Cell centered Galerkin methods for diffusive problems

Abstract : In this work we introduce a new class of lowest order methods for diffusive problems on general meshes with only one unknown per element. The underlying idea is to construct an incomplete piecewise affine polynomial space with sufficient approximation properties starting from values at cell centers. To do so we borrow ideas from multi-point finite volume methods, although we use them in a rather different context. The incomplete polynomial space replaces classical complete polynomial spaces in discrete formulations inspired by discontinuous Galerkin methods. Two problems are studied in this work: a heterogeneous anisotropic diffusion problem, which is used to lay the pillars of the method, and the incompressible Navier-Stokes equations, which provide a more realistic application. An exhaustive theoretical study as well as a set of numerical examples featuring different difficulties are provided.
Type de document :
Article dans une revue
ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2011, 46 (1), pp.111-144. 〈10.1051/m2an/2011016〉
Liste complète des métadonnées

Littérature citée [42 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00511125
Contributeur : Daniele Antonio Di Pietro <>
Soumis le : jeudi 28 avril 2011 - 13:57:55
Dernière modification le : jeudi 21 juin 2018 - 14:12:09
Document(s) archivé(s) le : samedi 3 décembre 2016 - 07:51:33

Fichier

ccg.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Daniele Antonio Di Pietro. Cell centered Galerkin methods for diffusive problems. ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2011, 46 (1), pp.111-144. 〈10.1051/m2an/2011016〉. 〈hal-00511125v3〉

Partager

Métriques

Consultations de la notice

294

Téléchargements de fichiers

146