
Weissing, 2001a).

3.1 Occurrence of Chaos

The three chaotic points (Rx,Ax), x = 1 . . . 3, of coordinates (0, 0), (1, 0) and (0, 1) in P are
embedded in chaotic regions, say C1, C2 and C3, respectively. These three regions are narrow
compared to P, and no other regions in P are found to be chaotic, emphasising the rarity of
chaos in the parameter space.

The spatial structure of these three chaotic regions is detailed in Fig. 3. In all cases, chaotic
regions are situated at the interface between a region with less than four species and a non-
chaotic region where four species coexist: C1, is surrounded by 4-species and 2-species regions;
C2 by 4-species and 3-species regions, and C3 by 4-species and 1-species regions. The maximum
largest Lyapunov exponents in these regions do not exceed λ1, λ2 and λ3, respectively.
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1 species 2 species 3 species

Chaos

-0.3 λ=0 0.04

4 species

Figure 2: Occurrence of chaos and biodiversity in the planar section P of the parameter space.
In this frame, the coordinates (0, 0), (1, 0) and (0, 1) respectively correspond to the points
(R1,A1), (R2,A2) and (R3,A3). The colours associated to each pixel of the figure correspond
to the maximum computed number of coexisting species (resp. maximum Lyapunov exponent
in four-species regions) for parameters in this pixel, over randomly sampled initial data N(0).
Black regions correspond to parameters outside P.
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Figure 3: The three chaotic regions found in P, and containing respectively the points (R1,A1)
(a), (R2,A2) (b) and (R3,A3) (c). Colour legend is the same as in Fig. 2. Computations were
carried out with a finer resolution than in Fig. 2 and with other randomly chosen initial data
N(0). Those figures therefore do not correspond to exact magnifications of Fig. 2.

3.2 Sudden biodiversity loss

We now focus on the interface between chaotic and non-chaotic regions.
We computed the Lyapunov exponent on three segments ∆1, ∆2, ∆3 in P, crossing each

of the three chaotic regions (see Fig. 3, and Appendix B for the precise equations of these
segments). The results are presented in Fig. 4. In all three cases, the route to chaos is
comparable: λ(τ), seen as a function of its position τ on the segment, has a M-shaped profile
with a soft transition to positive Lyapunov exponents via classical period doubling on one side
of each segment (not presented here), and, on the other side, a sharp transition from positive
values of λ to negative values. An examination of Fig. 3 shows that these sharp transitions
correspond to extinction of one species (∆2), two species (∆1) or three species (∆3). Fig. 4
shows that the highest values of Lyapunov exponents are found for parameter values near to
the critical ones that lead to species extinction.

Conversely, the transition from non-chaotic to chaotic 4-species regions, and the transition
from non-chaotic 4-species regions to 3-species regions, does not produce discontinuity in the
Lyapunov exponent.

In the region where the function λ(τ) is positive, it exhibits strong oscillations, showing high
sensitivity of chaotic strength with respect to parameter variations. Comparable oscillations
can also be seen on ∆3 for negative values of λ(τ). In this last case, the trajectories N(t) ∈ R4

look chaotic for small times t (not presented here), before one species is led to extinction. Such
behaviour can be obtained when local Lyapunov exponents are positive for small times t.

The local Lyapunov exponent λt0 measures the short-term (for t < t0) average trajectory
divergence rate (see e.g. Nese 1989; Ellner and Turchin 1995), whereas the Lyapunov exponent
λ = limt0→+∞ λt0 is the long-term average divergence rate of nearby trajectories. A positive
local Lyapunov exponent, for some time t0, indicates “local chaos” (cf. Turchin 2003): small
perturbations in trajectories, for times smaller than t0, have large effects.

We computed local Lyapunov exponents λt0 for parameters in ∆1, ∆2 and ∆3 (Fig. 4). In
all cases, λt0 remains positive near the interface where extinction occurs, and no discontinuity
is observed. Furthermore, near this interface, λt0 is higher for parameters leading to extinction
than for parameters leading to chaotic trajectories. Those observations support the idea that
overly strong local chaos, characterised by high values of the local Lyapunov exponent, leads
to the extinction of one or more species, and subsequently to a sharp decrease in the Lyapunov

7



exponent.
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Figure 4: Lyapunov exponent λ (plain lines), and local Lyapunov exponent λt0 (dashed lines)
computed over the segments ∆1 (a), ∆2 (b) and ∆3 (c), with the initial condition N(0) =
[0.1 0.1 0.1 0.1], and with t0 = 20, t0 = 20 and t0 = 25 respectively in (a), (b) and (c).

3.3 The role of the initial condition

The above results focused on the effects of the parameters. For fixed parameter values, we now
focus on the effect of the initial condition.

At each considered point (see Section 2.5), several attractors have been found; i.e., cases
in which the asymptotic behaviour of N(t) depends on N(0). Depending on N(0), the three
chaotic points ((R1,A1), (R2,A2) and (R3,A3)) can lead–by definition–to chaos, or to the
extinction of one or more species. The number of surviving species also depends on N(0) at
the three non-chaotic points tested here. Thus, in any case, biodiversity does depend on the
initial state of the system. Fig. 5 depicts the behaviour of N(t), at the chaotic point (R3,A3),
and at the non-chaotic point (α, β) = (0.93, 0) in terms of N(0).

The proportion of the basin of attraction of chaotic trajectories in the set of initial condi-
tions [0, 1]4 can vary greatly between different chaotic points: this proportion is 0.1, 0.03, and
0.6, respectively, at the points (R1,A1), (R2,A2) and (R3,A3). It is noteworthy that chaos
can occur with significant probability at some points in the parameter space. In particular,
the above observation implies that, for random initial conditions in [0, 1]4, chaos occurs with
probability 0.6 at the point (R3,A3).

Remark 3.2 We observe in Fig. 2.5 that the basin boundaries look like fractals. This obser-
vation holds at the six chaotic and non-chaotic tested points (see Section 2.5 for the definition
of these points). This fractal structure of the basin boundaries is in contrast with the rather
smooth structure of the regions of the parameter space corresponding to different numbers of
coexisting species. As emphasised in Grebogi et al. (1987), fractal basin boundaries represent
an obstruction to predictability: if there is an uncertainty in the initial condition, it may be
very difficult to determine in which basin it lies.

4 Discussion and conclusions

We have analysed the structure of the interaction and growth parameter space, with respect to
biodiversity and chaos, for the lowest-dimensional Lotka-Volterra competition model that may
lead to chaotic trajectories; i.e., the model with four species.
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(a) (b)

Figure 5: Occurrence of chaos and biodiversity in terms of the initial condition at the chaotic
point (R,A) = (R3,A3) (a); and at the non-chaotic point defined by (α, β) = (0.93, 0) (b). For
our computations, we fixed N3(0) = N4(0) = 0.5. Colour legend is the same as in Fig. 2.

First, we observe the geometric structure of the parameter space with respect to the number
of coexisting species. As emphasised by Vano et al. (2006), chaos occurs in narrow regions of
the parameter space. We observe a recurring disposition of these regions with respect to other
non-chaotic regions. In the three cases studied here, the parameters leading to chaos are indeed
situated at the interface between a region where only three or fewer species can coexist, and a
non-chaotic region where four species coexist. Thus, chaotic regions are not entirely surrounded
by four-species regions.

Because of this disposition of chaotic regions with respect to the regions where extinction
occurs, obtaining chaotic trajectories may indicate a risk for biodiversity. Small and even
continuous variations in the interaction or growth parameters may indeed lead chaotic four-
species systems to suddenly lose one or more species. Note that, as indicated in Fig. 4,
non-chaotic four-species systems can also slowly shift from equilibrium to periodic (λ = 0) and
chaotic dynamics, through continuous changes in the parameters. The occurrence of chaos is
also strongly conditioned by the initial condition at time 0.

What are the causes behind the sudden losses of biodiversity observed at the interface with
chaotic regions? In chaotic regions, the highest Lyapunov exponents are found near this inter-
face. Obviously, after this interface the Lyapunov exponent becomes negative. However, this
does not exclude local chaos. Indeed, our computations reveal that local Lyapunov exponents
keep on growing through this interface. This implies even higher local chaos in the regions
where extinction occurs, compared with chaotic regions, and suggests that overly strong local
chaos drives some species to extinction. As stochastic demography is often proposed as an ex-
planation for species extinctions in discrete populations (Lande, 1993), the strong fluctuations
in population abundances associated with local chaos would be, in our case, the cause of the
species extinctions observed at interfaces with chaotic regions.

Our conclusions regarding the effects of chaos may seem in opposition to recent theory
(Huisman and Weissing 1999; Huisman et al. 2001; Huisman and Weissing 2001b. See also
Petrovskii and Malchow 2001, for spatio-temporal models). Indeed, in those works, chaos has
been found to be a favourable factor that may enhance species biodiversity. More precisely,
in a resource competition model, where n species compete for k resources (k < n), Huisman
and Weissing (1999) have shown that chaotic fluctuations in species abundance allows the
coexistence of many species on few resources, which may be an answer to the paradox of
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plankton.
In fact, our results are not contradictory with the results in (Huisman and Weissing, 1999),

which were obtained with a fixed set of parameters. Here, we address the issue of biodiversity
sensitivity with respect to parameter variations, and we find higher sensitivity in chaotic regions
compared with randomly chosen regions in the parameter space. Obviously, in our case, chaos
is also associated with regions of high diversity, as chaotic trajectories cannot exist with fewer
than four species. This does not mean that chaos is a favourable factor for species biodiversity,
but simply that biodiversity is a necessary condition for chaos to arise.

The model studied in this paper is the simplest competitive model of ordinary differential
equations that exhibits chaotic dynamics. A similar study should be conducted, for instance
for the competition models treated in (Huisman and Weissing, 1999), to assess whether the
unfavourableness of chaos observed in our work remains true in other settings.

Appendix A: simulated annealing algorithm

Our objective is to build an algorithm for finding parameters R = (ri) and A = (aij), for
1 ≤ i, j ≤ n, of system (1), leading to chaotic solutions. This problem can be reduced to
a maximization problem, through the computation of the Lyapunov exponent. However, a
precise computation of the Lyapunov exponent requires to solve a system of n(n + 1) ordinary
differential equations; thus solving such a maximization problem would be very time-consuming.

We propose here to use an auxiliary function f(R,A), the computation if which is about
100 times faster than the computation of the Lyapunov exponent over the same time period. It
is defined as follows: let N(0) = [0.1 0.1 0.1 0.1], and N(t) the solution of (1), associated with
N(0) and (R, A). Let (R∗,A∗) be the parameters found in (Vano et al., 2006) and leading to
chaotic solutions, and N∗(t) be the associated solution of (1), with N∗(0) = N(0). We set:

f(R, A) = δT (N)

(
1 + min

{
σT

2
,T (N)

σT
2

,T (N∗)
, 1

}
×min

{
γT

2
,T (N)

γT
2

,T (N∗)
, 2

})
,

where δT (N) = 1 if Ni(t) > ε for all i = 1 . . . n and t ∈ (0, T ), and δT (N) = min
i=1...n,t∈(0,T )

Ni(t)
ε

if this condition is not fulfilled. The function σT
2

,T associates to a continuous function X :
R+ → Rn, the average standard deviation:

σT
2

,T (X) =
1
n

n∑

i=1

√√√√
∫ T

T
2

X2
i (t)dt−

(∫ T

T
2

Xi(t)dt

)2

,

and γT
2

,T measures the average total variation of the power spectrum:

γT
2

,T (X) =
1
n

n∑

i=1

∫ +∞

0

∣∣∣∣
∂

∂ω

(
S(Xi, ω)

maxζ>0 S(Xi, ζ)

)∣∣∣∣ dω,

with:

S(Xj , ω) =
2
T

∣∣∣∣∣
∫ T

T
2

eiω(t−T
2

)Xj(t)dt

∣∣∣∣∣
2

, for j = 1 . . . n.

Thus, values of δT close to 1 are associated with trajectories far from 0 (we took ε = 2.10−4

for our computations), high values of σT
2

,T are associated with highly variable functions, and
high values of γT

2
,T exclude periodic and quasi-periodic solutions (see Eckmann and Ruelle
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1985). The final time T shall be chosen large enough, such that transitory regimes are not
taken into account.

We build a sequence (Rk, Ak) of elements of E := {(R∗+)n ×Mn(R+)} ∩ {0 < ri < 5, 0 ≤
aij < 5, i, j = 1 . . . n, i 6= j} ∩ {aii = 1, i = 1 . . . n}, with the following simulated annealing
algorithm (SA):

Initialize (R0, A0)
do

Choose randomly a neighbour (̃R, A) of (Rk, Ak)
Draw randomly w ∈ (0, 1) in a uniform law

if w < e
f (̃R,A)−f(Rk,Ak)

Θ(k)

(Rk+1, Ak+1) ← (̃R, A)
else

(Rk+1, Ak+1) ← (Rk, Ak)
endif
k ← k + 1
if f(Rk, Ak) > max

j<k
f(Rj , Aj)

Compute the Lyapunov exponent associated to (Rk, Ak)
endif

loop

The sequence Θ(n) (cooling schedule) is composed of real positive numbers, decreasing to
0. The simulated annealing algorithm gives a sequence (Rk, Ak) of elements of E. It is proved
(see e.g. Hajek 1988; Belisle 1992) that, for a cooling schedule Θ(k) which converges sufficiently
slowly to 0, the sequence (Rk, Ak) asymptotically converges to a global maximum (̂R, A) of the
function f (but see remark below). In our computations, we used Θ(k) = θ0 × 0.9999k for the
cooling schedule. Two elements of E were defined as neighbours if and only if they differed by
one component. The algorithm led to positive Lyapunov exponents in approximately one over
five computations.

Taking a low initial temperature θ0 = 1, and (R0, A0) = (R∗,A∗) the parameters found by
Vano et al. (2006), we obtained the couple (R1,A1):

A1 =




1 2.419 2.248 0.0023
0.001 1 0.001 1.3142
2.3818 0.001 1 0.4744
1.21 0.5244 0.001 1


 , R1 =




1.7741
1.0971
1.5466
4.4116


 .

The couples (R2,A2) and (R3,A3) were obtained using θ0 = 300, and starting from random
initial guesses (R0, A0):

A2 =




1 0.3064 2.9141 0.8668
0.125 1 0.3346 1.854
1.9833 3.5183 1 0.001
0.6986 0.9653 2.1232 1


 , R2 =




1
0.1358
1.4936
4.8486


 ,
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and

A3 =




1 3.6981 1.4368 0.0365
0 1 1.7781 3.7306
0.5271 4.1593 1 1.3645
0.8899 0.2127 3.4711 1


 , R3 =




4.4208
0.8150
4.5068
1.4172


 .

The corresponding values of the auxiliary function f (computed at T = 4000) and of the
Lyapunov exponent (computed at T = 104) are: f(R1,A1) = 1.4 and λ1 = 0.04, f(R2,A2) =
0.8 and λ2 = 0.01, f(R3,A3) = 1.2 and λ3 = 0.03, f(R∗,A∗) = 1 and λ∗ = 0.02.

Remark The cooling rate Θ(k) leading to the global maximum with probability 1 decreases
very slowly (logarithmically) and cannot be used in practice; see Henderson et al. (2003) for a
detailed discussion. Empirically, a good trade-off between quality of solutions and time required
for computation is obtained with exponential cooling schedules of the type Θ(k) = Θ0 × αk,
with α < 1, first proposed by Kirkpatrick et al. (1983). Many other cooling schedules are
possible, but too rapid cooling results in a system frozen into a state far from the optimal
one. The starting temperature Θ0 should be chosen high enough to initially accept all changes
(Rk+1, Ak+1) ← (̃R, A), whatever the neighbour (̃R, A).

For this type of algorithm, there are no general rules for the choice of the stopping cri-
terion (see Henderson et al. 2003), which should be heuristically adapted to the considered
optimization problem.

Appendix B: equations of ∆1, ∆2 and ∆3

The equations of the three segments in Fig. 3 are ∆1 = {τ(0.02,−0.007) + (1− τ)(0.02, 0.06)},
∆2 = {τ(0.9, 0.005) + (1 − τ)(1.01, 0.005)} and ∆3 = {τ(0.03, 0.96) + (1 − τ)(0.03, 1)}, for
τ ∈ (0, 1).
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