
HAL Id: hal-00510305
https://hal.science/hal-00510305

Submitted on 17 Aug 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constraint Programming and Safe Global Optimization
Alexandre Goldsztejn, Yahia Lebbah, Claude Michel, Michel Rueher

To cite this version:
Alexandre Goldsztejn, Yahia Lebbah, Claude Michel, Michel Rueher. Constraint Programming and
Safe Global Optimization. SCAN 2008, 3th GAMM - IMACS International Symposium on Scientific
Computing, Computer Arithmetic and Verified Numerical Computations, Sep 2008, El Paso, TX,
United States. �hal-00510305�

https://hal.science/hal-00510305
https://hal.archives-ouvertes.fr


Capabilities of Constraint Programming in Safe

Global Optimization∗†

Alexandre Goldsztejnz, Yahia Lebbah‡,†, Claude Michel†

and Michel Rueher†

† Université de Nice Sophia Antipolis, CNRS, 06903 Sophia Antipolis, France,

z CNRS, Université de Nantes, 44322 Nantes, France

‡ Université d’Oran Es-Senia B.P. 1524 EL-M’Naouar, 31000 Oran,Algeria

Abstract

We investigate the capabilities of constraints programming techniques in rigor-

ous global optimization methods. We introduce different constraint programming

techniques to reduce the gap between efficient but unsafe systems like Baron1, and

safe but slow global optimization approaches. We show how constraint program-

ming filtering techniques can be used to implement optimality-based reduction in

a safe and efficient way, and thus to take advantage of the known bounds of the ob-

jective function to reduce the domain of the variables, and to speed up the search

of a global optimum. We describe an efficient strategy to compute very accurate

approximations of feasible points. This strategy takes advantage of the Newton

method for under-constrained systems of equalities and inequalities to compute

efficiently a promising upper bound. Experiments on the COCONUT benchmarks

demonstrate that these different techniques drastically improve the performances.

1 Introduction

We consider here the global optimization problemP to minimize an objective func-

tion under nonlinear equalities and inequalities,

minimize f (x)

subject to gi(x) = 0, i ∈ {1, .., k}

h j(x) ≤ 0, j ∈ {1, ..,m}

(1)

with x ∈ x, f : IRn → IR, gi : IRn → IR and h j : IRn → IR; Functions f , gi and h j are

nonlinear and continuously differentiable on some vector x of intervals of IR. For

convenience, in the following text, g(x) (resp. h(x)) will denote the vector of gi(x)

(resp. h j(x)) functions.

∗This paper is an extended version of [17]. Preliminary results have been published in [10] and [5].
†This work was partially supported by the European Community’s 7th Framework Programme

(FP7/2007-2013), MANCOOSI project, grant agreement n. 214898.
1See http://www.andrew.cmu.edu/user/ns1b/baron/baron.html

1



The difficulties in such global optimization problems come mainly from the

fact that many local minimizers may exist but only few of them are global mini-

mizers [14].

Optimality-based reduction (OBR) has been introduced by Ryoo and Sahinidis

in [18] to take advantage of the known bounds of the objective function to reduce

the size of the domains of the variables. This technique uses a well known property

of the saddle point to compute new bounds for the domain of a variable which take

into account the known bounds of the objective function. However, the basic OBR

algorithm is unsafe.

Kearfott [7, 6] has proposed a safe implementation of OBR which is based on

a valid bounding of the dual solution. Note that this method suffers from strong

limitations and is rather slow.

We show that constraint programming techniques can be used in a simple and

elegant way to safely refute the potential non-solution boxes identified by the OBR

method. Roughly speaking, filtering techniques are used to reduce these boxes

to empty boxes, and thus, to prove that they do not contain any feasible point.

These constraint programming techniques do not suffer from the same limitations

as Kearfott’s method. Experiments show that they are also much more efficient.

In global optimization problems, the feasible region may be disconnected.

Thus, finding feasible points is a critical issue in safe Branch and Bound algorithms

for continuous global optimization. Standard strategies use local search techniques

to provide a reasonable approximation of an upper bound and try to prove that a

feasible solution actually exists within the box built around the guessed global op-

timum. Practically, finding a guessed point for which the proof succeeds is often a

very costly process.

We introduce a new strategy to compute very accurate approximations of fea-

sible points. This strategy takes advantage of the Newton method for under-

constrained systems of equalities and inequalities. More precisely, this procedure

exploits the optimal solution of a linear relaxation of the problem to compute ef-

ficiently a promising upper bound. Experiments on the COCONUT benchmarks

demonstrate that the combination of this procedure with a safe branch and bound

algorithm drastically improves the performances.

The rest of this paper is organized as follows. The first section provides the

overall schema of a safe branch and bound process for global optimization. The

next section describes the OBR method and introduces our safe implementation

based on constraint techniques. Next, we describe our new strategy to compute

very accurate approximations of feasible points

We do not recall here the capabilities of consistency techniques to speed up

the initial convergence of the interval narrowing algorithms. Neither do we show

how linear relaxations can be used in such a CP framework to rigorously bound

the global optima as well as its location. A detailed discussion of these concepts

and techniques can be found in [9, 11, 19].

2 The Branch and Bound schema

The algorithms we describe here are derived from the well known Branch and

Bound schema introduced by Horst and Tuy for finding a global minimizer. Inter-

val analysis techniques are used to ensure rigorous and safe computations whereas

2



Algorithm 1 Branch and Bound Algorithm

Function BB(IN x, ǫ; OUT S, [L,U])

% S: set of proven feasible points

% fx denotes the set of possible values for f in x

% nbS tarts: number of starting points in the first upper-bounding

L←{x}; (L,U)←(−∞,+∞);

S←U pperBounding(x, nbS tarts);

while w([L,U]) > ǫ do

x′←x′′ such that f
x′′
= min{f

x′′
: x′′ ∈ L};

L←L \ {x}′;

fx′←min(fx′ ,U);

x′←Prune(x′);

f
x′
←LowerBound(x′);

S←S ∪ U pperBounding(x′, 1);

if x′ , ∅ then

(x′
1
, x′

2
)←S plit(x′);

L←L ∪ {x′
1
, x′

2
};

endif

if L = ∅ then

(L,U)←(+∞,−∞);

else

(L,U)←(min{f
x′′

: x′′ ∈ L}, min{fx′′ : x′′ ∈ S});

endif

endwhile

constraint programming techniques are used to improve the reduction of the feasi-

ble space.

Algorithm 1 computes enclosers for minimizers and safe bounds of the global

minimum value within an initial box x. Algorithm 1 maintains two lists : a list

L of boxes to be processed and a list S of proven feasible boxes. It provides a

rigorous encloser [L,U] of the global optimum with respect to a tolerance ǫ.

Algorithm 1 starts with U pperBounding(x, nbS tarts) which computes a set of

feasible boxes by calling a local search with nbS tarts starting points and a proof

procedure. The boxes built around the local solution are added to S if and only if

they are proved to contain a feasible point.

In the main loop, Algorithm 1 selects the box x′ with the lowest lower bound of

the objective function. The Prune function applies filtering techniques to reduce

the size of the box x′. In the framework we have implemented, Prune just uses

a 2B-filtering algorithm [13]. Then, LowerBound(x′) computes a rigorous lower

bound f
x′

using a linear programming relaxation of the initial problem. Actually,

function LowerBound is based on the linearization techniques of the Quad frame-

work [11]. LowerBound computes a safe minimizer f
x′

thanks to the techniques

introduced by Neumaier et al.

Algorithm 1 then calls the upper bounding procedure on box x′. Here again,

the box around the local solution is added to S if it is proved to contain a feasible

point. At this stage, if the box x′ is empty then, either it does not contain any

feasible point or its lower bound f
x′

is greater than the current upper bound U. If

x′ is not empty, the box is split along one of the variables of the problem. Various

3



heuristics are used to select the variable the domain of which has to be split.

Algorithm 1 maintains the lowest lower bound L of the remaining boxes L

and the lowest upper bound U of proven feasible boxes. The algorithm terminates

when the space between U and L becomes smaller than the given tolerance ǫ. Of

course a proven optimum cannot always be found, and thus, algorithm 1 has to be

stopped in some cases to get the feasible boxes which may have been found.

The next section is devoted to OBR techniques. We first recall the basic defini-

tions, then we describe the method proposed by Kearfott, and finally we introduce

our safe algorithm for computing OBR.

3 Optimality-based reduction

3.1 Basics of optimality-based reduction

Optimality-based reduction has been introduced by Ryoo and Sahinidis in [18].

It takes advantage of a property of the saddle point to reduce the domains of the

variables of the optimization problem. Optimality-based reduction relies on the

following two theorems to improve the bounds of the domain of one variable, so

we assume that the variable xi is bounded inside [x
i
, xi] (which is equivalent to the

two linear constraints xi − xi ≤ 0 and x
i
− xi ≤ 0).

Theorem 1. Let U be a known upper bound of the original problem P, let L be a

known lower bound of a convex relaxation R of P, and assume that the constraint

xi− xi ≤ 0 is active at the optimal solution of R and has a corresponding multiplier

λ∗i > 0. Then

xi ≥ x′i with x′i = xi −
U − L

λ∗
i

. (2)

Thus, if x′i > x
i
, the domain of xi can be set to [x′i , xi] without loss of any global

optima.

λ∗i denotes the dual solution of R. A convex relaxation of a minimization prob-

lem P is a convex minimization problem (i.e. the cost and the constraints are

convex) whose feasible set is larger than the original one, and whose cost function

is lower than the original one. Thus, the minimum of the relaxation is lower than

the minimum of P. A constraint g(x) ≤ 0 is active if g(x) = 0. Such an equality

may be difficult to be checked over the floating-point numbers.

Theorem 2. Let U be a known upper bound of the original problem P, let L be a

known lower bound of a convex relaxation R of P, and assume that the constraint

x
i
− xi ≤ 0 is active at the optimal solution of R and has a corresponding multiplier

λ∗i > 0. Then

xi ≤ x′′i with x′′i = x
i
+

U − L

λ∗
i

. (3)

Thus, if x′′i < xi, the domain of xi can be set to [x
i
, x′′i ] without loss of any global

optima.

The first theorem provides a test to improve the lower bound of the domain of

a variable while the second theorem provides a test to improve the upper bound of

the domain of a variable.

Moreover, these valid inequalities have been generalized to the other con-

straints. The following theorem is the most general one :

4



Theorem 3. Let U be a known upper bound of the original problem P, let L be a

known lower bound of a convex relaxation R of P, and assume that the constraint

gi(x) ≤ 0 is active at the optimal solution of R and has a corresponding multiplier

λ∗i > 0. Then

gi(x) ≥ −
U − L

λ∗
i

. (4)

This last theorem enables to enforce some constraints, and thus to reduce the

domains of the variables.

All these theorems are explained in detail and proved in [18].

3.2 Kearfott’s approach: Safe OBR based on bounding

rigorously dual variables

The critical issue in optimality-based reduction formulae (2–4) comes from the un-

safe dual solution provided by the Simplex method. Note that the techniques sug-

gested by Neumaier et al [15] and used in the Quad framework cannot be applied

to compute a safe solution of the dual problem. So, the validity of dual solutions

must be proved to keep the branch and bound process rigorous. This approach

has been investigated by Kearfott [6] in the specific case of linear relaxations. For

the sake of simplicity, we consider the following linear relaxation formulated with

lower inequalities:

min dT x

s.t. Ax ≤ b
(5)

The dual of (5) is the following LP

max bT y

s.t. ATλ = d
(6)

where λ denotes the dual variables required in OBR formulae (2)(3)(4). The Kuhn-

Tucker system (KT)2 is used to provide validated lower and upper bounds on the

system (5) and (6).

(KT )

{

ATλ − d = 0

λi(Ai,: x − bi) = 0, 1 ≤ i ≤ m
(7)

where Ai,: is i-th row of A.

It is well known that if the i-th constraint Ai,: x ≤ bi is inactive for some solution

x∗ –i.e., strict inequality Ai,: x
∗ < bi holds for x∗, the solution of the primal– then the

corresponding dual variable (also called Lagrange multiplier) yi is equal to zero.

Thus, inactive constraints must be identified to make the whole system (7) linear.

In this approach there are two main critical issues:

1. Some of the constraints of (7) are redundant due to the fact that each equal-

ity constraint is replaced by two inequality constraints. So, the Newton

methods cannot be used for the validation process.

2. Inactive constraints are identified with the approximate dual solution pro-

vided by the Simplex method (i.e., inactive constraints have a null dual

solution).

2For a detailed introduction to Kuhn-Tucker system, see [1].

5



Kearfott handles these issues by weakening the relaxation. Consequently, the

final validation method based on the Newton method applied to (7) does not always

succeed and, when it succeeds, the bounds could be wide due to the fact that the

relaxation has been weakened.

3.3 A safe implementation of OBR based on constraint

filtering techniques

As said before, the critical issue in the OBR method comes from the unsafe dual

solution provided by the simplex algorithm. In other words, due to the rounding er-

rors, we may lose the global optima when we use formula (2) to shrink the domain

of some variable xi.

The essential observation is that we can use filtering techniques to prove that

no feasible point exists when the domain of xi is reduced to [x
i
, x′i ]. Indeed, if the

constraint system

f (x) ≤ U

gi(x) = 0, i = 1..k

g j(x) ≤ 0, j = k + 1..m

(8)

does not have any solution when the domain of x is set to [x
i
, x′i ], then the domain

reduction computed by the OBR method is valid; if the filtering cannot prove that

no solution exists inside the considered box, we have just to add this box to L, the

list of boxes to be processed (See algorithms 1 and 2).

The same reasoning holds for the reduction of the domain of f (see [10]), i.e.,

when algorithm 2 attempts to reduce the upper bound of the variables of the prob-

lem by means of formula (3).

Algorithm 2 details the new process of the computation of the lower bound.

Note that Algorithm 1 remains almost unchanged : we have just to replace the call

f
x′
← LowerBound(x′) by (f

x′
, x′,L)←LowerBound(x′, L,U,L).

The constraint-based approach introduced here is about five time faster than

Kearfott’s approach. In fact, our approach introduces a negligible overhead since

the proof process mostly relies on a 2B-consistency which is an effective technique

here. That is why the more costly Quad-filtering (see [12]) is almost never used in

these examples.

Next section is devoted to the new method we propose to compute efficiently a

promising upper bound.

4 A new upper bounding strategy

The standard upper bounding procedure relies on a local search to provide a “guessed”

feasible point lying in the neighborhood of a local optima. However, the effects

of floating point computation on the provided local optima are hard to predict. As

a result, the local optima might lie outside the feasible region and the proof pro-

cedure might fail to prove the existence of a feasible point within the box built

around this point.

We propose here a new upper bounding strategy which attempts to take ad-

vantage of the solution of a linear outer approximation of the problem. The lower

bound process uses such an approximation to compute a safe lower bound of P.

When the LP is solved, a solution xLP is always computed and, thus, available for

6



Algorithm 2 Computation of a safe lower bound with OBR

Function LowerBound(IN x, L,U,L; OUT (f
x′

,L) )

Lr←∅ % Lr: set of potential non-solution boxes;

Compute f with Quad in x;

for each variable x do

Apply formula 2 of OBR using L,U;

Add the generated potential non-solution boxes to Lr;

endfor

for each box Bi in Lr do

B′
i
← 2B-filtering(Bi);

if B′
i
= ∅ then

Reduce the domain of xi;

else

B′′
i
← Quad-filtering(B′

i
);

if B′′
i
= ∅ then

Reduce the domain of xi;

else

Add B′′
i

to L;

endif

endif

endfor

Apply formula (3) of OBR to reduce the lower bound of the variables;

Use 2B-filtering and Quad-filtering to validate the reduction;

free. This solution being an optimal solution of an outer approximation of P, it

lies outside the feasible region. Thus, xLP is not a feasible point. Nevertheless, xLP

may be a good starting point to consider for the following reasons:

• At each iteration, the branch and bound process splits the domain of the

variables. The smaller the domain is, the closer xLP is to the actual optima

of P.

• The proof process inflates a box around the initial guess. This process may

compensate the effect of the distance of xLP from the feasible region.

However, while xLP converges to a feasible point, the process might be quite slow.

To speed up the upper bounding process, we have introduced a lightweight, though

efficient, procedure which computes a feasible point from a point lying in the

neighborhood of the feasible region. This procedure which is called FeasibilityCorrection

will be detailed in the next subsection.

Algorithm 3 describes how an upper bound may be build from the solution of

the linear problem used in the lower bounding procedure.

4.1 Computing pseudo-feasible points

This section introduces an adaptation of the Newton method to under-constrained

systems of equalities and inequalities which provides very accurate approxima-

tions of feasible points at a low computational cost3. Discovering feasible points is

3A similar method was briefly mentioned though not described in [3].

7



Algorithm 3 Upper bounding build from the LP optimal solution x∗
LP

Function UpperBounding(IN x, x∗LP, nbS tarts; OUT S′)

% S′: list of proven feasible boxes

% nbS tarts: number of starting points

% x∗LP: the optimal solution of the LP relaxation of P(x)

S′ ← ∅;

x∗corr ←FeasibilityCorrection(x∗LP);

xp ←InflateAndProve(x∗corr, x);

if xp , ∅ then S′ ←S′ ∪ xp;

return S′

an important step of branch and bound algorithms. That is why a detailed setting

of this method is presented below.

Given an approximate solution xk ∈ IRn to a system of equalities g(x) = 0,

with g : IRn −→ IRm, a step of the Newton method consists of finding a better

approximate solution xk+1 := xk + h, with h ∈ IRn, by solving the linearization of

g(xk + h) = 0. That is, the displacement h between step k and k+ 1 is chosen as the

solution of the linear equality

g(xk) + Dg(xk) h = 0, (9)

where Dg(x) ∈ IRm×n is the Jacobian of g evaluated at x. When the system of

equalities g(x) = 0 is under-constrained, i.e. m < n, it has a manifold of solu-

tions and the linearized equality (9) has an affine subspace of solutions. Since the

linearization (9) is accurate in a neighborhood of xk, it is natural to select among

its affine solution set the solution that minimizes the distance to xk. This is done

using the Moore-Penrose inverse of Dg(xk) [2], denoted by Dg(xk)+. We obtain

the following Newton iteration for under-constrained systems of equalities:

xk+1 := xk − Dg(xk)+ g(xk). (10)

The Moore-Penrose inverse of A ∈ IRm×n can be computed in several ways: using

a singular value decomposition, or by means of the formula A+ = AT (AAT )−1

provided that A is full (row) rank.

The nice property of this Newton method is that it converges quadratically for

under-constrained systems of equalities:

Proposition 1. Suppose that the sequence xk defined by (10) converges toward x∗
and assume that the step k error ǫk is defined by xk = x∗ + ǫk. Then ǫk+1 = O(ǫk)2,

that is ǫk converges quadratically toward zero. In other words, the number of

correct decimals is roughly multiplied by two at each new iteration.

Proof. Using a first order expansion g(xk) = g(x∗)+Dg(x∗)ǫk+O(ǫk)2 = Dg(x∗)ǫk+

O(ǫk)2, and a zero order expansion Dg(xk)+ = Dg(x∗)
+ + O(ǫk). Now, ǫk+1 − ǫk =

xk+1 − xk, the latter being equal to −Dg(xk)+ g(xk) by (10). Using the first two

expansions we obtain

ǫk+1 − ǫk = −
(

Dg(x∗)
+ + O(ǫk)

)(

Dg(x∗)ǫk + O(ǫk)2)
.

8



Σt(s) %saving

no OBR 2384.36 -

unsafe OBR 881.51 63.03%

safe OBR Kearfott 1975.95 17.13%

safe OBR CP 454.73 80.93%

Table 1: Synthesis of the results on 78 benchmarks (with a timeout of 500s)

Expanding the right hand side term, we obtain ǫk+1 − ǫk = −Dg(x∗)
+Dg(x∗)ǫk +

O(ǫk)2. Note that A+A might be different from I, but by (10), we have ǫk =

−Dg(xk)+ g(xk), and, since A+AA+ = A+, we finally obtain ǫk+1 − ǫk = −ǫk +O(ǫk)2,

which concludes the proof. �

Inequality constraints can be changed to equalities by introducing slack vari-

ables: h j(x) ≤ 0 ⇐⇒ h j(x) = −s2
i . So, the Newton method for under-constrained

systems of equalities can also be applied to systems of equalities and inequalities.

5 Experiments

This section reports the results of experiments done with various combinations of

the aforementioned strategies on a significant set of benchmarks.

All the benchmarks come from the collection of benchmarks of the Coconuts

project4. Note that all the problems are detailed on the Coconuts website. From

this library, benchmarks with more than 100 variables or 100 constraints5 have

been rejected, as well as benchmarks using functions that are not yet handled by

Icos, like power with real numbers (i.e. xy where y is not a positive integer) or

binary variables. Obviously, Icos handles xn where n is a positive integer. Due to

the lack of space, we report here only a subset of 50 selected benchmarks.

All the tests have been ran with Icos6 [8] on an Intel Xeon X5460 under linux.

A time out of 60s is used to bound the running time (a “-” appear in the columns

when this time out is reached). Icos relies on Ipopt for the local search and on

COIN CLP to solve the linear relaxation. The proof of existence uses an imple-

mentation of the Borsuk theorem [4].

Table 1 presents a synthesis of a comparison of various OBR implementations

done on a set of 78 benchmarks (see [10] for further details). The second column

gives the total amount of time (in second) required to compute all the benches

(with a timeout of 500s). The last column gives the percentage of time saved

using one of the optimality-based method. In the first line, the OBR is used in an

unsafe way. Thus, though the result provided by the branch and bound process

might be wrong, these experiments underline the potential benefit of the OBR in

a branch and bound process. Unfortunately, most of the benefit of OBR is lost by

Kearfott’s safe approach. A contrario, the constraint-based approach still increases

its improvement. The reader may be surprised by the fact that safe constraint-

based OBR is even more efficient than the unsafe OBR. Actually, this is due to

4See http://www.mat.univie.ac.at/˜neum/glopt/coconut/Benchmark/Benchmark.html.
5Problems with up to 100 variables and 100 constraints are classified as hard problems for rigorous global

optimizer in [16].
6See http://ylebbah.googlepages.com/icos.

9



name LS PSN LS+OBR PSN+OBR

chance 5.67 0.02 7.53 0.03

ex2_1_1 0.40 0.01 0.13 0.01

ex2_1_3 0.52 0.74 0.52 0.83

ex2_1_4 0.94 0.11 0.94 0.09

ex2_1_6 0.66 0.06 2.06 0.07

ex3_1_4 0.76 0.02 0.81 0.02

ex4_1_1 0.15 0.02 1.90 0.02

ex4_1_2 24.91 8.21 24.95 8.39

ex4_1_3 0.10 0.00 0.13 0.01

ex4_1_4 0.08 0.01 0.08 0.01

ex4_1_7 0.08 0.01 0.09 0.00

ex4_1_8 0.08 0.00 0.07 0.00

ex6_1_2 1.44 0.13 1.49 0.13

ex7_2_2 3.69 0.13 3.70 0.17

ex7_2_6 0.80 1.97 0.71 1.66

ex8_1_1 0.46 0.01 0.41 0.01

ex8_1_8 4.12 0.13 4.04 0.16

ex9_1_1 0.53 0.13 0.27 0.13

ex9_1_5 0.29 0.01 0.25 0.00

ex9_2_1 0.67 0.07 0.56 0.07

ex9_2_4 0.59 0.03 0.58 0.03

ex9_2_5 1.60 0.02 1.58 0.02

ex9_2_7 0.50 0.06 0.53 0.06

ex9_2_8 0.10 0.00 0.10 0.00

gbd 0.10 0.02 0.10 0.02

nemhaus 0.11 0.00 0.12 0.00

nvs04 0.23 0.01 0.24 0.01

nvs05 0.02 0.02 0.03 0.03

nvs16 1.42 0.11 0.46 0.11

rbrock 0.11 0.01 0.12 0.00

st_miqp3 0.11 0.00 0.11 0.16

circle - 0.03 - 0.04

ex2_1_10 - 15.51 - 15.48

ex2_1_2 - 0.06 - 0.05

ex14_1_1 - 0.09 - 0.09

ex14_1_5 - 0.18 - 0.18

ex14_1_6 - 14.02 - 15.93

ex5_2_2_case1 - 0.91 - 0.91

ex9_1_4 - 0.02 - 0.02

ex9_1_6 - 0.53 - 0.42

gear - 0.00 - 0.00

house - 0.07 - 0.07

immun - 3.33 - 3.33

ex14_1_9 - 0.19 1.18 0.19

ex14_1_4 - - - 0.10

ex2_1_5 - - - 4.77

ex2_1_9 - 23.27 - -

nvs21 - 25.35 - -

ex6_1_4 38.78 - - -

ex14_2_6 - - - -

Table 2: Timing (in seconds) of different combinations of local search (LS), pseudo-

newton (PSN) and optimality-based reduction (OBR). The best times are displayed in

blue. A dash (-) indicates the time out occured

10



the fact that wrong domains reductions achieved by the unsafe OBR prevent the

upper-bounding process from improving the current upper bound. Note that the

constraint-based approach introduced here is about five time faster than Kearfott’s

approach.

Table 2 reports the results of our experiments. First column gives the name of

the benchmark. The next 4 columns give the time (in seconds) required to solve

the benchmarks using the following strategies:

• column 2 (named “LS”) uses a local search (Ipopt) to get a feasible point.

A Borsuk test is then applied on a box built around this point to prove the

existence of a feasible point.

• column 3 (named “PSN”) uses the pseudo Newton strategy described above

instead of the local search.

• column 4 combines a local search with our safe implementation of the

optimality-based reduction.

• column 5 combines the pseudo Newton approach with the safe optimality-

based reduction implementation.

The reader may have already note the benefits of our new upper bounding

strategy. It is able to solve 14 more benchmarks within the 60s time out than the

more usual local search based strategy. Moreover, all the benchmarks but one

solved by these two strategies are solved in a much smaller amount of time : “LS”

required a total amount of time of 51,24s to solve the first 31 benchmarks while

“PSN” has done the same job in 12,07s. Thus, on average, the pseudo Newton

strategy is more than four times faster than the usual local search strategy.

The combination of the optimality-based reduction with the different upper

bounding strategies slightly improves the performances. For instance, Icos requires

53,83s to solve the 46 first benchmarks with a combination of pseudo Newton and

optimality-based reduction while it would have need more than 167,01s to do the

same without the help of optimality-based reduction.

6 Conclusion

Constraint programming filtering techniques can be used to implement optimality-

based reduction in a simple, safe and efficient way. Thanks to constraint program-

ming, the branch and bound algorithm can take advantage of the OBR through

a simple but efficient refutation process. Experiments have shown that our pro-

cedure compares well to the Kearfott’s procedure. Using constraint-based refuta-

tion, OBR is up to five times faster than with Kearfott’s procedure. As a result,

constraint-based OBR can significantly improve the branch and bound process.

Experiments have also underline the good behavior of the upper bounding de-

tailled in this paper. This new strategy improves drastically the performance of the

upper bounding procedure and competes well with a local search.

References

[1] Mokhtar S. Bazaraa, Hanif D. Sherali, and C. M. Shetty. Nonlinear Program-

ming : Theory and Algorithms. John Wiley & Sons, 1993.

11



[2] S. L. Campbell and C. D. Jr. Meyer. Generalized Inverses of Linear Trans-

formations. New York: Dover, 1991.

[3] J. Cruz and P. Barahona. Global Hull Consistency with Local Search for Con-

tinuous Constraint Solving. In EPIA ’01: Proceedings of the10th Portuguese

Conference on Artificial Intelligence on Progress in Artificial Intelligence,

Knowledge Extraction, Multi-agent Systems, Logic Programming and Con-

straint Solving, pages 349–362, 2001.

[4] Andreas Frommer and Bruno Lang. Existence tests for solutions of nonlin-

ear equations using borsuk’s theorem. Technical Report BUW-SC 2004/2,

Department of Mathematics, Faculty of Mathematics and Natural Sciences,

University of Wuppertal, M athePrisma, 2004.

[5] Alexandre Goldsztejn, Yahia Lebbah, Claude Michel, and Michel Rueher.

Revisiting the upper bounding process in a safe branch and bound algorithm.

In CP2008, 14th International Conference on Principles and Practice of

Constraint Programming, volume 5202 of Lecture Notes in Computer Sci-

ence, pages 598–602. Springer, 2008.

[6] R. Baker Kearfott. Validated probing with linear relaxations. inter-

val.louisiana.edu/preprints/2005_simplified_feasible_point_verification.pdf,

2005.

[7] R. Baker Kearfott. Discussion and empirical comparisons of linear relax-

ations and alternate techniques in validated deterministic global optimiza-

tion. journal of Optimization Methods and Software, pages 715–731, October

2006.

[8] Yahia Lebbah. Icos: a branch and bound based solver for rigorous global

optimization. Optimization Methods and Software, 24(4):709–726, 2009.

[9] Yahia Lebbah and Olivier Lhomme. Accelerating filtering techniques for

numeric CSPs. Artificial Intelligence, 139(1):109–132, 2002.

[10] Yahia Lebbah, Claude Michel, and Michel Rueher. Using constraint tech-

niques for a safe and fast implementation of optimality-based reduction. In

ACM, editor, Proceedings of SAC’07, pages 326 – 331, 2007.

[11] Yahia Lebbah, Claude Michel, Michel Rueher, David Daney, and Jean-Pierre

Merlet. Efficient and safe global constraints for handling numerical constraint

systems. SIAM Journal on Numerical Analysis, 42(5):2076–2097, 2004.

[12] Yahia Lebbah, Michel Rueher, and Claude Michel. A global filtering al-

gorithm for handling systems of quadratic equations and inequations. In

CP2002, 8th International Conference on Principles and Practice of Con-

straint Programming, volume 2470 of Lecture Notes in Computer Science,

pages 109–123. Springer, 2002.

[13] Olivier Lhomme. Consistency techniques for numeric CSPs. In Proceedings

of IJCAI’93, pages 232–238, Chambéry(France), 1993.

[14] Arnold Neumaier. Complete search in continuous global optimization and

constraint satisfaction. Acta Numerica, 2004.

[15] Arnold Neumaier and Oleg Shcherbina. Safe bounds in linear and mixed-

integer programming. Mathematical Programming, pages 283–296, 2004.

12



[16] Arnold Neumaier, Oleg Shcherbina, Waltraud Huyer, and Tamás Vinkó.

A comparison of complete global optimization solvers. Math. Program.,

103(2):335–356, 2005.

[17] Michel Rueher, Alexandre Goldsztejn, Yahia Lebbah, and Claude Michel.

Constraint programming and safe global optimization. In 2008 International

Symposium on Nonlinear Theory and its Applications (NOLTA 2008), 2008.

[18] Hong S. Ryoo and Nikolaos V. Sahinidis. A branch-and-reduce approach to

global optimization. Journal of Global Optimization, pages 107–138, 1996.

[19] P. Van-Hentenryck, D. Mc Allester, and D. Kapur. Solving polynomial sys-

tems using branch and prune approach. SIAM Journal on Numerical Analy-

sis, pages 34(2):797–827, 1997.

13


