M. Picciotto, B. Caldarone, D. Brunzell, V. Zachariou, T. Stevens et al., Neuronal nicotinic acetylcholine receptor subunit knockout mice: physiological and behavioral phenotypes and possible clinical implications, Pharmacology & Therapeutics, vol.92, issue.2-3, pp.89-108, 2001.
DOI : 10.1016/S0163-7258(01)00161-9

C. Gotti and F. Clementi, Neuronal nicotinic receptors: from structure to pathology, Progress in Neurobiology, vol.74, issue.6, pp.363-96, 2004.
DOI : 10.1016/j.pneurobio.2004.09.006

J. Dani and D. Bertrand, Nicotinic Acetylcholine Receptors and Nicotinic Cholinergic Mechanisms of the Central Nervous System, Annual Review of Pharmacology and Toxicology, vol.47, issue.1, pp.699-729, 2007.
DOI : 10.1146/annurev.pharmtox.47.120505.105214

E. Albuquerque, E. Pereira, M. Alkondon, and S. Rogers, Mammalian Nicotinic Acetylcholine Receptors: From Structure to Function, Physiological Reviews, vol.89, issue.1, pp.73-120, 2009.
DOI : 10.1152/physrev.00015.2008

A. Jensen, B. Frolund, T. Liljefors, and P. Krogsgaard-larsen, Neuronal Nicotinic Acetylcholine Receptors:?? Structural Revelations, Target Identifications, and Therapeutic Inspirations, Journal of Medicinal Chemistry, vol.48, issue.15, pp.4705-4750, 2005.
DOI : 10.1021/jm040219e

S. Fucile, F. Dajas-bailador, and S. Wonnacott, Ca2+ permeability of nicotinic acetylcholine receptors Nicotinic acetylcholine receptors and the regulation of neuronal signalling, Cell Calcium Trends Pharmacol Sci, vol.35725, pp.1-8317, 2004.

M. Alkondon and E. Albuquerque, The nicotinic acetylcholine receptor subtypes and their function in the hippocampus and cerebral cortex, Prog Brain Res, vol.145, pp.109-129, 2004.
DOI : 10.1016/S0079-6123(03)45007-3

N. Champtiaux and J. Changeux, Knock-out and Knock-in Mice to Investigate the Role of Nicotinic Receptors in the Central Nervous System, Current Drug Target -CNS & Neurological Disorders, vol.1, issue.4, pp.319-349, 2002.
DOI : 10.2174/1568007023339247

J. Drago, C. Mccoll, M. Horne, D. Finkelstein, and S. Ross, Neuronal nicotinic receptors: insights gained from gene knockout an knocking mutant mice, Cellular and Molecular Life Sciences (CMLS), vol.60, issue.7, pp.1267-80, 2003.
DOI : 10.1007/s00018-003-2259-9

U. Maskos, Emerging concepts: novel integration of in vivo approaches to localize the function of nicotinic receptors, Journal of Neurochemistry, vol.145, issue.3, pp.596-602, 2007.
DOI : 10.1093/emboj/18.5.1235

C. Fowler, M. Arends, and P. Kenny, Subtypes of nicotinic acetylcholine receptors in nicotine reward, dependence, and withdrawal: evidence from genetically modified mice, Behavioural Pharmacology, vol.19, issue.5-6, pp.461-84, 2008.
DOI : 10.1097/FBP.0b013e32830c360e

C. Gotti, M. Moretti, A. Gaimarri, A. Zanardi, F. Clementi et al., Heterogeneity and complexity of native brain nicotinic receptors, Biochemical Pharmacology, vol.74, issue.8, pp.1102-1113, 2007.
DOI : 10.1016/j.bcp.2007.05.023

N. Millar and C. Gotti, Diversity of vertebrate nicotinic acetylcholine receptors, Neuropharmacology, vol.56, issue.1, pp.237-283, 2009.
DOI : 10.1016/j.neuropharm.2008.07.041

P. Corringer, J. Sallette, and J. Changeux, Nicotine enhances intracellular nicotinic receptor maturation: A novel mechanism of neural plasticity?, Journal of Physiology-Paris, vol.99, issue.2-3, pp.162-71, 2006.
DOI : 10.1016/j.jphysparis.2005.12.012

URL : https://hal.archives-ouvertes.fr/pasteur-00161479

S. Sine and A. Engel, Recent advances in Cys-loop receptor structure and function, Nature, vol.2, issue.7083, pp.448-55, 2006.
DOI : 10.1038/nature04708

I. Wessler and C. Kirkpatrick, Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans, British Journal of Pharmacology, vol.164, issue.8, 2008.
DOI : 10.1038/bjp.2008.185

H. Schuller, Is cancer triggered by altered signalling of nicotinic acetylcholine receptors?, Nature Reviews Cancer, vol.173, issue.3, pp.195-205, 2009.
DOI : 10.1038/nrc2590

S. Grando, Basic and Clinical Aspects of Non-neuronal Acetylcholine: Biological and Clinical Significance of Non-canonical Ligands of Epithelial Nicotinic Acetylcholine Receptors, Journal of Pharmacological Sciences, vol.106, issue.2, pp.174-183, 2008.
DOI : 10.1254/jphs.FM0070087

R. Egleton, K. Brown, and P. Dasgupta, Nicotinic acetylcholine receptors in cancer: multiple roles in proliferation and inhibition of apoptosis, Trends in Pharmacological Sciences, vol.29, issue.3, pp.151-159, 2008.
DOI : 10.1016/j.tips.2007.12.006

K. Kawashima and T. Fujii, Basic and Clinical Aspects of Non-neuronal Acetylcholine: Overview of Non-neuronal Cholinergic Systems and Their Biological Significance, Journal of Pharmacological Sciences, vol.106, issue.2, pp.167-73, 2008.
DOI : 10.1254/jphs.FM0070073

P. Celie, R. Klaassen, S. Van-rossum-fikkert, R. Van-elk, P. Van-nierop et al., Crystal Structure of Acetylcholine-binding Protein from Bulinus truncatus Reveals the Conserved Structural Scaffold and Sites of Variation in Nicotinic Acetylcholine Receptors, Journal of Biological Chemistry, vol.280, issue.28, pp.26457-66, 2005.
DOI : 10.1074/jbc.M414476200

P. Celie, S. Van-rossum-fikkert, W. Van-dijk, K. Brejc, A. Smit et al., Nicotine and Carbamylcholine Binding to Nicotinic Acetylcholine Receptors as Studied in AChBP Crystal Structures, Neuron, vol.41, issue.6, pp.907-921, 2004.
DOI : 10.1016/S0896-6273(04)00115-1

S. Hansen, G. Sulzenbacher, T. Huxford, P. Marchot, P. Taylor et al., Structures of Aplysia AChBP complexes with nicotinic agonists and antagonists reveal distinctive binding interfaces and conformations, The EMBO Journal, vol.92, issue.20, pp.3635-3681, 2005.
DOI : 10.1016/0014-5793(90)81231-C

R. Hilf and R. Dutzler, X-ray structure of a prokaryotic pentameric ligand-gated ion channel, Nature, vol.111, issue.7185, pp.375-384, 2008.
DOI : 10.1038/nature06717

R. Hilf and R. Dutzler, Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel, Nature, vol.9, issue.7225, pp.115-123, 2009.
DOI : 10.1073/pnas.93.23.13362

N. Bocquet, H. Nury, M. Baaden, L. Poupon, C. Changeux et al., X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation, Nature, vol.3, issue.7225, pp.111-115, 2009.
DOI : 10.1523/JNEUROSCI.3467-06.2006

N. Unwin, Refined Structure of the Nicotinic Acetylcholine Receptor at 4?? Resolution, Journal of Molecular Biology, vol.346, issue.4, pp.967-89, 2005.
DOI : 10.1016/j.jmb.2004.12.031

R. Giniatullin, A. Nistri, and J. Yakel, Desensitization of nicotinic ACh receptors: shaping cholinergic signaling, Trends in Neurosciences, vol.28, issue.7, pp.371-379, 2005.
DOI : 10.1016/j.tins.2005.04.009

M. Picciotto, N. Addy, Y. Mineur, and D. Brunzell, It is not ???either/or???: Activation and desensitization of nicotinic acetylcholine receptors both contribute to behaviors related to nicotine addiction and mood, Progress in Neurobiology, vol.84, issue.4, pp.329-371, 2008.
DOI : 10.1016/j.pneurobio.2007.12.005

C. Gotti, M. Zoli, and F. Clementi, Brain nicotinic acetylcholine receptors: native subtypes and their relevance, Trends in Pharmacological Sciences, vol.27, issue.9, pp.482-91, 2006.
DOI : 10.1016/j.tips.2006.07.004

A. Elgoyhen, D. Vetter, E. Katz, C. Rothlin, S. Heinemann et al., ??10: A determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells, Proceedings of the National Academy of Sciences, vol.98, issue.6, pp.3501-3507, 2001.
DOI : 10.1073/pnas.051622798

F. Sgard, E. Charpantier, S. Bertrand, N. Walker, D. Caput et al., A Novel Human Nicotinic Receptor Subunit, alpha 10, That Confers Functionality to the alpha 9-Subunit, Molecular Pharmacology, vol.61, issue.1, pp.150-159, 2002.
DOI : 10.1124/mol.61.1.150

J. Ramirez-latorre, C. Yu, X. Qu, F. Perin, A. Karlin et al., Functional contributions of ??5 subunit to neuronal acetylcholine receptor channels, Nature, vol.380, issue.6572, pp.347-51, 1996.
DOI : 10.1038/380347a0

P. Groot-kormelink, W. Luyten, D. Colquhoun, and L. Sivilotti, A Reporter Mutation Approach Shows Incorporation of the "Orphan" Subunit beta 3 into a Functional Nicotinic Receptor, Journal of Biological Chemistry, vol.273, issue.25, pp.15317-15337, 1998.
DOI : 10.1074/jbc.273.25.15317

P. Corringer, L. Novere, N. Changeux, and J. , Nicotinic Receptors at the Amino Acid Level, Annual Review of Pharmacology and Toxicology, vol.40, issue.1, pp.431-58, 2000.
DOI : 10.1146/annurev.pharmtox.40.1.431

A. Kuryatov, J. Onksen, and J. Lindstrom, Roles of Accessory Subunits in ??4??2* Nicotinic Receptors, Molecular Pharmacology, vol.74, issue.1, pp.132-175, 2008.
DOI : 10.1124/mol.108.046789

M. Moroni, R. Zwart, E. Sher, B. Cassels, and I. Bermudez, ??4beta2 Nicotinic Receptors with High and Low Acetylcholine Sensitivity: Pharmacology, Stoichiometry, and Sensitivity to Long-Term Exposure to Nicotine, Molecular Pharmacology, vol.70, issue.2, pp.755-68, 2006.
DOI : 10.1124/mol.106.023044

M. Moroni, R. Vijayan, A. Carbone, R. Zwart, P. Biggin et al., Non-agonist-binding subunit interfaces confer distinct functional signatures to the alternate stoichiometries of the alpha4beta2 nicotinic receptor: an alpha4-alpha4 interface is required for Zn2+ potentiation

E. Palma, L. Maggi, B. Barabino, F. Eusebi, and M. Ballivet, Nicotinic Acetylcholine Receptors Assembled from the ??7 and ??3 Subunits, Journal of Biological Chemistry, vol.274, issue.26, pp.18335-18375, 1999.
DOI : 10.1074/jbc.274.26.18335

S. Broadbent, P. Groot-kormelink, P. Krashia, P. Harkness, N. Millar et al., Incorporation of the beta3 Subunit Has a Dominant-Negative Effect on the Function of Recombinant Central-Type Neuronal Nicotinic Receptors, Molecular Pharmacology, vol.70, issue.4, pp.1350-1357, 2006.
DOI : 10.1124/mol.106.026682

R. Drenan, R. Nashmi, P. Imoukhuede, H. Just, S. Mckinney et al., Subcellular Trafficking, Pentameric Assembly, and Subunit Stoichiometry of Neuronal Nicotinic Acetylcholine Receptors Containing Fluorescently Labeled ??6 and 3 Subunits, Molecular Pharmacology, vol.73, issue.1, pp.27-41, 2008.
DOI : 10.1124/mol.107.039180

R. Anand, W. Conroy, R. Schoepfer, P. Whiting, and J. Lindstrom, Neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes have a pentameric quaternary structure, J Biol Chem, vol.266, pp.11192-11200, 1991.

E. Cooper, S. Couturier, and M. Ballivet, Pentameric structure and subunit stoichiometry of a neuronal nicotinic acetylcholine receptor, Nature, vol.350, issue.6315, pp.235-243, 1991.
DOI : 10.1038/350235a0

R. Zwart and H. Vijverberg, Four pharmacologically distinct subtypes of alpha4beta2 nicotinic acetylcholine receptor expressed in Xenopus laevis oocytes, Mol Pharmacol, vol.54, pp.1124-1155, 1998.

M. Nelson, A. Kuryatov, C. Choi, Y. Zhou, and J. Lindstrom, Alternate Stoichiometries of alpha 4beta 2 Nicotinic Acetylcholine Receptors, Molecular Pharmacology, vol.63, issue.2, pp.332-373, 2003.
DOI : 10.1124/mol.63.2.332

Y. Zhou, M. Nelson, A. Kuryatov, C. Choi, J. Cooper et al., Human alpha4beta2 acetylcholine receptors formed from linked subunits, J Neurosci, vol.23, pp.9004-9019, 2003.

M. Marks, P. Whiteaker, and A. Collins, Deletion of the ??7, beta2, or beta4 Nicotinic Receptor Subunit Genes Identifies Highly Expressed Subtypes with Relatively Low Affinity for [3H]Epibatidine, Molecular Pharmacology, vol.70, issue.3, pp.947-59, 2006.
DOI : 10.1124/mol.106.025338

C. Gotti, M. Moretti, N. Meinerz, F. Clementi, A. Gaimarri et al., Partial Deletion of the Nicotinic Cholinergic Receptor ??4 or ??2 Subunit Genes Changes the Acetylcholine Sensitivity of Receptor-Mediated 86Rb+ Efflux in Cortex and Thalamus and Alters Relative Expression of ??4 and ??2 Subunits, Molecular Pharmacology, vol.73, issue.6, pp.1796-807, 2008.
DOI : 10.1124/mol.108.045203

C. Son, F. Moss, B. Cohen, and H. Lester, Nicotine Normalizes Intracellular Subunit Stoichiometry of Nicotinic Receptors Carrying Mutations Linked to Autosomal Dominant Nocturnal Frontal Lobe Epilepsy, Molecular Pharmacology, vol.75, issue.5, 2009.
DOI : 10.1124/mol.108.054494

N. Millar, RIC-3: a nicotinic acetylcholine receptor chaperone, British Journal of Pharmacology, vol.6, issue.044, pp.177-83, 2008.
DOI : 10.1038/sj.bjp.0707661

N. Millar and P. Harkness, Assembly and trafficking of nicotinic acetylcholine receptors (Review), Molecular Membrane Biology, vol.5, issue.4, pp.279-92, 2008.
DOI : 10.1074/jbc.M503746200

R. Girod, G. Crabtree, G. Ernstrom, J. Ramirez-latorre, D. Mcgehee et al., Heteromeric Complexes of alpha5 and/or alpha7 Subunits: Effects of Calcium and Potential Role in Nicotine-Induced Presynaptic Facilitation, Annals of the New York Academy of Sciences, vol.79, issue.1 MOLECULAR AND, pp.578-90, 1999.
DOI : 10.1038/37120

S. Khiroug, P. Harkness, P. Lamb, S. Sudweeks, L. Khiroug et al., Rat nicotinic ACh receptor ??7 and ??2 subunits co-assemble to form functional heteromeric nicotinic receptor channels, The Journal of Physiology, vol.54, issue.2, pp.425-459, 2002.
DOI : 10.1113/jphysiol.2001.013847

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2290261

T. Lewis, P. Harkness, L. Sivilotti, D. Colquhoun, and N. Millar, The ion channel properties of a rat recombinant neuronal nicotinic receptor are dependent on the host cell type, The Journal of Physiology, vol.28, issue.2, pp.299-306, 1997.
DOI : 10.1111/j.1469-7793.1997.299bb.x

W. Sweileh, K. Wenberg, J. Xu, J. Forsayeth, S. Hardy et al., Multistep expression and assembly of neuronal nicotinic receptors is both host-cell- and receptor-subtype-dependent, Molecular Brain Research, vol.75, issue.2
DOI : 10.1016/S0169-328X(99)00302-2

R. Brown, A. Collins, J. Lindstrom, and P. Whiteaker, Nicotinic alpha5 subunit deletion locally reduces high-affinity agonist activation without altering nicotinic receptor numbers, J Neurochem, vol.103, pp.204-219, 2007.
DOI : 10.1111/j.1471-4159.2007.04700.x

R. Salas, A. Orr-urtreger, R. Broide, A. Beaudet, R. Paylor et al., The Nicotinic Acetylcholine Receptor Subunit alpha 5 Mediates Short-Term Effects of Nicotine in Vivo, Molecular Pharmacology, vol.63, issue.5, pp.1059-66, 2003.
DOI : 10.1124/mol.63.5.1059

M. Kedmi, A. Beaudet, and A. Orr-urtreger, Mice lacking neuronal nicotinic acetylcholine receptor ??4-subunit and mice lacking both ??5- and ??4-subunits are highly resistant to nicotine-induced seizures, Physiological Genomics, vol.17, issue.2, pp.221-230, 2004.
DOI : 10.1152/physiolgenomics.00202.2003

Z. Han, L. Novere, N. Zoli, M. Hill, J. et al., Localization of nAChR subunit mRNAs in the brain of Macaca mulatta, European Journal of Neuroscience, vol.18, issue.10, pp.3664-74, 2000.
DOI : 10.1046/j.1460-9568.2000.00262.x

M. Moretti, S. Vailati, M. Zoli, G. Lippi, L. Riganti et al., Nicotinic Acetylcholine Receptor Subtypes Expression during Rat Retina Development and Their Regulation by Visual Experience, Molecular Pharmacology, vol.66, issue.1, pp.85-96, 2004.
DOI : 10.1124/mol.66.1.85

S. Grady, M. Moretti, M. Zoli, M. Marks, A. Zanardi et al., Rodent habenulointerpeduncular pathway expresses a large variety of uncommon nAChR subtypes, but only 12 Nigrostriatal damage preferentially decreases a subpopulation of alpha6beta2* nAChRs in mouse, monkey, and Parkinson's disease striatum, Mol Pharmacol, vol.7572, pp.52-61, 2007.

R. Salas, F. Pieri, D. Biasi, and M. , Decreased Signs of Nicotine Withdrawal in Mice Null for the ??4 Nicotinic Acetylcholine Receptor Subunit, Journal of Neuroscience, vol.24, issue.45, pp.10035-10044, 2004.
DOI : 10.1523/JNEUROSCI.1939-04.2004

R. Salas, R. Sturm, J. Boulter, D. Biasi, and M. , Nicotinic Receptors in the Habenulo-Interpeduncular System Are Necessary for Nicotine Withdrawal in Mice, Journal of Neuroscience, vol.29, issue.10, pp.3014-3022, 2009.
DOI : 10.1523/JNEUROSCI.4934-08.2009

S. Glick, R. Ramirez, J. Livi, and I. Maisonneuve, 18-Methoxycoronaridine acts in the medial habenula and/or interpeduncular nucleus to decrease morphine self-administration in rats, European Journal of Pharmacology, vol.537, issue.1-3, pp.94-102, 2006.
DOI : 10.1016/j.ejphar.2006.03.045

O. Taraschenko, J. Shulan, I. Maisonneuve, and S. Glick, 18-MC acts in the medial habenula and interpeduncular nucleus to attenuate dopamine sensitization to morphine in the nucleus accumbens, Synapse, vol.20, issue.7, pp.547-60, 2007.
DOI : 10.1002/syn.20396

M. Zoli, C. Lena, M. Picciotto, and J. Changeux, Identification of four classes of brain nicotinic receptors using beta2 mutant mice, J Neurosci, vol.18, pp.4461-72, 1998.

P. Whiteaker, C. Peterson, W. Xu, J. Mcintosh, R. Paylor et al., Involvement of the alpha3 subunit in central nicotinic binding populations, J Neurosci, vol.22, pp.2522-2531, 2002.

M. Marks, P. Whiteaker, S. Grady, M. Picciotto, J. Mcintosh et al., Characterization of [125I]epibatidine binding and nicotinic agonist-mediated 86Rb+ efflux in interpeduncular nucleus and inferior colliculus of ??2 null mutant mice, Journal of Neurochemistry, vol.18, issue.5, pp.1102-1117, 2002.
DOI : 10.1046/j.1471-4159.2002.00910.x

W. Conroy and D. Berg, Neurons Can Maintain Multiple Classes of Nicotinic Acetylcholine Receptors Distinguished by Different Subunit Compositions, Journal of Biological Chemistry, vol.270, issue.9, pp.4424-4455, 1995.
DOI : 10.1074/jbc.270.9.4424

W. Klemm, Habenular and interpeduncularis nuclei: shared components in multiplefunction networks, Med Sci Monit, vol.10, pp.261-73, 2004.

L. Lecourtier and P. Kelly, A conductor hidden in the orchestra? Role of the habenular complex in monoamine transmission and cognition, Neuroscience & Biobehavioral Reviews, vol.31, issue.5, pp.658-72, 2007.
DOI : 10.1016/j.neubiorev.2007.01.004

O. Phillipson and C. Pycock, Dopamine neurones of the ventral tegmentum project to both medial and lateral habenula. Some implications for habenular function, Exp Brain Res, vol.45, pp.89-94, 1982.

C. Meshul, K. Noguchi, N. Emre, and G. Ellison, Cocaine-induced changes in glutamate and GABA immunolabeling within rat habenula and nucleus accumbens, Synapse, vol.552, issue.2, pp.211-231, 1998.
DOI : 10.1002/(SICI)1098-2396(199810)30:2<211::AID-SYN11>3.0.CO;2-4

T. Li, W. Gao, and Z. Rao, Noxious somatic stimulation-induced expression of Fos-like immunoreactivity in catecholaminergic neurons with habenular nucleus projection in the medullary visceral zone of rat, Brain Research, vol.783, issue.1, pp.51-57, 1998.
DOI : 10.1016/S0006-8993(97)01183-9

E. Wada, K. Wada, J. Boulter, E. Deneris, S. Heinemann et al., Distribution of alpha2, alpha3, alpha4, and beta2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: A hybridization histochemical study in the rat, The Journal of Comparative Neurology, vol.327, issue.2, pp.314-349, 1989.
DOI : 10.1002/cne.902840212

J. Dickinson, J. Kew, and S. Wonnacott, Presynaptic ??7- and ??2-Containing Nicotinic Acetylcholine Receptors Modulate Excitatory Amino Acid Release from Rat Prefrontal Cortex Nerve Terminals via Distinct Cellular Mechanisms, Molecular Pharmacology, vol.74, issue.2, pp.348-59, 2008.
DOI : 10.1124/mol.108.046623

D. Quarta, C. Naylor, J. Barik, C. Fernandes, S. Wonnacott et al., Drug discrimination and neurochemical studies in ??7 null mutant mice: tests for the role of nicotinic ??7 receptors in dopamine release, Psychopharmacology, vol.5, issue.2, pp.399-410, 2009.
DOI : 10.1007/s00213-008-1281-x

P. Livingstone, J. Srinivasan, J. Kew, L. Dawson, C. Gotti et al., in the rat prefrontal cortex, European Journal of Neuroscience, vol.105, issue.Suppl. 1, pp.539-50, 2009.
DOI : 10.1111/j.1460-9568.2009.06613.x

J. Barik and S. Wonnacott, Indirect Modulation by ??7 Nicotinic Acetylcholine Receptors of Noradrenaline Release in Rat Hippocampal Slices: Interaction with Glutamate and GABA Systems and Effect of Nicotine Withdrawal, Molecular Pharmacology, vol.69, issue.2, pp.618-646, 2006.
DOI : 10.1124/mol.105.018184

Q. Liu, Y. Huang, F. Xue, A. Simard, J. Dechon et al., A Novel Nicotinic Acetylcholine Receptor Subtype in Basal Forebrain Cholinergic Neurons with High Sensitivity to Amyloid Peptides, Journal of Neuroscience, vol.29, issue.4, pp.918-947, 2009.
DOI : 10.1523/JNEUROSCI.3952-08.2009

B. Buisson and D. Bertrand, Nicotine addiction: the possible role of functional upregulation, Trends in Pharmacological Sciences, vol.23, issue.3, pp.130-136, 2002.
DOI : 10.1016/S0165-6147(00)01979-9

D. Perry, M. Davila-garcia, C. Stockmeier, and K. Kellar, Increased nicotinic receptors in brains from smokers: membrane binding and autoradiography studies, J Pharmacol Exp Ther, vol.289, pp.1545-52, 1999.

M. Marks, J. Pauly, S. Gross, E. Deneris, I. Hermans-borgmeyer et al., Nicotine binding and nicotinic receptor subunit RNA after chronic nicotine treatment, J Neurosci, vol.12, pp.2765-84, 1992.

R. Nashmi and H. Lester, Cell autonomy, receptor autonomy, and thermodynamics in nicotine receptor up-regulation, Biochemical Pharmacology, vol.74, issue.8, pp.1145-54, 2007.
DOI : 10.1016/j.bcp.2007.06.040

H. Walsh, A. Govind, R. Mastro, J. Hoda, D. Bertrand et al., Up-regulation of Nicotinic Receptors by Nicotine Varies with Receptor Subtype, Journal of Biological Chemistry, vol.283, issue.10, pp.6022-6054, 2008.
DOI : 10.1074/jbc.M703432200

P. Tumkosit, A. Kuryatov, J. Luo, and J. Lindstrom, beta3 Subunits Promote Expression and Nicotine-Induced Up-Regulation of Human Nicotinic ??6* Nicotinic Acetylcholine Receptors Expressed in Transfected Cell Lines, Molecular Pharmacology, vol.70, issue.4, pp.1358-68, 2006.
DOI : 10.1124/mol.106.027326

Y. Xiao and K. Kellar, The Comparative Pharmacology and Up-Regulation of Rat Neuronal Nicotinic Receptor Subtype Binding Sites Stably Expressed in Transfected Mammalian Cells, Journal of Pharmacology and Experimental Therapeutics, vol.310, issue.1, pp.98-107, 2004.
DOI : 10.1124/jpet.104.066787

H. Nguyen, B. Rasmussen, and D. Perry, Binding and functional activity of nicotinic cholinergic receptors in selected rat brain regions are increased following long-term but not short-term nicotine treatment, Journal of Neurochemistry, vol.50, issue.1, pp.40-49, 2004.
DOI : 10.1111/j.1471-4159.2004.02482.x

J. Sallette, S. Pons, A. Devillers-thiery, M. Soudant, L. Prado-de-carvalho et al., Nicotine Upregulates Its Own Receptors through Enhanced Intracellular Maturation, Neuron, vol.46, issue.4, pp.595-607, 2005.
DOI : 10.1016/j.neuron.2005.03.029

URL : https://hal.archives-ouvertes.fr/pasteur-00162539

A. Gaimarri, M. Moretti, L. Riganti, A. Zanardi, F. Clementi et al., Regulation of neuronal nicotinic receptor traffic and expression, Brain Research Reviews, vol.55, issue.1, pp.134-177, 2007.
DOI : 10.1016/j.brainresrev.2007.02.005

D. Mao, D. Perry, R. Yasuda, B. Wolfe, and K. Kellar, The alpha4beta2alpha5 nicotinic cholinergic receptor in rat brain is resistant to up-regulation by nicotine in vivo, J Neurochem, vol.104, pp.446-56, 2008.

B. Rasmussen and D. Perry, An autoradiographic analysis of [125I]??-bungarotoxin binding in rat brain after chronic nicotine exposure, Neuroscience Letters, vol.404, issue.1-2, pp.9-14, 2006.
DOI : 10.1016/j.neulet.2006.05.010

F. Olale, V. Gerzanich, A. Kuryatov, F. Wang, and J. Lindstrom, Chronic nicotine exposure differentially affects the function of human alpha3, alpha4, and alpha7 neuronal nicotinic receptor subtypes, J Pharmacol Exp Ther, vol.283, pp.675-83, 1997.

H. Kawai and D. Berg, Nicotinic acetylcholine receptors containing ??7 subunits on rat cortical neurons do not undergo long-lasting inactivation even when up-regulated by chronic nicotine exposure, Journal of Neurochemistry, vol.12, issue.6, pp.1367-78, 2001.
DOI : 10.1046/j.1471-4159.2001.00526.x

Z. Yu and L. Wecker, Chronic Nicotine Administration Differentially Affects Neurotransmitter Release from Rat Striatal Slices, Journal of Neurochemistry, vol.63, issue.1, pp.186-94, 1994.
DOI : 10.1046/j.1471-4159.1994.63010186.x

M. Marks, D. Farnham, S. Grady, and A. Collins, Nicotinic receptor function determined by stimulation of rubidium efflux from mouse brain synaptosomes, J Pharmacol Exp Ther, vol.264, pp.542-52, 1993.

M. Grilli, M. Parodi, M. Raiteri, and M. Marchi, Chronic nicotine differentially affects the function of nicotinic receptor subtypes regulating neurotransmitter release, Journal of Neurochemistry, vol.22, issue.5, pp.1353-60, 2005.
DOI : 10.1111/j.1471-4159.2005.03126.x

S. Parker, Y. Fu, K. Mcallen, J. Luo, J. Mcintosh et al., Up-Regulation of Brain Nicotinic Acetylcholine Receptors in the Rat during Long-Term Self-Administration of Nicotine: Disproportionate Increase of the ??6 Subunit, Molecular Pharmacology, vol.65, issue.3, pp.611-633, 2004.
DOI : 10.1124/mol.65.3.611

M. Mugnaini, M. Garzotti, I. Sartori, M. Pilla, P. Repeto et al., Selective down-regulation of [125I]Y0-??-conotoxin MII binding in rat mesostriatal dopamine pathway following continuous infusion of nicotine, Neuroscience, vol.137, issue.2, pp.565-72, 2006.
DOI : 10.1016/j.neuroscience.2005.09.008

D. Perry, D. Mao, A. Gold, J. Mcintosh, J. Pezzullo et al., Chronic Nicotine Differentially Regulates ??6- and beta3-Containing Nicotinic Cholinergic Receptors in Rat Brain, Journal of Pharmacology and Experimental Therapeutics, vol.322, issue.1, pp.306-321, 2007.
DOI : 10.1124/jpet.107.121228

A. Lai, N. Parameswaran, M. Khwaja, P. Whiteaker, J. Lindstrom et al., Long-Term Nicotine Treatment Decreases Striatal ??6* Nicotinic Acetylcholine Receptor Sites and Function in Mice, Molecular Pharmacology, vol.67, issue.5, pp.1639-1686, 2005.
DOI : 10.1124/mol.104.006429

X. Perez, T. Bordia, J. Mcintosh, S. Grady, and M. Quik, Long-Term Nicotine Treatment Differentially Regulates Striatal ??6??4??2* and ??6(Non??4)??2* nAChR Expression and Function, Molecular Pharmacology, vol.74, issue.3, pp.844-53, 2008.
DOI : 10.1124/mol.108.048843

X. Perez, O. Leary, K. Parameswaran, N. Mcintosh, J. Quik et al., Prominent Role of ??3/??6??2* nAChRs in Regulating Evoked Dopamine Release in Primate Putamen: Effect of Long-Term Nicotine Treatment, Molecular Pharmacology, vol.75, issue.4, pp.938-984, 2009.
DOI : 10.1124/mol.108.053801

R. Klink, A. De-kerchove-d-'exaerde, M. Zoli, and J. Changeux, Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei, J Neurosci, vol.21, pp.1452-63, 2001.

C. Martin-ruiz, J. Court, E. Molnar, M. Lee, C. Gotti et al., ??4 but Not ??3 and ??7 Nicotinic Acetylcholine Receptor Subunits Are Lost from the Temporal Cortex in Alzheimer's Disease, Journal of Neurochemistry, vol.18, issue.4, pp.1635-1675, 1999.
DOI : 10.1046/j.1471-4159.1999.0731635.x

J. Brasic, Y. Zhou, J. Musachio, J. Hilton, H. Fan et al., I]iodo-3-(2-azetidinylmethoxy)pyridine in the living human brain of smokers and nonsmokers, Synapse, vol.539, issue.3, pp.339-58, 2009.
DOI : 10.1002/syn.20611

J. Staley, S. Krishnan-sarin, K. Cosgrove, E. Krantzler, E. Frohlich et al., Human Tobacco Smokers in Early Abstinence Have Higher Levels of beta2* Nicotinic Acetylcholine Receptors than Nonsmokers, Journal of Neuroscience, vol.26, issue.34, pp.8707-8721, 2006.
DOI : 10.1523/JNEUROSCI.0546-06.2006

K. Rezvani, Y. Teng, D. Shim, D. Biasi, and M. , Nicotine Regulates Multiple Synaptic Proteins by Inhibiting Proteasomal Activity, Journal of Neuroscience, vol.27, issue.39, pp.10508-10527, 2007.
DOI : 10.1523/JNEUROSCI.3353-07.2007

F. Wang, H. Chen, J. Steketee, and B. Sharp, Upregulation of Ionotropic Glutamate Receptor Subunits within Specific Mesocorticolimbic Regions during Chronic Nicotine Self-Administration, Neuropsychopharmacology, vol.281, issue.1, pp.103-112, 2007.
DOI : 10.1016/j.neuropharm.2004.07.006