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1 INTRODUCTION


The
 correlation
 between
 phase�transitions
 of


polymers
and
extreme
and
complex
conditions
is
of


great
technological
and
academic
interest
[1].
In
this


field,
many
 polymer
 products
 are
manufactured
 by


injection�molding,
a
process
that
has
the
potential
to


mass�produce
 with
 complex
 shape.
 End�use


properties
 of
 the
 final
 injected
 parts
 are
 directly


related
 to
 the
 final
 micro�structural
 and
 hierarchic


organization
 of
 macromolecules,
 i.e.
 spherulite,


shish�kebab,
 transcrystallinity
 zone
 and
 teardrop�

shaped
spherulite.


To
 understand
 the
 micro�structural
 development,
 it


is
 necessary
 to
 describe
 the
 liquid/solid
 transition


under
 complex
 and
 coupled
 thermo�mechanical


conditions.


Crystallization
 in
molten
 polymers
 results
 from
 the


nucleation
event,
in
a
more
or
less
sporadic
manner,


and
 the
 growth
 of
 nuclei
 into
 crystalline
 entities,


which
 spread
 over
 the
 entire
 volume
 at
 the
 end
 of


the
 transformation.
 To
 describe
 the
 overall
 kinetics


during
 the
 primary
 crystallization
 under
 quiescent,


isothermal,
 conditions
 Avrami’s
 model
 is
 the
most


widely
 used,
 partly
 because
 of
 its
 firm
 theoretical


basis
 leading
 to
 analytical
 mathematical
 equations


[2�5].









This
paper
 reports
a
number
of
aspects
 that
 include


the
 following:
 the
 description
 of
 the
 methods
 for


obtaining
and
treating
the
key
parameters
needed
in


crystallization
models,
 the
 optimization
 of
 the
 data


by
 the
 inverse
 genetic
 algorithm
 method,
 the


introduction
of
 the
models
 into
a
3D
 finite
 element


code.
A
discussion
is
presented
that
provides
insight


into
 the
 benefit
 of
 using
 different
 techniques
 and


analysis
 methods
 in
 the
 investigation
 of
 polymer


crystallization.


ABSTRACT:
To
understand
the
relationship
between
‘polymers�processing
conditions�structures�properties’,


crystallization
 is
 one
 of
 the
 major
 concerned
 phenomena.
 A
 general
 crystallization
 model
 derived
 from


Avrami’s
work
has
been
developed
at
CEMEF
and
implemented
into
a
3D
finite
element
code
for
injection�

molding
named
Rem3D
®
.
It
gives
a
precise
description
of
the
crystallization
event,
allows
the
determination


of
 morphological
 features,
 but
 it
 requires
 a
 reliable
 determination
 of
 the
 crystallization
 parameters.
 The


experimental
 procedures
 adopted
 to
 capture
 relevant
 experimental
 parameters
 are
 presented.
 The


determination
 of
 overall
 kinetics,
 density
 of
 potential
 nuclei
 with
 activation
 frequency
 of
 nuclei
 into


crystalline
 entities,
 and
 growth
 rate
 is
 carried
 out
 with
 polarized
 optical
 microscopy
 (POM)
 and
 is


supplemented
 by
 small
 angle
 light
 scattering
 (SALS).
 The
 treatment
 of
 data
 is
 performed
 by
 a
 classical


method
or
using
an
inverse
genetic
algorithm
method
to
extract
the
parameters
necessary
to
our
model.
The


2D
 simulation
 of
 the
 crystallization,
 illustrated
 with
 Rem3D
®
,
 reproduces
 the
 experimental
 reality
 quite


accurately,
in
the
case
of
an
isothermal
and
static
crystallization.
This
is
applied
to
two
polymers,
an
isotactic


homopolymer
polypropylene
iPP
and
a
polyether�block
amide
PEBAX
®
.





Key
words:
Liquid/Solid
Transition,
Polymers,
Modeling,
Simulation,
Injection�Molding.


How
to
determine
the
parameters
of
polymer
crystallization
for
modeling


the
injection�molding
process
?


S.A.E.
Boyer
1
,
L.
Silva

1
,
M.
Gicquel

1
,
S.
Devisme

2
,
J.�L.
Chenot

1
,
J.�M.
Haudin

1


�
�
��������	�
�����
�����
�����
������
������	������������������������
� !"#�$$$%��&�'(�&�('���� � � �%&���#�	�)�����(*�+��,���&�('��-�"
���(	��)�,���&�('��
� � � � � � .���%"�
�(������,���&�('��-�.���%����(/�
���,���&�('���
�
0
�!1�������
����
�!������
02�2��	��3
�4�+���������
� !"#�$$$(��5�&�('�� � � � �%&���#�	�&
��(��)��&�,��5�&�4��
�(��&��
�
�



2 THEORETICAL
BACKGROUND


0(� �)��&��&����%5�������&�����

Starting
 from
 Avrami’s
 hypotheses,
 we
 recently


proposed
 a
 new
numerical
 approach
 [4,5].
Original


Avrami’s
 theory
 was
 extended
 to
 treat
 non�

isothermal
 crystallization.
 The
 key
 equations
 of


crystallization
 were
 cast
 into
 a
 general
 differential


system
 that
 is
 integrated
 numerically.
 They


underline
the
influence
of
the
processing
conditions,


namely
temperature
with
cooling�rate
and
shear
rate,


on:
 the
 transformed
volume
 fraction,
 the
density
 of


potential
 nuclei
 together
 with
 the
 activation


frequency
 of
 nuclei
 into
 crystalline
 entities,
 the


growth
 rate
 of
 entities,
 and
 the
 morphological


features.
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The
 set
 of
 differential
 equations
 involve
 the


identification
 of
 three
 kinetic
 parameters,
 namely


N0(T(t)),
 q(T(t))
 and
 G(T(t)).
 The
 term
 N0(T(t))
 is


the
 initial
 density
 of
 potential
 nuclei,
 q(T(t))
 the


activation
frequency
of
 these
nuclei
and
G(T(t))
 the


growth
 rate
 of
 the
 semi�crystalline
 entities,
 which


are
 supposed
 to
 be
 disks
 (discoids)
 in
 2D
 and


spherulites
in
3D.
The
kinetic
parameters
are
defined


as
 a
 function
 of
 temperature
 T
 as
 shown
 in
 the


system
(1)
of
equations
below.




( )( )001000 exp 66��� −−= 




( )( )010 exp 66333 −−= 


 
 
 (1)





( )( )010 exp 66777 −−= 




The
 coefficients
 [N00,
 N01,
 q0,
 q1,
 G0,
 G1]
 are


determined
 directly
 from
 experiments
 or
 calculated


by
the
genetic
algorithm
inverse
method.
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The
 crystallization
 laws
 were
 implemented
 into


Rem3D
®
,
 a
 3D
 finite�element
 code
written
 in
C++.


It
 allows
 us
 to
 reproduce
 the
 crystallization


phenomena
 which
 occur
 during
 the
 injection


molding
 process,
 with
 the
 prediction
 of
 the


distribution
 of
 the
 transformed
 fraction
 and
 of
 the


number
 of
 potential
 and
 activated
 nuclei
 [6].
 The


numerical
 resolution
 is
 based
 on
 a
 Runge�Kutta


Stabilized
Galerkin
integration
scheme.









3 EXPERIMENTAL


8(� ����������

The
materials
used
are
grades
for
injection
molding.


An
isotactic
homopolymer
polypropylene
iPP
(molar


mass:
Mn
=
42500
g/mol,
Mw
=
213000
g/mol)
was


supplied
by
ATOFINA
Company
(France)
under
the


reference
 3250
 MR1.
 A
 poly(ether�block
 amide)


PEBAX
®

thermoplastic
elastomer
based
on
nylon
12


and
 poly(tetramethylene
 oxide)
was
 investigated.
 It


was
obtained
from
ARKEMA
(France).


Thin
 layers
of
 polymers
were
pushed
on
 an
optical


cover
 glass
 in
 a
 transparent
 hot�stage.
 The
 molten


polymer
was
maintained
at
210
°C
during
5
min
and


cooled
 at
 �10
 °C.min
�1

 down
 to
 the
 crystallization


temperatures,
 for
 isothermal
 studies,
 or
 at
 various


cooling�rates
down
to
 the
end
of
crystallization,
 for


non�isothermal
studies.


8(0 6�����3
���

3.2.a Polarizing
Optical
Microscopy
(POM)


The
 crystallization
 events
 and
 morphological


features
were
observed
under
crossed
polarizers
with


a
 polarizing
 LEICA�DMRX
 microscope
 (Leica�

microsystemes,
France).






3.2.b Small�Angle
Light
Scattering
(SALS)


SALS
 patterns
 were
 collected
 by
 using
 a
 helium�

neon
polarized
laser.
The
wave
length
of
the
laser
is


λ
 =
 0.6328
 Im.
 The
 parallel,
 vertically
 polarized


light
 beam
 radiated
 by
 the
 laser
 is
 scattered
 by
 the


crystallizing
 polymer
 film
 and
 then
 analyzed
 by
 a


crossed
polarizer.








4 RESULTS
AND
DISCUSSIONS


In
3D,
it
is
difficult
to
accurately
determine
the
three


key
parameters
of
polymer
crystallization
necessary


for
 modeling
 the
 injection�molding
 process.
 The


strategy
is
to
identify
the
parameters
in
2D,
and
then


to
translate
the
information
into
3D.
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The
 overall
 kinetics
 can
 be
 deduced
 from
 light


depolarization
 integration
 of
 the
 POM
 images,


which
 is
 proportional
 to
 the
 transformed
 volume


fraction.
 Knowing
 N0
 and
 G(T)
 from
 the
 POM




images
 analysis
 (see
 after),
 the
 overall
 kinetics
 can


also
be
calculated
from
Avrami’s
equation
(2)
in
2D


growth
and
instantaneous
nucleation.





( ) ( )( )22

0exp1, �67��6 πα −−= 
 
 (2)




The
 overall
 kinetics,
 deduced
 from
 light


depolarization
 integration
 and
 from
 Avrami’s


equation,
was
plotted
as
a
function
of
time.
Figure
1


shows
the
well
agreement
between
the
two
methods


of
determination.
It
 implies
that
light
depolarization


measurements
 can
 be
 used
 in
 the
 determination
 of


the
 overall
 kinetics
 when
 the
 kinetic
 parameters


N0(T(t))
 and
G(T(t))
 cannot
 be
 determined
 directly


from
the
optical
observations.
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Fig.
1.
Overall
kinetics
in
2D
(5
Im�thick
layer)



of
iPP
at
126
°C.
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Kinetic
 parameters
 are
 issued
 from
 the
 analysis
 of


each
 POM
 image
 of
 the
 time
 evolution
 of
Na(T)
 =


f(t),
 while
 crystallization
 occurs.
 Na(T(t))
 is
 the


number
of
activated
nuclei.





Nucleation
 parameters
N0(T)
 and
 q(T)
 are
 deduced


from
 the
 number
 of
 spherulites
 centers
 Na(T(t))


observed.
The
 final
number
Na(T)
 
 is
approximated


to
 N0(T)
 
 (α(t)
 =
 1).
 q(T)
 is
 calculated
 during
 the


first
 steps
 of
 nucleation.
 Nevertheless
 q(T)
 is


relatively
difficult
to
estimate.
Knowing
N00,
G0
and


the
 overall
 kinetics
 α(t),
 q(T)
 can
 be
 deduced


directly
from
equation
(3),
where
α’(t)
is
defined
by


Avrami
as
the
extended
fraction.
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The
growth
rate
G(T)
 is
obtained
 from
the
 increase


of
 spherulite
 radius
 as
 a
 function
 of
 time.
 It
 is


supposed
 that
 nucleation
 is
 instantaneous
 in


isothermal
 conditions.
 However,
 this
 procedure
 is


not
possible
when
the
maximum
spherulite
radius
is


unduly
 small
 and
 when
 spherulites
 are
 too


numerous.
It
is
the
case
of
the
polyether�block
amide


PEBAX
®
.


Instead,
 use
 may
 be
 made
 of
 the
 light�scattering


method
 developed
 by
 Stein
 and
 Rhodes
 [7].
 The


measurement
 of
 spherulite
 radius
 is
 based
 on
 the


laser�scattering
 theory
 for
 perfect
 spherulites,
 i.e.
 a


homogeneous
 anisotropic
 sphere
 in
 an
 isotropic


medium.
 The
 typical
 scattering
 pattern
 given
 by
 a


spherulitic
film
consists
of
a
four�leaf
clover
shape,


as
illustrated
in
Figure
2.
During
crystallization,
the


pattern
becomes
more
intense
and
smaller.
With
this


method,
 it
 is
 possible
 to
measure
 the
 radius
 r
 of
 a


sphere
in
the
range
of
half
a
micron
to
a
few
microns


by
means
of
the
equation
(4).




2

tan

sin4

09.4

max 







=

�

!
�

�

π

λ 

 
 
 (4)





Rmax
is
the
distance
from
the
center
of
the
pattern
to


the
point
of
maximum
intensity
on
one
lobe,
and
d
is


an
experimental
constant.
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Fig.
2.
Crystallization
small
angle
laser�scattering



pattern
of
PEBAX®
in
3D
(150
Im�thick
layer)
at



151
°C
and
different
times
t.





The
confrontation
of
 the
 results
of
G(T(t))
between


POM
 and
 SALS
 is
 satisfactory.
 Respectively,
 it


gives
 a
growth
 rate
of
0.1023
and
0.0939
Im.s
�1

 at


151
 °C
and
of
0.0694
and
0.0664
Im.s
�1

 at
153
 °C


and
of
0.0422
and
0.0587
Im.s
�1

at
156
°C.
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In
 crystallization,
 large
 discrepancies
 are
 found


between
 experimental
 data
 because
 of
 the


fluctuations
 of
 the
 nucleation
 parameters
 which


depend
on
the
polymer
and
on
the
nucleating
agents.


The
genetic
algorithm
method
is
applied
to
improve


the
resolution
of
problems
linked
to
low
precision.
It


is
 a
 stochastic
 optimization
 method
 based
 on
 the


natural
selection
of
Darwin.
The
optimization
of
the


kinetic
parameters
is
performed
on
the
experimental


evolution
of
the
transformed
volume
fraction
and
of


the
number
of
spherulites.
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The
material
 used
was
 the
 iPP.
 The
 validity
 of
 the


model
 and
 the
 accuracy
 of
 our
 experimental


characterization
 were
 verified.
 Experimental


evolutions
of
the
transformed
volume
fraction
and
of


the
number
of
spherulites
as
a
function
of
the
time
of


crystallization
are
correctly
described
by
the
model.




Simulation
 of
 a
 complete
 injection
 molding
 cycle


was
performed.
An
as
example,
the
injected
part
was


a
2D
plate�shaped
part
 (thickness
8
mm
and
 length


200
mm).
The
material
was
 injected
 at
 230
 °C
and


the
mold
temperature
was
50
°C.
Kinetic
parameters


given
in
Table
1
refer
to
the
equation
(1)
with
T0
=


116
°C.





Table1.
Identification
of
the
kinetic
parameters
for
iPP.


N00
(in
Im�3)
 q0
(in
s�1)

 G0
(in
Im.s�1)


5.875
10�4
 0.2669

 1.3941


N01
(in
°C�1)
 q1
(in
°C�1)
 G1
(in
°C�1)


0.20635
 0.2808
 0.1940
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Fig.
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The
 distribution
 of
 the
 transformed
 fraction
 as
 a


function
of
the
time
of
crystallization
is
illustrated
in


Figure
 3.
 A
 thin
 solid
 layer
 appears
 at
 the
 borders


when
 the
calculation
 in
Rem3D
®

 starts.
 It
 is
due
 to


the
high
cooling
rate
when
the
polymer
is
in
contact


with
 the
 mold.
 Then,
 the
 crystallization
 occurs


slowly.


5 CONCLUSIONS


Our
 general
 differential
 model
 based
 on
 Avrami’s


hypotheses
 gives
 a
 good
 description
 of
 the


crystallization
event.
It
requires
the
identification
of


key
 kinetic
 parameters:
 initial
 density
 of
 potential


nuclei,
their
activation
frequency
and
growth
rate
of


crystallized
entities.


Optical
microscopy
 gives
 access
 to
 the
 parameters,


and
can
be
supplemented
by
the
laser
light�scattering


when
growing
spherulites
are
too
small.



Optimization
 of
 the
 parameters
 is
 performed
 by


means
of
inverse
algorithm
method.



It
remains
to
gather
additional
experimental
data
that


take
 into
 account
 the
 size
 distribution
 of
 the


crystalline
entities,
as
well
as
the
effects
of
flow
and


high
cooling
rates.
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