Skip to Main content Skip to Navigation
Journal articles

Chemistry-climate model simulations of spring Antarctic ozone

J. Austin 1, 2 H. Struthers 3 J. Scinocca 4 D. A. Plummer 4 H. Akiyoshi 5 A. Baumgaertner 6 Slimane Bekki 7 G. Bodeker 8 P. Braesicke 9 C. Bruhl 6 N. Butchart 10 M. P. Chipperfield 11 David Cugnet 7 M. Dameris 12 S. Dhomse 11 S. Frith 13, 14 H. Garny 12 A. Gettelman 15 S. C. Hardiman 10 P. Jockel 6 D. Kinnison 15 A. Kubin 16 J. F. Lamarque 15 U. Langematz 16 E. Mancini 17 Marion Marchand 7 M. Michou 18 Olaf Morgenstern 19 T. Nakamura 5 J. E. Nielsen 14, 13 G. Pitari 17 J. Pyle 9 E. Rozanov 20, 21 T. G. Shepherd 22 K. Shibata 23 Dan Smale 19 H. Teyssedre 18 Y. Yamashita 5
Abstract : Coupled chemistry-climate model simulations covering the recent past and continuing throughout the 21st century have been completed with a range of different models. Common forcings are used for the halogen amounts and greenhouse gas concentrations, as expected under the Montreal Protocol (with amendments) and Intergovernmental Panel on Climate Change A1b Scenario. The simulations of the Antarctic ozone hole are compared using commonly used diagnostics: the minimum ozone, the maximum area of ozone below 220 DU, and the ozone mass deficit below 220 DU. Despite the fact that the processes responsible for ozone depletion are reasonably well understood, a wide range of results is obtained. Comparisons with observations indicate that one of the reasons for the model underprediction in ozone hole area is the tendency for models to underpredict, by up to 35%, the area of low temperatures responsible for polar stratospheric cloud formation. Models also typically have species gradients that are too weak at the edge of the polar vortex, suggesting that there is too much mixing of air across the vortex edge. Other models show a high bias in total column ozone which restricts the size of the ozone hole (defined by a 220 DU threshold). The results of those models which agree best with observations are examined in more detail. For several models the ozone hole does not disappear this century but a small ozone hole of up to three million square kilometers continues to occur in most springs even after 2070.
Complete list of metadatas

Cited literature [61 references]  Display  Hide  Download
Contributor : Catherine Cardon <>
Submitted on : Saturday, July 4, 2020 - 11:07:46 AM
Last modification on : Monday, July 6, 2020 - 12:03:40 PM
Long-term archiving on: : Thursday, September 24, 2020 - 9:33:39 AM


Publisher files allowed on an open archive



J. Austin, H. Struthers, J. Scinocca, D. A. Plummer, H. Akiyoshi, et al.. Chemistry-climate model simulations of spring Antarctic ozone. Journal of Geophysical Research: Atmospheres, American Geophysical Union, 2010, 115, pp.D00M11. ⟨10.1029/2009JD013577⟩. ⟨hal-00510726⟩



Record views


Files downloads