Histamine H receptor-RGS fusion proteins expressed in Sf9 insect cells: A sensitive and reliable approach for the functional characterization of histamine H receptor ligands

Erich H. Schneider, Roland Seifert

To cite this version:

Erich H. Schneider, Roland Seifert. Histamine H receptor-RGS fusion proteins expressed in Sf9 insect cells: A sensitive and reliable approach for the functional characterization of histamine H receptor ligands. Biochemical Pharmacology, Elsevier, 2009, 78 (6), pp.607. <10.1016/j.bcp.2009.05.015>. <hal-00506794>

HAL Id: hal-00506794
https://hal.archives-ouvertes.fr/hal-00506794
Submitted on 29 Jul 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Accepted Manuscript

Title: Histamine H4 receptor-RGS fusion proteins expressed in Sf9 insect cells: A sensitive and reliable approach for the functional characterization of histamine H4 receptor ligands

Authors: Erich H. Schneider, Roland Seifert

PII: S0006-2952(09)00406-7
DOI: doi:10.1016/j.bcp.2009.05.015
Reference: BCP 10186

To appear in: BCP

Received date: 6-4-2009
Revised date: 8-5-2009
Accepted date: 11-5-2009

Please cite this article as: Schneider EH, Seifert R, Histamine H4 receptor-RGS fusion proteins expressed in Sf9 insect cells: A sensitive and reliable approach for the functional characterization of histamine H4 receptor ligands, Biochemical Pharmacology (2008), doi:10.1016/j.bcp.2009.05.015

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Histamine H₄ receptor-RGS fusion proteins expressed in Sf9 insect cells: A sensitive and reliable approach for the functional characterization of histamine H₄ receptor ligands

Erich H. Schneiderᵃ, Roland Seifertᵇ

ᵃUniversity of Regensburg, Dept. of Pharmacology and Toxicology, Universitätsstr. 31, D-93053 Regensburg, Germany

ᵇInstitute of Pharmacology, Medical School of Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany; e-mail: seifert.Roland@mh-hannover.de

³To whom correspondence should be addressed: E.S.: Dept. of Pharmacology and Toxicology, Institute of Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany; Phone: +49-941-4786; Fax: +49-941-4772; e-mail: erich.schneider@chemie.uni-regensburg.de
Abstract

The human histamine H4 receptor (hH4R), co-expressed with Ga12 and Gβ1γ2 in Sf9 cells, is highly constitutively active. In the steady-state GTPase assay, the full agonist histamine (HA) induces only a relatively small signal (~20-30%), resulting in a low signal-to-background ratio. In order to improve this system for ligand screening purposes, the effects of the regulator of G-protein signaling (RGS) proteins RGS4 and RGS19 (GAIP) were investigated. RGS4 and GAIP were fused to the C-terminus of hH4R or co-expressed with non-fused hH4R, always combined with Ga12 and Gβ1γ2. The non-fused RGS proteins did not significantly increase the relative effect of HA. With the hH4R-RGS4 fusion protein the absolute GTPase activities, but not the relative HA-induced signal were increased. Fusion of hH4R with GAIP caused a selective increase of the HA signal, resulting in an enhanced signal-to-noise ratio. A detailed characterization of the hH4R-GAIP fusion protein (co-expressed with Ga12 and Gβ1γ2) and a comparison with the data obtained for the non-fused hH4R (co-expressed with Ga12 and Gβ1γ2) led to the following results: (i) The relative agonist- and inverse agonist-induced signals at hH4R-GAIP are markedly increased. (ii) Compared to the wild-type hH4R, standard ligands show unaltered potencies and efficacies at hH4R-GAIP. (iii) Like hH4R, hH4R-GAIP shows high and NaCl-resistant constitutive activity. (iv) hH4R-GAIP shows the same G-protein selectivity profile as the non-fused hH4R. Collectively, hH4R-GAIP provides a sensitive test system for the characterization of hH4R ligands and can replace the non-fused hH4R in steady-state GTPase assays.

Keywords:
histamine H4 receptor, fusion protein, RGS protein, steady-state GTPase assay, constitutive activity, Gi-proteins
1. **Introduction**

Histamine exerts its physiological effects via binding at four different receptor subtypes. The H₁-receptor mediates e.g. the increase of vascular permeability and NO production associated with inflammatory and allergic reactions [1]. The H₂-receptor regulates gastric acid secretion and shows a positive inotropic effect on the heart [1]. The presynaptic H₃-receptor negatively modulates neurotransmitter release in the CNS [1]. The fourth HA receptor was first pharmacologically characterized on human eosinophils [2] and was later identified as a GPCR with 390 amino acids [3], sharing 43% overall homology with the H₃-receptor [4].

The human histamine H₄ receptor (hH₄R) is expressed e.g. in spleen and bone marrow [5, 6] and mediates HA-induced chemotaxis e.g. of eosinophils [7] and mast cells [8], suggesting a role in inflammatory and immunological processes. Recently, the hH₄R was also detected in the brain and may be involved in the regulation of central neurotransmission [9].

In animal models, H₄R antagonists were effective in the treatment of itch [10], colitis [11] or allergic airway inflammation [12]. Since pruritus, colitis or asthma still lack a curative or at least an optimized alleviating therapy, it is vitally important to investigate the potential of hH₄R antagonists for the treatment of these widespread diseases. Thus, reliable test systems are required to characterize compounds that could serve as potential candidates for new hH₄R-antagonizing anti-inflammatory drugs. To obtain a most reliable readout of receptor activation or inhibition, it is necessary to determine the functional signal as proximal to the receptor activation event as possible. Assays that determine a signal more downstream from receptor activation (e.g. adenylyl cyclase or reporter gene assays), may suffer from unclear and complicated stoichiometry of the involved proteins or from interfering side-processes in the signal transduction cascade. For example, it is reported for S49 cells that G-proteins exist in stoichiometric excess compared to the effector adenylyl cyclase (AC), which
limits the agonist-induced stimulation of AC activity [13]. This may hamper the
determination of small efficacy differences between different partial agonists in AC assays.
Moreover, as reported for the hH₄R antagonist JNJ-7777120, cAMP reporter gene assays can
eliminate the effect of partial inverse agonists, which, in contrast, are still detectable by
steady-state GTPase assays [14].

The steady-state GTPase assay with receptors and G-proteins expressed in baculovirus-
infected Sf9 cells provides a reliable and sensitive test system with a very proximal readout.
In general, the steady state GTPase assay, when used as readout for Gαi-coupled receptors,
shows a higher sensitivity than cAMP accumulation- or AC assays [15]. When GPCR-Gα
fusion proteins are used, steady-state GTPase assays can be performed with a defined 1:1
stoichiometry of receptor and G-protein [16].

Steady state GTPase assays with Sf9 cell membranes were successfully employed for
the investigation of the formyl peptide receptor clone 26 [17], the chemokine receptor
CXCR4 [18] or the cannabinoid receptor subtypes CB₁ and CB₂ [19]. Recently, we also
reported on the characterization of the hH₄R in Sf9 cells [14]. However, the hH₄R system
showed a very weak relative agonist-induced signal (20-30%). This resulted in a low signal-
to-noise ratio. Fusion of the hH₄R to Gα₁₂ did not improve the relative intensity of the agonist-
induced signal, since it resulted in an increase of the constitutive activity in steady-state
GTPase assays [14].

An interesting possibility to increase signal intensity in steady-state GTPase assays is
the co-expression of regulators of G-protein signaling (RGS). RGS proteins form a large
group of proteins that are classified in eight subfamilies, showing high structural diversity
[20]. A common feature of all RGS proteins is the RGS-domain, which consists of 120 amino
acids and is of central importance for binding Gα subunits and accelerating their GTPase
activity [20]. It has also been reported that the effect of RGS4 on the GTPase activity induced
by the α_{2a} adrenoceptor was enhanced by fusing the C-terminus of the GPCR to the N-terminus of the RGS protein. Despite the covalent binding of the RGS protein to the receptor, there was no interference with receptor-mediated activation of the G-protein [21].

In this paper we report on the co-expression of the RGS proteins RGS4 and RGS19 (GAIP) with hH$_4$R, Gα_{i2} and G$\beta_1\gamma_2$ in Sf9 cells by performing quadruple infections with genetically modified baculoviruses. Moreover, we adopted the approach from ref. [21] to the H$_4$R and generated fusion proteins with RGS-4 and GAIP that were co-expressed with Gα_{i2} and G$\beta_1\gamma_2$.

RGS4 belongs to the R4 sub-family of RGS-proteins and accelerates the GTPase activity of Gα_i [22, 23] and Gα_q [24] proteins. Two conserved cysteines in the RGS4 N-terminus act as potential palmitoylation sites [25]. GAIP (RGS19) belongs to the RZ sub-family and interacts with members of the Gα_i class, but not with Gα_q [26]. Membrane-bound GAIP is highly palmitoylated in its cysteine string region, containing 8 cysteines [26].

We chose these two RGS proteins, because they belong to the structurally simplest sub-families and do not possess additional functional domains. Their stimulating effect on GPCR-activated Gα_q and Gα_i proteins was previously demonstrated for the human H$_1$R [27] and the chemokine receptor CXCR4 [18]. Thus, RGS4 and GAIP should be promising candidates for enhancing the GTPase activity in the co-expression system of the hH$_4$R with Gα_{i2} and G$\beta_1\gamma_2$.

2. Materials and Methods

2.1. Materials

The pcDNA 3.1 plasmids containing the sequences encoding RGS-4 and GAIP were obtained from the UMR cDNA Resource Center at the University of Missouri-Rolla (Rolla, MO, USA). The DNA primers for PCR were synthesized by MWG Biotech (Ebersberg,
Germany). The *Pfu* polymerase was obtained from Stratagene (La Jolla, CA, USA).

Restriction enzymes were purchased from New England Biolabs (Ipswich, MA, USA).

Recombinant baculovirus encoding the unmodified versions of the Gβ1γ2 subunits was a kind gift of Dr. P Gierschik (Dept. of Pharmacology and Toxicology, University of Ulm, Germany). Recombinant baculoviruses for Gα11, Gα12, and Gα13 were donated by Dr. A. G. Gilman (Dept. of Pharmacology, University of Southwestern Medical Center, Dallas, TX, USA) and the baculovirus encoding rat Gαo was generously provided by Dr. J. C. Garrison (University of Virginia, Charlottesville, VA). Baculoviruses for mammalian RGS4 and GAIP (N-terminally His-tagged) were kindly donated by Dr. E. Ross (Dept. of Pharmacology, University of Southwestern Medical Center, Dallas, TX, USA).

The anti-Gαo antibody was purchased from Calbiochem (San Diego, CA, USA); the M1 anti-FLAG antibody was obtained from Sigma (St. Louis, MO, USA). The antibody recognizing the Gαi subunits (anti-Gα_common) was generously provided by Dr. B. Nürnberg (Institute for Pharmacology, University of Tübingen, Germany). The antibodies selective for RGS4 and GAIP were purchased from Santa Cruz (Santa Cruz, CA, USA). The H₄R antagonist 1-[(5-Chloro-1H-indol-2-yl)carbonyl]-4-methyl-piperazine (JNJ-7777120) was kindly provided by Dr. Robin Thurmond (Department of Immunology, Johnson & Johnson Pharmaceutical R&D, San Diego, CA, USA). Immepip, imetit, iodophenpropit, R-α-methylhistamine, 5-methylhistamine and THIO were obtained from Tocris (Avonmouth, Bristol, UK). HA was purchased from Sigma (St. Louis, MO, USA). The 10 mM stock solution of JNJ-7777120 was prepared in dry Me₂SO, the stock solutions (10 mM) and dilutions of all other H₄R agonists and antagonists described in this paper were prepared in distilled water.

[^3]H]HA (specific activities 14-18 Ci/mmol) and [^3]H]dihydroalprenolol (97.4 Ci/mmol) were obtained from Perkin Elmer (Boston, MA, USA). [γ-32P]GTP was purchased from
Perkin Elmer or was prepared in our laboratory using GDP and $[^{32}P]$ (orthophosphoric acid, 150 mCi/ml, obtained from Perkin Elmer) according to a previously described enzymatic labeling procedure [28]. MgCl$_2$ was purchased from Merck (Darmstadt, Germany) and Tris base was obtained from usb (Cleveland, OH, USA). Radioactive samples were counted in a PerkinElmer Tricarb 2800TR liquid scintillation analyzer.

2.2. Construction of pVL-1392 plasmids encoding FLAG-hH$_4$R-His$_6$, FLAG-hH$_4$R-His$_6$-Ga$_{i_2}$, FLAG-hH$_4$R-His$_6$-RGS-4 and FLAG-hH$_4$R-His$_6$-GAIP

The generation of FLAG-hH$_4$R-His$_6$, as well as of FLAG-hH$_4$R-His$_6$-Ga$_{i_2}$ was previously described [14]. The hexahistidine tagged C-terminus of the histamine H$_4$ receptor was fused to the N-terminus of RGS-4 or GAIP by overlap extension PCR using Pfu polymerase as follows:

For preparation of the FLAG-hH$_4$R-His$_6$-RGS4 fusion protein, two fusion primers were synthesized. The sense primer s6H-RGS4 (5’-CAC CAT CAT CAC CAT CAC ATG TGC AAA GGG CTT GC-3’) contained an 18 bp sequence encoding a hexahistidine tag followed by the first 17 bp of the RGS4 cDNA. The antisense primer a6H consisted only of the 18 bp sequence encoding the hexahistidine tag (5’-GTG ATG ATG ATG ATG GTG-3’). In PCR 1a the sequence between the sEcoRI-hH$_4$ primer (5’-GCC ATC ACA TCA TTC TTG GAA TTC GTG ATC CCA GTC-3’) and the a6H fusion primer was amplified using the pGEM-3Z-SF-hH$_4$R-His$_6$ plasmid as template. In PCR 1b the RGS4 sequence between the s6H-RGS4 fusion primer and the antisense primer aRGS4-XbaI (5’-TCT AGA CTC GAG TTA GGC ACA CTG AGG GAC C-3’) was amplified using a pcDNA 3.1-RGS4 plasmid as template yielding a product with an extra XbaI site 3’ of the stop codon of RGS4. In PCR 2, the products of PCR 1a and 1b were used as templates together with the primers sEcoRI-hH$_4$ and aRGS4-XbaI. This resulted in a fragment encoding a part of the hH$_4$R, followed by a hexahistidine tag and
the RGS4 sequence with an \textit{Xba}I site 3' of the stop codon. Since not only the hH4R sequence, but also the RGS4 DNA contain an \textit{Eco}RI site, it was not possible to use this site for cloning. Thus, the fragment obtained in PCR2 was digested with \textit{Psh}AI and \textit{Xba}I and cloned into pGEM-3Z-SF-hH4R-His\textsubscript{6} digested with the same enzymes to obtain the full-length fusion protein DNA sequence.

For preparation of the hH4R-GAIP fusion protein, as fusion primers the sense primer s6H-GAIP (5'-CAC CAT CAT CAC CAT CAC ATG CCC ACC CCG CAT GAG-3') containing an 18 bp sequence encoding a hexahistidine tag followed by the first 18 bp of the GAIP cDNA and the antisense primer a6H were used. PCR 1a was performed as described above for the generation of the hH4R-RGS-4 fusion protein. In PCR 1b the GAIP sequence between the s6H-GAIP fusion primer and an antisense primer aGAIP-\textit{Xba}I (5'-TCT AGA CTC GAG CTA GGC CTC GGA GGA GG-3') was amplified using a pcDNA 3.1-GAIP plasmid as template and yielding a product with an extra \textit{Xba}I site 3' of the stop codon of GAIP. In PCR 2 the products of PCR 1a and 1b were used as templates together with the primers \textit{sEco}RI-hH4 and aGAIP-\textit{Xba}I. This resulted in a fragment encoding a part of the hH4R, followed by a hexahistidine tag and the GAIP sequence with an \textit{Xba}I site 3' of the stop codon. This fragment was digested with \textit{Eco}RI and \textit{Xba}I and cloned into pGEM-3Z-SF-hH4R-His\textsubscript{6} digested with the same enzymes to obtain the full-length fusion protein DNA sequence.

PCR-generated DNA sequences were confirmed by the sequencing service of Entelechon (Regensburg, Germany). All fusion protein sequences were cloned into the baculovirus expression vector, pVL1392.
2.3. Generation of recombinant baculoviruses, cell culture and membrane preparation

Sf9 cells were cultured in 250 or 500 ml disposable Erlenmeyer flasks at 28°C under rotation at 150 r.p.m in SF 900 II medium (Invitrogen, Carlsbad, CA, USA) supplemented with 5% (v/v) fetal calf serum (Biochrom, Berlin, Germany) and 0.1 mg/ml gentamicin (Cambrex Bio Science, Walkersville, MD, USA). Cells were maintained at a density of 0.5 – 6.0 x 10^6 cells/ml. Recombinant baculoviruses were generated in Sf9 cells using the BaculoGOLD transfection kit (BDPharmingen, San Diego, CA, USA) according to the manufacturer’s instructions. After initial transfection, high-titer virus stocks were generated by two sequential virus amplifications. The supernatant fluid from the second amplification was stored under light protection at 4°C and used as routine virus stock for membrane preparations.

Infection of the cells with baculoviruses was performed as previously described [29]. The virus stocks were combined as described in the Results section. Sf9 membranes were prepared as described [30], using 1 mM EDTA (Merck, Darmstadt, Germany), 0.2 mM phenylmethylsulfonyl fluoride (Sigma, St. Louis, MO, USA), 10 µg/ml benzamidine (Sigma, St. Louis, MO, USA) and 10 µg/ml leupeptin (Calbiochem, San Diego, CA, USA) as protease inhibitors. Membranes were suspended in binding buffer (12.5 mM MgCl₂, 1 mM EDTA and 75 mM Tris/HCl, pH 7.4). All membrane preparations were stored at -80°C until use.

2.4. [³H]HA binding experiments

Prior to the experiments, membranes were sedimented by a 10 min centrifugation at 4°C and 13,000 r.p.m. and resuspended in binding buffer (12.5 mM MgCl₂, 1 mM EDTA and 75 mM Tris/HCl, pH 7.4). For determination of B_max values, Sf9 membranes (75 µg per tube) were suspended in 250 µl of binding buffer supplemented with [³H]HA (100 nM) and 0.2% (mass/vol.) bovine serum albumin (Sigma, St. Louis, MO, USA). Non-specific binding was
determined in the presence of THIO (10 µM). Incubations were performed for 60 min at 25°C and shaking at 250 rpm. Bound radioligand was separated from free radioligand by filtration through GF/C filters (Whatman, Maidstone, UK) pretreated with 0.3% (mass/vol.) polyethyleneimine (Sigma, St. Louis, MO, USA) and washed three times with 2 ml of ice-cold binding buffer (4°C). Filter-bound radioactivity was determined by liquid scintillation counting.

2.5. **Steady-state GTPase assay.**

Steady-state GTPase assays were essentially performed as previously described [29], but with 5.0 mM MgCl$_2$, 1.2 mM creatine phosphate (Sigma, St. Louis, MO, USA) and 1 µg of creatine kinase (Roche, Indianapolis, IN, USA) in the samples. The reaction temperature was 25°C - 27°C. If not indicated otherwise, each tube additionally contained 100 mM NaCl (Merck, Darmstadt, Germany). The samples for the determination of Gα enzyme kinetics were prepared with a higher amount of [γ^{32}P]GTP (0.4-0.5 µCi/tube). Unlabelled GTP (Roche, Indianapolis, IN, USA) was added in increasing concentrations from 0 – 1500 nM. Due to the displacement of [γ^{32}P]GTP from the Gα subunit, the signal-to-noise ratio of the GTPase signal is reduced by unlabeled GTP. Therefore, unlabeled GTP was not used at concentrations higher than 1.5 µM.

2.6. **SDS-PAGE and immunoblot analysis**

Membrane proteins were separated on SDS polyacrylamide gels containing 10 or 12 % (mass/vol.) acrylamide (Sigma, St. Louis, MO, USA). Proteins were transferred onto Trans-Blot nitrocellulose membranes (Bio-Rad, Hercules, CA) and reacted with M1 anti-FLAG and anti-Gαo antibody solution (1:1000 each). The antibodies anti-Gα$_{common}$, anti-RGS4 and anti-GAIP were used in a 1:500 dilution. Protein bands were visualized by enhanced
chemoluminescence (Pierce Chemical, Rockford, IL) using goat anti-mouse IgG (Sigma, St. Louis, MO, USA), donkey anti-rabbit IgG (GE Healthcare, Little Chalfont, Buckinghamshire, UK) or donkey anti goat IgG (Santa Cruz, CA, USA), all coupled to horseradish peroxidase. The expression level of proteins was roughly estimated by using appropriate dilutions of reference membranes expressing a defined level of FLAG-β2AR protein. The FLAG-β2AR expression level was determined by radioligand binding with [3H]dihydroalprenolol ([3H]DHA). Immunoblots were scanned with a GS-710 calibrated imaging densitometer (Bio-Rad, Hercules, CA, USA). The intensity of the bands was analyzed with the Quantity One 4.0.3 software (Bio-Rad, Hercules, CA, USA).

2.7. Miscellaneous

Protein concentrations were determined with the Bio-Rad DC protein assay kit. Saturation and competition experiments were analyzed by non-linear regression with the Prism 5.01 software (GraphPad, San Diego, CA, USA). All values are given as means ± SD. If not stated otherwise, significance was always calculated using one-way ANOVA, followed by Dunnett’s multiple comparison test (all columns vs. control column). For the discussion of the apparent K_m values in section 3.4, one-way ANOVA was followed by Bonferroni’s multiple comparison test (comparison of all pairs of columns). Significance was always defined as p<0.05 (confidence interval 95%).

3. Results and Discussion

3.1. Investigation of protein expression by immunoblotting

We co-expressed hH4R, hH4R-RGS4 and hH4R-GAIP with Gαi2 and Gβ1γ2 in Sf9 insect cells. Expression of the proteins was confirmed by immunoblotting. As shown in Fig. 1A, the M1 anti-FLAG antibody stained the hH4R protein as well as the fusion proteins. The
hH₄R signal consisted of three bands in the range between 37 and 44 kDa (Fig. 1A, lane 1).

As previously reported [14, 31], these multiple bands are due to receptor glycosylation, which most likely occurs at the potential glycosylation sites in the receptor N-terminus (Asn-5 and Asn-9). H₄R-RGS4 and H₄R-GAIP show also very broad and diffuse bands, indicating differently glycosylated species. The expression levels of hH₄R, hH₄R-RGS4 and hH₄R-GAIP were roughly assessed by comparison with a dilution series of a standard membrane expressing 7.5 pmol/mg FLAG-β₂AR. The Bₘₐₓ value of this reference membrane was determined by saturation binding with 10 nM of the β₂AR antagonist [³H]dihydroalprenolol ([³H]DHA). We determined a Bₘₐₓ value of ~1.8 pmol/mg for hH₄R and an increased Bₘₐₓ value of ~3.1 and ~3.0 pmol/mg for hH₄R-RGS4 and hH₄R-GAIP (Fig. 1A). We also co-expressed hH₄R with Gα₂, Gβ₁γ₂ and non-fused RGS4 or GAIP. In these membranes we detected RGS4 and GAIP with specific anti-RGS4 (Fig. 1B, left lane) and anti-GAIP antibodies (Fig. 1B, right lane), respectively. As expected, the molecular mass of GAIP was by about 0.5 – 1 kDa higher compared to RGS4. Moreover, GAIP formed a more diffuse band. This may be explained by a higher degree of palmitoylation, especially in the N-terminal cysteine string region, which is a characteristic feature of the RZ sub-family of RGS proteins [32].

Fig. 1 -

3. 2. Quantification of Bₘₐₓ values by radioligand binding with [³H]HA

As shown in Fig. 1A, the quantification of receptor expression levels by immunoblotting showed increased Bₘₐₓ values for the hH₄R-RGS fusion proteins compared to the non-fused hH₄R. To confirm this difference, we also determined expression levels by radioligand binding experiments with [³H]HA (100 nM). We determined 1.6 ± 0.4 pmol/mg and 1.7 ± 0.6 pmol/mg for hH₄R-RGS4 and hH₄R-GAIP, respectively, but a significantly (p <
0.05) lower expression of only 0.7 ± 0.1 pmol/mg for hH₄R in the standard co-expression system (means ± SD, n = 2 in triplicates).

Interestingly, when the wild-type hH₄R was co-expressed with the non-fused RGS proteins (+ Gα₂ and Gβ1γ2), the B_max value was not significantly different from the expression level of hH₄R in the RGS protein-free standard co-expression system (hH₄R + Gα₂ + Gβ1γ2). The B_max values were 0.7 ± 0.3 pmol/mg and 0.7 ± 0.1 pmol/mg for hH₄R in the presence of RGS4 and GAIP, respectively (means ± SD, n = 2 in triplicates, membranes from two different preparations).

There are three possible explanations for the enhanced expression levels of the fusion proteins. First, fusion of RGS4 or GAIP to the hH₄R may lead to conformational stabilization of the hH₄R. The hH₄R was previously reported to be constitutively active and structurally unstable [14]. Second, hH₄R-RGS fusion proteins may prevent the receptor protein from proteolytic degradation. Third, the fusion of RGS4 or GAIP to hH₄R may facilitate the formation of a signaling complex with Gα₂. Such signaling complexes with participation of RGS proteins have been previously described [32, 33]. Thus, RGS proteins incorporated in hH₄R-RGS fusion proteins may act as "scaffolding proteins" for the receptor-G-protein complex, leading to an imitation of an hH₄R-Gα₂ fusion protein. A similar enhancing effect on the hH₄R expression level was previously reported for the fusion of hH₄R with Gα₂ [14].

- Table 1 -

3.3. HA-stimulation, THIO-inhibition and baseline activity in the steady-state GTPase assay

We performed steady-state GTPase assays with all membranes in the presence of 100 nM of GTP (standard conditions) and determined the maximum stimulatory effect of the
agonist HA (10 µM) and the maximum inhibitory effect of the inverse agonist THIO (10 µM).

All results were compared to the properties of the standard co-expression system (hH₄R +
Gα₂ + Gβ₁γ₂). When GAIP was co-expressed with hH₄R, Gα₂ and Gβ₁γ₂, no significant
alteration of the relative HA and THIO effects (related to baseline) and of the baseline activity
was found (Table 1). RGS4, co-expressed with hH₄R, Gα₂ and Gβ₁γ₂, significantly (p < 0.01,
Table 1) increased the relative effect of THIO, but did not significantly influence the relative
effect of HA and the baseline activity. The low or even lacking effect of RGS proteins co-
expressed with hH₄R, Gα₂ and Gβ₁γ₂ is surprising, since we previously found marked
GTPase-stimulating effects of RGS proteins, when co-expressed with the chemokine receptor
CXCR4, Gα₂ and Gβ₁γ₂. Both RGS4 and GAIP increased the effect of the CXCR4 agonist
SDF-1α (stroma-derived cell factor 1) in steady-state GTPase assays by ~50% [18]. Maybe,
these different effects of RGS proteins co-expressed with hH₄R or CXCR4 are due to
differing RGS-GPCR interactions. It is conceivable that the signaling complex consisting of
the GPCR, the RGS-protein and the heterotrimeric G-protein is not only stabilized by RGS-
Gα interactions, but also by binding of the RGS protein to the GPCR. In fact, it was
previously reported that the N-terminal domain of RGS4 interacts with Gαi-coupled receptors,
resulting in a receptor-selective inhibition of G-protein signaling [34].

The most pronounced effects were observed with the fusion proteins (Table 1).
Compared to the standard co-expression system (hH₄R + Gα₂ + Gβ₁γ₂), there was a
significant (p < 0.01) increase in baseline GTPase activity, when hH₄R-RGS4 was co-
expressed with Gα₂ and Gβ₁γ₂ (Table 1). Since hH₄R-RGS4 increased both the absolute
constitutive GTPase activity and the absolute HA-stimulated signal, there was no significant
increase of the relative HA-effect. Thus this system shows no improved signal-to-noise ratio
compared to the standard co-expression system (Table 1). However, hH₄R-RGS4 could be
advantageous for the testing of inverse agonists, since a significant increase (p < 0.01) of the
relative THIO effect was found (Table 1).

The most interesting results were found with the hH₄R-GAIP fusion protein (+ Gaᵢ₂
and Gβ₁γ₂). The hH₄R-GAIP fusion protein caused a significant (p < 0.001) increase of the
relative HA- and THIO effects. Surprisingly, compared to the RGS protein-free standard co-
expression system (hH₄R + Gaᵢ₂ + Gβ₁γ₂), the relative stimulatory effect of HA was increased
by ~ 70%. This was caused by a selective increase of agonist-stimulated absolute GTPase
activity without a significant alteration of baseline GTPase activity.

This differential effect of RGS4 and GAIP could be due to a differing G-protein
selectivity. RGS4 accelerates the GTPase activity of both G-protein families, Gaᵢ [22, 23] and
Ga₄ [24]. By contrast, GAIP shows preference for Gaᵢ proteins [25]. Interestingly, GAIP
shows additional selectivity within the Gaᵢ class. In the literature, a rather weak effect of
GAIP on Gaᵢ₂ was reported [26, 35]. According to the UniProtKN/Swiss-Prot section of the
UniProt knowledgebase [36] (entry P49795) GAIP binds to Ga proteins with the order of
preference Gaᵢ₃ > Gaᵢ₁ > Ga₀ >> Gaᵢ₂. Thus, the GAIP effect on Gaᵢ₂ proteins may only
become visible at very high concentrations of activated GTP-bound Gaᵢ₂, e.g. when the
system is activated by the agonist-stimulated hH₄R. By contrast, RGS4 shows a higher
affinity for Gaᵢ₂ and therefore the GTPase activating effect of RGS4 is already visible in the
constitutively active system. This would explain why hH₄R-GAIP enhances selectively the
HA-stimulated GTPase activity and therefore improves the signal-to-noise ratio. The hH₄R-
RGS4 fusion protein, however, accelerates both constitutive and HA-stimulated GTPase
activity and does not increase the relative HA signal.

- Fig. 2, Table 2 -
3.4. Influence of RGS proteins on G\(\alpha_{i2}\) enzyme kinetics (\(K_m\) and \(V_{max}\))

We investigated the GTPase enzyme kinetics of G\(\alpha_{i2}\) by determination of steady-state GTPase activity in the presence of increasing concentrations of the substrate GTP. Due to the high inter-experimental and inter-membrane variability of absolute GTPase activities (cf. range of \(V_{max}\) given in Table 2) we normalized all enzyme kinetic curves to a range between 0 and 100 %. The \(V_{max}\) of the HA-stimulated (10 µM) system (determined by non-linear regression) was set to 100 %. After subtraction of the control curve (solvent) and fitting the curves according to a hyperbolic function (one-site binding), “apparent” \(K_m\) values were calculated, similarly to the calculation of \(K_d\) values previously reported for GTP\(\gamma\)S saturation bindings [14, 37]. The results are shown in Table 2.

To visualize the \(K_m\) effects of the RGS proteins, Eadie-Hofstee plots for every system are shown in Fig. 2. For these plots the normalized data (\% of \(V_{max}\) in the presence of HA (10 µM), instead of absolute GTPase activity) were used without subtraction of the control curves. In Eadie-Hofstee plots the slope of the regression line represents –\(K_m\). In the standard co-expression system the three linear regression lines representing THIO-inhibition, control conditions and HA-stimulation are in parallel, indicating that THIO and HA do not alter the \(K_m\) value of G\(\alpha_{i2}\) in the absence of RGS proteins (Fig. 2A). However, when RGS4 or GAIP were co-expressed together with hH\(_4\)R (+ G\(\alpha_{i2}\) and G\(\beta_1\)\(\gamma_2\)), the slope of the regression line representing the HA-stimulated system was slightly increased, indicating an RGS-induced increase of the \(K_m\) value (Fig. 2C and D). This effect was also reported in the literature, where the addition of purified RGS4 to membranes expressing \(\alpha_{2A}\)-adrenoceptor-Ile\(^{352}\)-G\(\alpha_{i2}\) resulted in an increased \(K_m\) value, when the system was stimulated with the agonist UK-14304 (5-bromo-6-[2-imidazolin-2-ylamine]-quinoxaline) [23].

Despite the slightly increased slope of the HA-regression line in the Eadie-Hofstee plots, the apparent \(K_m\) value of the system co-expressing RGS4 with hH\(_4\)R, G\(\alpha_{i2}\) and G\(\beta_1\)\(\gamma_2\),
was not significantly different from the RGS-protein free system. Only when GAIP was co-
expressed with hH₄R, Gα₁₂ and Gβ₁γ₂, the increase of the apparent Kₘ value reached
significance (Table 2). Maybe, GAIP is more effectively integrated into the membrane via its
palmitoylated cysteine-string domain, which is not present in RGS4.

When RGS4 was fused to hH₄R (Fig. 2E, Table 2), the apparent Kₘ value was significantly
(p<0.05) increased compared to the co-expression system with non-fused RGS4 (Fig. 2C,
Table 2). This suggests that the fusion protein facilitates integration of RGS4 into the
membrane and the formation of a signaling complex with Gα₁₂. An increase of the Gα Kₘ
value by a GPCR-RGS4 fusion protein was previously also shown for α₂A-adrenoceptor-
RGS4, co-expressed with Cys351Ile Gα₁, in the presence of the agonist UK-14304 [21].

By contrast, fusion of GAIP to hH₄R (hH₄R-GAIP) did not significantly alter the Kₘ
value in comparison to non-fused GAIP (Table 2, Fig. 2F) or to the RGS-protein-free standard
go-expression system (Table 2, Fig. 2A). It is surprising that the hH₄R-GAIP fusion protein
did not significantly increase the apparent Kₘ estimate under agonist stimulation, whereas
either the H₄R + GAIP co-transfection or the H₄R-RGS4 fusion protein did. Maybe, when co-
transfected with H₄R, the number of GAIP proteins located at the membrane is higher than in
case of the hH₄R-GAIP fusion protein. When hH₄R-GAIP is expressed, the number of GAIP
molecules at the membrane does never exceed the number of receptor molecules. However,
when GAIP is co-transfected with H₄R, possibly more GAIP is recruited to the membrane,
because it can be anchored in the membrane via the palmitoylated cysteine string motif [26].
By contrast, a large amount of co-transfected RGS4 may be located in the cytoplasm. RGS4
lacks a cysteine-string motif and is recruited from a cytosolic pool mainly by interaction with
membrane-associated G-proteins [38]. In our system, membrane localization of RGS4 may be
increased, when hH₄R-RGS4 is expressed, since RGS4 is then anchored to the membrane by
connection with the receptor protein. However, this is only speculation and it should also be
considered that the non-significant increase of the agonist-stimulated K_m value in case of hH$_4$R-GAIP could only be caused by the high inter-experimental and inter-membrane variability of our data. Thus, these results should not be over-interpreted. A comparison of hH$_4$R-RGS4 with hH$_4$R-GAIP shows a significantly (p<0.05) lower apparent K_m in the presence of hH$_4$R-GAIP. This may reflect the lower affinity of GAIP for Gα_{i2}, which was discussed in section 3.3.

For comparison, in Fig. 2B also the Eadie-Hofstee plot for hH$_4$R-Gα_{i2} co-expressed with G$\beta_{1\gamma_{2}}$ is shown. The data were taken from a previous publication [14]. Compared to the standard co-expression system (Fig. 2A), in case of hH$_4$R-Gα_{i2} (Fig. 2B) the slope of all three regression lines is reduced, which is reflected by significantly lower apparent K_m values in Table 2. However, similarly to the standard co-expression system (Fig. 2A), also in the hH$_4$R-Gα_{i2} fusion protein system all three regression lines are in parallel (Fig. 2B), as is expected in the absence of RGS proteins.

In the inverse agonist (THIO)-inhibited system, RGS4 and GAIP showed no significant effect on the K_m values, neither when fused to hH$_4$R nor when co-expressed with the receptor (Fig. 2 and Table 2).

Table 3

3.5. **Characterization of standard ligands at hH$_4$R, hH$_4$R-RGS4 and hH$_4$R-GAIP**

As described above, co-expression of the hH$_4$R with RGS4 or GAIP did not result in a significant increase of the signal-to-noise ratio. By contrast, fusion of RGS4 or GAIP with hH$_4$R resulted in marked effects on absolute GTPase activities, with GAIP leading to a selective enhancement of the agonist-stimulated signal. Thus, the hH$_4$R-RGS fusion proteins...
are interesting candidates for a test system with improved sensitivity, compared to the standard co-expression system (hH\textsubscript{4}R + G\alpha_{i2} + G\beta_{1}\gamma_{2}).

In order to ensure that the pharmacological properties of hH\textsubscript{4}R-RGS4 and hH\textsubscript{4}R-GAIP are comparable with those of the wild-type hH\textsubscript{4}R, we characterized several hH\textsubscript{4}R standard ligands in the steady-state GTPase assay. In Table 3, the results from hH\textsubscript{4}R-RGS4 and hH\textsubscript{4}R-GAIP are compared with the data previously reported for the non-fused hH\textsubscript{4}R [14]. In case of the hH\textsubscript{4}R-GAIP fusion protein the EC\textsubscript{50} values and efficacies did not significantly differ from the wild-type hH\textsubscript{4}R data. However, significant differences were found for hH\textsubscript{4}R-RGS4. 5-Methylhistamine, which showed an efficacy of 0.87 at the non-fused hH\textsubscript{4}R is a full agonist (efficacy = 1.08) at the hH\textsubscript{4}R-RGS4 fusion protein. The potencies of both HA and JNJ-7777120 were significantly reduced. The reduced potency of HA at the hH\textsubscript{4}R-RGS4 fusion protein fits well to data from the literature [23]. It is reported that addition of purified RGS4 (100 nM) to membranes expressing the \alpha_{2A}AR-Val351-G\alpha_{o1} fusion protein caused a more than 3-fold increase of the EC\textsubscript{50} value of UK-14304 [23]. However, in our test system the expression level of hH\textsubscript{4}R-RGS4 was only ~3 pmol/mg. This is more than 10 000-fold lower than the 100 nM of RGS4 that were added to the system in ref [23]. This explains the much weaker effect of RGS4 in our system, where the EC\textsubscript{50} value of HA, was increased by only ~60%.

Taken together, our results show that the hH\textsubscript{4}R-RGS fusion proteins maintain the pharmacology of the wild-type hH\textsubscript{4}R to a large extent. Since the hH\textsubscript{4}R-GAIP fusion protein, compared to the standard co-expression system (hH\textsubscript{4}R + G\alpha_{i2} + G\beta_{1}\gamma_{2}), resulted in an increased signal-to-noise ratio with unchanged ligand potencies and efficacies, we decided to use hH\textsubscript{4}R-GAIP (+ G\alpha_{i2} + G\beta_{1}\gamma_{2}) as a standard test system for the characterization of hH\textsubscript{4}R ligands in our medicinal chemistry program [39, 40].
3.6. **Na⁺ sensitivity of the hH₄R-GAIP fusion protein**

According to the two-state model of receptor activation [15, 41], GPCRs exist in an equilibrium of an active G-protein-coupling conformation (R*) and an uncoupled inactive state (R). R* promotes GDP/GTP exchange at the Gα subunit and shows a higher affinity for agonists than R. Thus, agonists activate the receptor by stabilizing an R* state. Neutral antagonists bind to R and R* states with the same affinity and do not alter the equilibrium. Some receptor molecules, e.g. the hH₄R, spontaneously adopt the R* state and promote G-protein signaling in the absence of agonists, which is referred to as constitutive activity. Inverse agonists bind preferentially to the R state and reduce the basal activity. Na⁺ stabilizes the inactive R-state of many GPCRs and reduces the basal activity. This was described e.g. for the formyl peptide receptor clone 26 and the α₂-adrenergic receptor [42, 43].

In all systems described in this paper, the constitutive activity of the hH₄R was resistant to NaCl, independent of the presence of RGS proteins. All steady-state GTPase assays with the co-expression systems as well as with hH₄R-RGS4 and hH₄R-GAIP were performed in the presence of 100 mM of NaCl. The data shown in Table 2, 3 and 4 as well as in Fig. 2 clearly demonstrate that the effect of inverse agonists is preserved even in the presence of NaCl.

However, to completely characterize the hH₄R-GAIP fusion protein (+ Gα₁₂ + Gβ₁γ₂) and to ensure that this new test system can fully replace the standard co-expression system with the hH₄R (+ Gα₁₂ + Gβ₁γ₂), we also investigated the Na⁺ effect for the whole range of Na⁺ concentrations between 0 and 125 mM in steady-state GTPase assays. For each NaCl concentration the constitutive activity (control), the effect of HA (10 µM) and of THIO (10 µM) were determined. In Fig. 3, the results for hH₄R-GAIP are compared with the results
recently published for the non-fused hH₄R [14]. Both systems behave very similar and show Na⁺-resistant constitutive activity, even at Na⁺ concentrations >100 mM (Fig. 3A and C).

When the effects of HA and THIO are expressed as a percentage of total ligand-regulated steady-state GTPase activity (Fig. 3B and D), in both cases the relative effects of HA and THIO are around 50 % in the presence of Na⁺. Interestingly, compared to the non-fused hH₄R, the hH₄R-GAIP fusion protein shows a significantly (unpaired two-tailed t-test, p<0.05) higher relative agonist signal and reduced constitutive activity in the absence of sodium. Thus, unlike the standard co-expression system with the non-fused hH₄R, the hH₄R-GAIP fusion protein could also be used for the characterization of ligands under Na⁺-free conditions.

- Fig. 4 -

3.7. G-protein coupling specificity of the hH₄R-GAIP fusion protein

As already discussed in section 3.3, GAIP shows selectivity for Gα proteins in the order Gα₁₃ > Gα₁₁ > Gα₀ >> Gα₂. Thus, it is to be expected that fusion of GAIP to hH₄R alters the G-protein coupling specificity of the receptor. Therefore, we co-expressed hH₄R-GAIP with Gα₁₁, Gα₁₂, Gα₁₃ and Gα₀ in combination with Gβ₁γ₂. The expression of G-proteins was determined by using an anti-Gα common and an anti-Gα₀ antibody (data not shown). To assess the background signal, the hH₄R was also expressed without mammalian G-proteins. We determined the constitutive activity and the effects of HA (10 µM) or THIO (10 µM) in the steady-state GTPase assay. The results are shown in Fig. 4B and compared with the previously reported data for the non-fused hH₄R (Fig. 4A). Both data sets were determined with membranes prepared at the same day under the same conditions.
Surprisingly, the G-protein specificity profile of hH₄R-GAIP (Fig. 4B) was very similar to the profile of the non-fused hH₄R (Fig. 4A). Specifically, considering the HA signal there was a clear preference of hH₄R-GAIP for Gα₂. Thus, the G-protein specificity of hH₄R-GAIP is governed by the properties of the GPCR, whereas the GAIP part just interacts with the Gα subunit that is bound by the receptor.

Moreover, Fig. 4 clearly demonstrates that hH₄R-GAIP shows a significantly higher relative HA stimulation than the non-fused hH₄R when co-expressed with Gα₁₁ or Gα₁₂ (unpaired two-tailed t-test, p<0.05). In the presence of Gα₁₃ and Gα₁, the difference between the relative HA signal induced at hH₄R and hH₄R-GAIP did not reach significance. When hH₄R was expressed without mammalian G-proteins, there was a very weak HA-induced stimulation of GTPase activity (Fig. 4A, first triplet of bars). Interestingly, this stimulation was markedly increased with hH₄R-GAIP (Fig. 4B, first triplet). Most likely, this is a weak but hardly productive interaction of hH₄R with insect cell G-proteins that becomes unmasked in the presence of GAIP. Since RGS proteins do not interact with Gα₃, the observed interaction can only be due to Gα₁₅- or Gα₄-like proteins that both are present in Sf9 cells [44]. We previously observed a similar effect, when hH₁R or gpH₁R were co-expressed with the regulators of G-protein signaling RGS4 and GAIP in Sf9 cell membranes [27].

3.8. Conclusion

Compared to the standard system (hH₄R + Gα₂ + Gβ₁γ₂), co-expression of the hH₄R-GAIP fusion protein with Gα₂ and Gβ₁γ₂ resulted in an increase of both the relative agonist-stimulated and inverse-agonist-inhibited signal. Compared to the non-fused hH₄R, the hH₄R-GAIP fusion protein shows unchanged G-protein selectivity. The NaCl insensitivity of the R-state, which was previously reported for the hH₄R [14], was retained with the hH₄R-GAIP fusion protein. With respect to the pharmacological properties of several standard ligands,
hH₄R-GAIP did not significantly differ from the non-fused hH₄R. Thus, hH₄R-GAIP, co-expressed with Gα₁₂ and Gβ₁γ₂, turned out to be a very sensitive test system for the screening of potential hH₄R ligands and can readily replace the standard co-expression system (hH₄R + Gα₁₂ + Gβ₁γ₂) in steady-state GTPase assays.

Acknowledgements
We would like to thank Mrs. Gertraud Wilberg and Mrs. Astrid Seefeld for their excellent technical assistance. Thanks are also due to the reviewers for their helpful critique. This work was supported by the Research Training Program (Graduiertenkolleg) GRK 760 “Medicinal Chemistry – Ligand-Receptor Interactions” of the Deutsche Forschungsgemeinschaft (DFG).

References

FIGURE LEGENDS:

Figure 1: Immunoblot analysis of hH4R, hH4R-RGS4, hH4R-GAIP, RGS4 and GAIP in Sf9 cell membranes. Name and amount of the proteins loaded onto the gel are given below the lanes. A: Detection of hH4R, hH4R-RGS4 and hH4R-GAIP (all proteins FLAG-tagged) with the M1 monoclonal antibody (anti-FLAG Ig). Four dilutions of a reference membrane, expressing 7.5 pmol/mg FLAG-β2AR and stained with the M1 antibody, were used for a rough estimation of protein expression levels (right part of panel A). The expression levels are 1.8 pmol/mg for wild-type hH4R (lane 1), 3.1 pmol/mg for hH4R-RGS4 (lane 2) and 3.0 pmol/mg for hH4R-GAIP (lane 3). B: Detection of non-fused RGS4 (left lane) and GAIP (right lane) with an anti-RGS4 and an anti-GAIP antibody, respectively. The numbers on the left of each panel indicate the molecular masses of the detected proteins in kDa. All immunoblots were performed as described under Material and Methods.

Figure 2: Eadie-Hofstee plots, showing the effects of fused and co-expressed RGS proteins on Gαi2 GTPase enzyme kinetics. Due to the large inter-membrane and inter-experimental variability of the absolute signals (cf. Table 2), all GTPase activities were related to the Vmax value in the presence of 10 µM of HA (% of Vmax(HA)). All data were obtained from steady-state GTPase assays in Sf9 cell membranes, co-expressing the proteins given in the title of each panel. The data for hH4R-Gαi2 were taken from a previous publication [14]. The panels show the constitutive activity (●) as well as the effect of HA (■) and THIO (▲). HA and THIO were used at a concentration of 10 µM each. All data shown are means ± SD of 3-7 experiments performed in triplicates with membranes from at least two different preparations. All experiments were performed as described in the Materials and Methods section.

Figure 3: Effect of NaCl on hH4R- and hH4R-GAIP-induced GTPase activity. Effects of NaCl on steady-state GTPase activity were studied under control conditions (●), with HA-
stimulation (■) and THIO-inhibition (▲) in Sf9 cell membranes expressing hH4R or hH4R-GAIP with Gαi2 and Gβ1γ2. HA and THIO were used at a concentration of 10 µM each. The GTPase assay was performed as described in the Material and Methods section. A, C: absolute GTPase activities in the systems expressing hH4R (A) or hH4R-GAIP (C). B, D: percentage of HA and THIO effects, related to total ligand-regulated GTPase activity, determined in the systems expressing hH4R (B) or hH4R-GAIP (D). Data shown are means ± SD of three experiments performed in triplicates (one membrane preparation). The data for the non-fused hH4R were taken from ref. [14].

Figure 4: Comparison of the coupling efficiency of hH4R and hH4R-GAIP to G-protein subtypes of the Gαi/o class. Both hH4R (A) and hH4R-GAIP (B) were co-expressed with Gβ1γ2 and various G-protein subunits of the Gαi/o class (Gαi1, Gαi2, Gαi3 and Gαo). As a control, hH4R and hH4R-GAIP were expressed in the absence of mammalian G-proteins. G-protein coupling efficiency was determined by steady-state GTPase assay. Every group of three bars in the diagram represents the results for one specific membrane under control conditions (open bar), in the presence of agonist (HA, 10 µM, grey bar) and in the presence of inverse agonist (THIO, 10 µM, black bar). The proteins expressed in the different membranes are shown below the diagram. The data represent means ± SD of two independent assays (one membrane batch, 3-4 replicates). The data for the non-fused hH4R were taken from ref. [14].

Text for graphical abstract:

When co-expressed with G1-proteins in Sf9 cells, the histamine H4-receptor shows only a low signal-to-background ratio. This ratio can be markedly enhanced by fusing the RGS-protein GAIP to the receptor.
Table 1: Impact of RGS4 and GAIP (fused or co-expressed with hH₄R) on the baseline and on the relative effects of HA and THIO in the steady-state GTPase assay. The data were determined with membranes from Sf9 cells co-expressing the proteins given in the table with Gα₁₂ and Gβ₁γ₂. All data are shown as mean ± SD (n given in the table). The results in the presence of RGS-proteins were compared to the data obtained with the wild-type hH₄R in one-way ANOVA, followed by Dunnet’s multiple comparison test (significant difference: * p < 0.05, ** p < 0.01, *** p < 0.001). All experiments were performed in triplicates as described under Materials and Methods.

<table>
<thead>
<tr>
<th>expressed proteins</th>
<th>% relative HA effect</th>
<th>% relative THIO effect</th>
<th>% increase of baseline</th>
<th>membranes</th>
</tr>
</thead>
<tbody>
<tr>
<td>wild-type hH₄R</td>
<td>+ 31.8 ± 9.2 (n = 22)</td>
<td>- 27.5 ± 11.3 (n = 20)</td>
<td>0.0 ± 44 (n = 23)</td>
<td>10</td>
</tr>
<tr>
<td>hH₄R-GAIP</td>
<td>+ 53.6 ± 16.4*** (n = 19)</td>
<td>- 39.9 ± 7.0*** (n = 17)</td>
<td>+ 4.8 ± 38.2 (n = 20)</td>
<td>7</td>
</tr>
<tr>
<td>hH₄R + GAIP</td>
<td>+ 40.8 ± 12.3 (n = 7)</td>
<td>- 37.3 ± 7.0 (n = 7)</td>
<td>- 29.7 ± 34.4 (n = 8)</td>
<td>3</td>
</tr>
<tr>
<td>hH₄R-RGS4</td>
<td>+ 40.3 ± 14.1 (n = 9)</td>
<td>- 40.9 ± 10.9** (n = 7)</td>
<td>+ 53.7 ± 59.6** (n = 10)</td>
<td>3</td>
</tr>
<tr>
<td>hH₄R + RGS4</td>
<td>+ 38.3 ± 12.9 (n = 9)</td>
<td>- 39.2 ± 7.0** (n = 9)</td>
<td>- 11.9 ± 34.3 (n = 10)</td>
<td>3</td>
</tr>
</tbody>
</table>

a always expressed in combination with Gα₁₂ and Gβ₁γ₂
b % change of absolute GTPase activity in the presence of ligand, related to baseline (control conditions), means ± SD
c related to baseline of the standard system (hH₄R + Gα₁₂ + Gβ₁γ₂), means ± SD
d number of different membranes (from different membrane preparations) used in the experiments
Table 2: Effects of fused and co-expressed RGS proteins on Goi2 GTPase enzyme kinetics

(Vmax and apparent Km values). “Apparent” Km values were calculated after subtraction of the control curve from the enzyme kinetic curves representing the effects of HA- and THIO (10 µM each). The resulting net curves were fitted according to a one-site binding function. The data are from the same experiments that were also used for the Eadie-Hofstee plots in Fig. 2.

All data shown are means ± SD (n given in the table) using membranes from at least two different batches. The results were compared using one-way ANOVA, followed by Bonferroni’s multiple comparison test (Km significantly different to: * wild-type hH4R, + hH4R-Goi2, hH4R + RGS4 or hH4R-GAIP, one symbol: p<0.05, two symbols: p<0.01, three symbols: p<0.001). All experiments were performed in triplicates as described in the Materials and Methods section.

<table>
<thead>
<tr>
<th>expressed proteinsa</th>
<th>range of Vmaxb [pmol/(min*mg)]</th>
<th>app. Km, agonist-stimulated (HA, 10 µM)c [nM]</th>
<th>app. Km, inverse agonist-inhibited (THIO, 10 µM)c [nM]</th>
</tr>
</thead>
<tbody>
<tr>
<td>hH4R</td>
<td>6.0 - 27</td>
<td>462 ± 181 (n = 6)</td>
<td>379 ± 93 (n = 7)</td>
</tr>
<tr>
<td>hH4R + RGS4</td>
<td>5.5 - 22</td>
<td>686 ± 104 +++ (n = 5)</td>
<td>497 ± 100 (n = 5)</td>
</tr>
<tr>
<td>hH4R + GAIP</td>
<td>4.4 - 20</td>
<td>882 ± 172 **++,+++ (n = 3)</td>
<td>365 ± 38 (n = 3)</td>
</tr>
<tr>
<td>hH4R-RGS4</td>
<td>15 - 58</td>
<td>970 ± 145 **,+++,#, (n = 7)</td>
<td>416 ± 86 (n = 5)</td>
</tr>
<tr>
<td>hH4R-GAIP</td>
<td>11 - 39</td>
<td>697 ± 127 +++ (n = 6)</td>
<td>350 ± 123 (n = 5)</td>
</tr>
<tr>
<td>hH4R-Goi2</td>
<td>9.1 - 15</td>
<td>217 ± 76 (n = 4)</td>
<td>272 ± 133 (n = 4)</td>
</tr>
</tbody>
</table>

a always expressed in combination with Goi2 and Gβ1γ2
b Vmax of the agonist-stimulated system (10 µM HA)
c determined after normalizing the enzyme kinetic curves to Vmax (10 µM HA) = 100 % and subtraction of the control curve, mean ± SD
Table 3: Potency and efficacy of various hH4R standard ligands at the hH4R and at the hH4R-RGS4 and hH4R-GAIP fusion proteins. All results were determined in steady-state GTPase assays using Sf9 cell membranes that co-expressed the proteins given in the table. The data for the wild-type hH4R were taken from a previous publication [14]. All data are shown as mean ± SD from 2-11 experiments performed in triplicates. The results from the hH4R-RGS fusion proteins were compared to the data obtained from the wild-type hH4R in one-way ANOVA, followed by Dunnet’s multiple comparison test (significant difference: *p < 0.05). All experiments were performed as described under Materials and Methods.

<table>
<thead>
<tr>
<th>ligand</th>
<th>hH4R + Gαi2 + Gβ1γ2</th>
<th>hH4R-RGS4 + Gαi2 + Gβ1γ2</th>
<th>hH4R-GAIP + Gαi2 + Gβ1γ2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EC50 (nM)</td>
<td>efficacy</td>
<td>EC50 (nM)</td>
</tr>
<tr>
<td>histamine</td>
<td>13 ± 6</td>
<td>1.00</td>
<td>21 ± 7*</td>
</tr>
<tr>
<td>imetit</td>
<td>7 ± 5</td>
<td>0.69 ± 0.15</td>
<td>13 ± 7</td>
</tr>
<tr>
<td>immepip</td>
<td>44 ± 14</td>
<td>0.68 ± 0.15</td>
<td>85 ± 61</td>
</tr>
<tr>
<td>R-α-methylhistamine</td>
<td>277 ± 96</td>
<td>0.92 ± 0.01</td>
<td>368 ± 158</td>
</tr>
<tr>
<td>5-methylhistamine</td>
<td>32 ± 8</td>
<td>0.87 ± 0.01</td>
<td>71 ± 32</td>
</tr>
<tr>
<td>iodophenpropit</td>
<td>n.a.</td>
<td>~ 0.00</td>
<td>n.a.</td>
</tr>
<tr>
<td>thioperamide</td>
<td>96 ± 42</td>
<td>-1.00</td>
<td>179 ± 64</td>
</tr>
<tr>
<td>JNJ-7777120</td>
<td>38 ± 9</td>
<td>-0.31 ± 0.07</td>
<td>91 ± 45*</td>
</tr>
</tbody>
</table>
Figure 3

hH4R + Gαi2 + Gβ1γ2

Absolute GTPase activities

![Graph A](image)

![Graph C](image)

% of ligand-regulated GTPase activity

![Graph B](image)

![Graph D](image)
Figure 4
* Graphical Abstract