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ABSTRACT

This paper presents a novel robust automatic method for

the segmentation of the Inferior Vena Cava (IVC) in the prox-

imity of the liver. In clinical diagnosis and surgery planning,

IVC segmentation is essential since it strongly impacts both

liver volumetry accuracy and vascularity analysis. Given the

anatomical variability, the lack of clear boundaries and com-

plexity of the surrounding structures along the IVC, its seg-

mentation remains a difficult and open problem. To cope

with such challenging conditions, we developed an implicit

representation of a generalized cylinder and optimized a lo-

cal region-based criterion under dedicated anatomical con-

straints. Our method was tested on a dataset of 20 contrast-

enhanced CT scans, achieving 80% success rate in fully auto-

matic mode. The remaining cases needed minimal user input

(one point) to reach 95% success under radiology expert cri-

teria.

1. INTRODUCTION

The Inferior Vena Cava (IVC) is the large vein that carries

de-oxygenated blood from the lower half of the body into the

right atrium of the heart. Before reaching the heart, the IVC

passes through the liver without irrigating it. In the context of

liver clinical diagnosis, pre-operative planning and therapy,

IVC segmentation from CT scans plays a crucial role. This

role is twofold. First, the accuracy of liver volumetry is criti-

cal for liver donor transplantation, and considering the IVC as

part of the liver significantly overestimates the volume of its

parenchyma. Second, the IVC is an essential landmark for the

segmentation of the hepatic and portal vascular trees (bright-

est vessels in Fig.1) which are the base for the definition of

liver segments, following a Couinaud anatomical model [1].

In clinical practice, manual segmentation by radiology

experts is time-consuming, subjective and difficult. Recently,

several fully automatic algorithms for liver segmentation have

been proposed and validated against manual segmentation

references [2]. However, only few attempts to automatically

exclude the IVC from the liver segmentation have been car-

ried out [3, 4]. Automatic IVC segmentation remains difficult

given the anatomical inter-patient variability, the lack of well-

defined boundaries with the liver parenchyma, the possible

presence of nearby tumors and the effect of non-uniform

distribution of the contrast agent. Consequently, existing ap-

proaches weakly perform under non-ideal scenarios, and the

problem remains unresolved up to now. To cope with the

aforementioned difficulties, our contribution is twofold: (1)

a model of the IVC as an implicit representation of a gen-

eralized cylinder and (2) a local region-based optimization

criterion under dedicated anatomical constraints.

IVC
liver

Fig. 1. Coronal/axial views of a contrast-enhanced liver CT

scan, showing lack of clear boundaries between the IVC and liver

parenchyma.

Vascular analysis has been a very active field of research

in image processing. In particular, scale-space theory, medial

representations [5], and propagation methods have helped the

development of now well-established algorithms for vessel

enhancement [6] and centerline extraction [7]. From our ex-

periments, such multi-scale analysis of ridge-like curvilinear

structures were insufficient to obtain an accurate delineation

of the IVC lumen due to the complexity of the surrounding

structures and the lack of clear boundaries in large portions

of the IVC surface. Variational segmentation methods, such

as implicit surface evolution schemes, minimizing boundary-

based [8] or more robust region-based [9] criteria, have also

been proposed as a complement to former approaches. Re-

cently, explicit tubular representations were used [10, 11]

in a similar context. Related to these works, we propose

a variational approach where optimization is done over an

implicit generalized cylinder representation with convolution

surfaces. These geometrical models, originally developed in

computer graphics modeling and animation [12], were re-

cently used for visualization of complex branching vessels

[13]. A key novelty of our work is to incorporate a vessel

model with convolution surfaces into a region-based varia-
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tional segmentation framework (section 2). For the specific

application of IVC segmentation, we increase this model

robustness with dedicated constraints deduced from other

anatomical structures (section 3) to provide clinical practi-

tioners with a fully automatic tool.

2. MODEL DESCRIPTION

We formalize IVC segmentation as an optimal two-phase sep-

aration problem, in which foreground and background corre-

spond to the IVC lumen and the surrounding structures (e.g.

liver, aorta, intestines), respectively. More specifically, our

model relies on an implicit tubular representation of the fore-

ground region.

Many formulations of two-phase image segmentation

consider the optimal partition as the best trade-off between

shape regularity and region homogeneity. Over the set of all

possible partitions {A} of a domain Ω, an objective criterion

is defined as the sum of some regularization term R(A) and

image-dependent homogeneity measures r1 and r2 integrated

over the foreground and background regions:

min
A

{
R(A) +

∫
A
r1 (x) dx+

∫
Ω\A

r2 (x) dx

}
(1)

With known intensity distributions pi for each region, a

common choice is to set ri(x) = − log pi(I(x)) [14]. In

a continuous setting, an implicit representation of A can be

used, defining a real function Φ, positive in the foreground.

Using the Heaviside function H , H(Φ) is the characteristic

function of the foreground region A, and (1) is equivalent to

min
Φ

{
R(Φ) +

∫
Ω

H(Φ(x))r (x)) dx

}
with r(x) = r1 (x)− r2 (x)

(2)

Assuming a circular cross-section, a vessel branch is of-

ten modeled by an open parameterized medial curve m(s) :
[0, 1]→ R

3, with a set of corresponding point-wise radii. The

key idea of our model is to define an implicit analytical repre-

sentation of such a generalized cylinder. This representation

is obtained by integrating a smooth decreasing radial function

ω centered all over the medial curve m(s), with continuously-

varying scales σ(s) (see Fig. 2):

Φm,σ(x) =

∫ 1

0

ω

(‖x−m(s)‖
σ(s)

)
‖m′(s)‖ ds− C (3)

where x is any point in the domain Ω, C an arbitrary positive

constant and ω is typically a Gaussian function. The term

‖m′(s)‖ ensures invariance with respect to parameterization.

Substituting the vessel representation (3) into the objec-

tive criterion (2) and associating specific regularization terms

to the unknown centerline m(s) and scales σ(s) yields:

min
m,σ

{
R(m, σ) +

∫
Ω

H(Φm,σ(x))r(x)dx

}
, (4)

Fig. 2. Analytical implicit representation of a vessel in 2D.

whereR(m, σ) is designed to penalize both the length of the

centerline and the variations of scale along it, controlled by

the positive scalar parameters λ and μ respectively:

R(m, σ) = λ

∫ 1

0

‖m′(s)‖+ μ

∫ 1

0

|σ′(s)|2 (5)

The Euler-Lagrange equations of the functional in (4) can be
found by standard calculus of variations, made easier by the
analytical expression of the implicit representation. Due to
space limitations, we have omitted the details of these com-
putations. They result in gradient-descent evolution equations
for both the centerline and the scales, of the form1 (see Fig.3):

∂m

∂t
(s) = λκ(s)n(s) −

∫

{Φm,σ=0}

r(x)N(x, s)dx

∂σ

∂t
(s) = μσ′′(s) −

∫

{Φm,σ=0}

r(x)B(x, s)dx
(6)

where κ is the curvature of the centerline, n = m′′/ ‖m′′‖
its normal and functions N(x, s) and B(x, s) are given by

N(x, s) =
ω′

(
‖x−m(s)‖

σ(s)

)

‖∇Φm,σ(x)‖
‖m′(s)‖
σ(s)

x−m(s)

‖x−m(s)‖

B(x, s) = −
ω′

(
‖x−m(s)‖

σ(s)

)

‖∇Φm,σ(x)‖
∥∥m′(s)

∥∥ ‖x−m(s)‖
σ(s)2

(7)

Fig. 3. Left: vector field N(x, s) plotted only on the boundary

{Φm,σ = 0}, and B(x, s), color-coded. Right: Evolution of a cen-

terline point with Eq.(6) as the sum of all forces −r.N computed on

the boundary, for a simple image term r(x) shown in gray.

These general evolution equations can be further adapted

to IVC segmentation by designing specific homogeneity mea-

1We have here neglected terms derived from parameterization invariance.
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sures r1 and r2 that capture the local variations inside the lu-

men due to contrast product injection and the complex space-

varying statistics of the outside tissues. A local likelihood

criterion is defined at every x from a weighted combination

of local probability densities pi(I(x), s) along the centerline:

ri(x) = −
∫ 1

0

ω

(‖x−m(s)‖
a

)
log pi(I(x), s)ds

where the blending scale a is related to the expected statisti-

cal intensity variations along the vessel [15]. The probability

densities pi are non-parametric and updated periodically dur-

ing optimization using kernel density estimation.

3. AUTOMATIC IVC SEGMENTATION

heart

aorta

spine

aorta

circle detection

Fig. 4. Left: the hashed area is an axial view of the restriction of

our computation domain Ω. Right: Square represents the area where

the circle detection filter is applied to locate the second IVC point.

Combined with a local region-based criterion, the previ-

ous implicit vessel model has the required ability to follow

image evidence where available and naturally extrapolate the

surface where it is missing. Nevertheless, fully automatic and

robust segmentation of the IVC requires significant additional

effort. As a non-convex functional, (4) has obviously multiple

local minima, and the IVC is only expected to be one among

those. Therefore, special attention should be paid to the do-

main Ω, fixed during the optimization, and the initial state

(m0, σ0) of the tubular model evolution.

Dedicated anatomical constraints: The IVC enters the heart

from its right lower side, runs near the liver, along the ver-

tebral column. Incorporating additional knowledge on these

anatomical structures (heart, liver, spine) allows to restrict

the computation domain Ω and avoid possible mistakes. To

do so, their segmentations need not be precise. Localization

of the vertebral column is obtained by a simple thresholding

since bone intensity values (Hounsfield Units) are generally

above (> 500 HU) those of soft tissues (< 200 HU). Simi-

larly, lungs are easily detected (air is −1000 HU) and an ap-

proximate positioning of the heart can then be deduced. The

more challenging task of liver segmentation has been exten-

sively studied in recent years, hence we assume it is available.

The last anatomical entity that we detect is the aorta. Unlike

the IVC, this artery, which also runs along the back bone, is

highly visible. Its segmentation is generated using the model

presented in the previous section, taking as an initialization a

line between two initial points: one in the heart and the other

found inside the aorta from the spine position. Finally, the

computation domain Ω is defined as a 3D extrusion along the

spine axis of an angular sector positioned using all recovered

anatomical information (see Fig.4 left).

Model initialization: The initialization of gradient-descent

equations (6) influences the outcome of our algorithm as well

as its convergence speed. We position the curve m0 by com-

puting a minimal path within our restricted computation do-

main. The minimal path joins two points, the first located in-

side the heart and the second in a region underneath the liver.

This second point is found as the best response of a standard

2D morphological filter designed for circle detection, applied

on the last axial slice intersecting the liver and in a neighbor-

hood of the previously segmented aorta (see Fig. 4 right). The

minimal path is computed using Dijkstra’s algorithm, penaliz-

ing the square difference to the image intensity at the extrem-

ity points. More precisely, if I1, I2 are the image intensities at

at the two extremities, penalization is P(x) =
(
I(x)− I1+I2

2

)2
.

The initial scale σ0 is simply set to a constant, deduced from

an anatomical mean radius of 12.5 mm.

4. RESULTS AND CONCLUSION

The automatic IVC segmentation algorithm has been applied

to a database of 20 contrast-enhanced CT volumes acquired in

portal venous phase from scanners of different manufacturers

with a pixel size ranging from 0.63 to 0.78 mm and inter-slice

distance of 2 mm. 16 cases were considered by an expert ra-

diologist as satisfactory, while 3 cases needed a minimal user

interaction in the initialization step. Two fully automatic re-

sults are shown in Fig.5. In one single case, the surface evo-

lution was unable to recover the hardly visible boundaries be-

cause of a excessively poor image quality and unusual patient

anatomy.

The promising results of this preliminary evaluation val-

idate our choice of a model-based variational approach with

local region homogeneity criteria under specific anatomical

constraints. The application described in this paper is al-

ready a useful clinical tool, reaching 80% success rate fully-

automatically and 95% interactively. It also constitutes a first

step towards automatic Couinaud liver segments extraction.

To the best of our knowledge, this is also the first use of

implicit convolution surfaces for image segmentation. In gen-

eral, the advantage of this hybrid representation is to model

smooth complex objects with only simple explicit geometri-

cal primitives, here a single curve. In the particular context

of variational image segmentation, the original aspect is to

induce the motion of these simple primitives from the analy-

sis of the implicitly-generated surface. Future extensions to

smooth branching structures, vascular trees and other medial

representations are exciting perspectives.
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(a) (c) (e)

(b) (d) (f)

Fig. 5. Segmentation of the IVC in two different CT volumes, in each row. (a)-(b) show a 3D surface rendering, (c)-(d) sagittal views and

(e)/(f) axial views, showing the algorithm performance in the absence of clear boundaries with the liver parenchyma.
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