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Time to Line Crossing for Lane Departure Avoidance: a Theoretical

Study and an Experimental Setting
Saı̈d Mammar, Member, IEEE, Sébastien Glaser and Mariana Netto

Abstract— The main goal of this paper is to develop a distance
to line crossing (DLC) based computation of time to line
crossing (TLC). Different computation methods with increasing
complexity are provided. A discussion develops the influence of
assumptions generally assumed for approximation. A sensitivity
analysis with respect to the vehicle parameters and positioning
is performed. For TLC computation, both straight and curved
vehicle paths are considered. The road curvature being another
important variable considered in the proposed computations, an
observer for its estimation is then proposed. An evaluation over
a digitalized test track is first performed. Real data is then
collected through an experiment carried out in test tracks with
our equipped prototype vehicle. Based on these real data, the
TLC is then computed with the theoretical proposed methods.
Obtained results outlined the necessity to take into consideration
vehicle dynamics in order to use the TLC as a lane departure
indicator.

Index Terms— Time-to-line-crossing, Lane departure avoid-
ance, Driver assistance, Observer.

NOMENCLATURE

CG Vehicle center of gravity
m Vehicle mass (1470 kg)
lf Distance from CG to front axle (1.00 m)
lr Distance from CG to rear axle (1.46 m)
lv Vehicle base length (lf + lr =2.46 m)
a Track width (1.40 m)
cf Front cornering stiffness (41.6 kN/rad)
cr Rear cornering stiffness (47.13 kN/rad)
β Vehicle sideslip angle (rad)
r Yaw rate (rad/s)
δf Steering angle (rad)
yG Distance from lane centerline to CG (m)
yGl, (yGr) Distance from left (right) boundary of

the lane to vehicle CG (m)
yll, (ylr) Distance from left (right) boundary of

the lane to front left tire (m)
yrl, (yrr) Distance from left (right) boundary of

the lane to front right tire (m)
ψ Vehicle relative yaw angle (rad)
ψL = ψ + δf Front tire relative yaw angle (rad)
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Rr Road radius of curvature (m)
Rv Vehicle path radius of curvature (m)
Rvl, (Rvr) Path radius of the front left (right) tire (m)
Rvliml

Maximal vehicle path radius for left
boundary line crossing avoidance (m)

Rvlimr
Maximal vehicle path radius for right
boundary line crossing avoidance (m)

DLC Distance to line crossing (m)
tLC Time to line crossing (sec)
L Lane width (3.5m)
vl lateral speed (m/s)
γl lateral acceleration (m/s2)

I. INTRODUCTION

Time to line crossing (TLC) is defined as the time duration
available for the driver before any lane boundary crossing.
Several research studies outlined the importance of this indi-
cator for both driver performance evaluation and lane departure
characterization [5], [9]. Among usual observations concerning
TLC time evolution, are small TLC values periods prior to
lane departure. This happens especially in case of driver
drowsiness which generally leads to slow rate TLC decreases
with possible presence of one or several TLC local minima
corresponding to driver corrections. On the contrary, in the
case of vehicle loss control the decreasing of TLC towards
zero is generally faster [5], [13]. Unfortunately, real-time
computation of TLC is not easy due to several limitations con-
cerning availability of vehicle state variables, vehicle trajectory
prediction and lane geometry [16],[17]. Computation time is
also a limiting factor. Thus approximate formulas are used, and
the usual one is the ratio of lateral distance to lateral speed.
This approximation has been successfully used in several
works for lane departure systems evaluation [18]. While lateral
speed can be not easy to observe, this formula is also not
valid when lateral speed varies [22]. A possible way to obtain
TLC, which is developed in this paper, is first to compute the
distance to line crossing (DLC) along the vehicle path and then
to divide it by the vehicle forward speed [13]. This approach,
on one hand, presents the advantage not to use the lateral speed
which has to be estimated, but on the other hand requires a
long preview of the vehicle path and road geometry. DLC
based computation method has been used in [21] assuming
straight road geometry. However, vehicle path and road profile
are both rarely straight and are a succession of curves to the
right and to the left. The purpose of this paper is to cover
all aspects of TLC including human factors, theoretical as
well as real-data computation, highlighting at the same time
parameters sensitivity. First, in section II TLC is positioned
among other measures also used to study driver performance.
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In section III, some useful geometric formula of TLC are
reviewed, first assuming the vehicle in stationary conditions
without slipping, and after by taking into account the under-
steering characteristic of the vehicle through a dynamic model
in section IV. Both straight and curved sections are considered
and several approximations are provided which can be easily
computed in real-time. Finally, a linear dynamic model is used
to predict future vehicle positions. An unknown input observer
scheme is also proposed in this section in order to estimate
the vehicle state and the road curvature which are needed in
the prediction phase.

In section V, an evaluation of the TLC is performed on
straight and curved road sections. This evaluation is carried
out on the basis of the established trigonometric formulas
by considering several parameter variations. In section VI, an
experimental setting is proposed to collect real data for TLC
computation. The evaluation is carried out on a digitalized test
track of 3.5Km long which combines both straight and curved
sections. It is shown that the observer is able to estimate the
track curvature. We wrap up the paper in section VII with the
conclusions.

II. DRIVER COMMON MEASURES

In [11], where human-machine interactions aspects are
discussed, different sensory information useful for vehicle
trajectory control while taking a bend are described. Two antic-
ipation levels concerning these variables can be distinguished.
The first level, long-term anticipation, begins as soon as the
bend is visible. The second level, short-term anticipation and
on-line control, begins just before and during bend taking.

As long-term anticipation visual variables one can cite the
visual angle. This variable corresponds to the visual curvature
of the road perceived by the driver and is available as soon as
the bend is visible.

Concerning short-term anticipation, one can cite for exam-
ple the optical flow. Changes in the optical flow directly spec-
ify interactions between the individual and the environment
[4]. Some variables can be derived from the optical flow. A
specific point in the optical flow, the tangent point is one
of them [10]. It is observed that, during bend taking, the
driver tends to fix his view in this point. Another variable
derived from the optical flow is the egocentric direction which
corresponds to the combination of the extra-retinal information
concerning the direction of the gaze (with respect to the axis
of the body) and retinal location. Some studies indicate the
utilization of the visual egocentric direction in order to guide
the displacements (see for example [12]).

Still talking about short-term anticipation, the Time to Line
Crossing seems to play an important role as an indicator
of steering performance as well as a regulating variable for
the driver action (that is, it seems to help the driver’s mind
to perform the task of driving). With respect to the second
case, research about TLC [14], [15] indicates that drivers can
compensate for some errors of steering by decreasing their
speed in order to maintain the TLC constant. In addition, the
TLC seems to be a good indicator of the point at which the
driver begins to use a strategy of open-loop visual steering

(when he stops to look at the road momentarily to perform
another task inside the vehicle) depending on the speed.

In addition to visual information, steering most certainly
involves sensory information from various other organs, like
vestibular, tactile or proprioceptive organs.

Finally, in [11], it is highlighted the fact that, it is certainly
not the same type of information used, depending on the
temporality of the task. The question “assistance for what
type?” is then raised. The temporal relation of the TLC with
the other variables is shown in figure 1 (see [11]). Based on
this temporal frame we can distinguish two main classes of
assistances : preventive or foresighted driving and short-term
decision assistances. This division suggests that the first one
would concern mainly informative or warning tasks to help
the driver, while the second one could be based on warning as
well as on active systems like trajectory correction. The task
of driving in this case is mostly performed by the driver and
the controller acts for lane departure avoidance. The TLC fits
this frame, being fundamental to help to determine in which
moment the assistance has to be turned on to avoid the lane
departure. In addition, its importance appears also in HMI
studies, for drivers trajectory evaluation.

Long-term anticipation Short-term anticipation 
and on-line control

1.5 – several seconds 200 ms – 1.5 s

Vision of the
remote bend

Start of
the bend

End of 
the bend

Visual angle

1. Optical flow
• tangent point
• egocentric 

direction

2. Time to Line 
Crossing
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Fig. 1. Temporal representation of visual variables during a bend taking.

III. GEOMETRIC EQUATIONS

In this section, expressions of distance to line crossing and
time to line crossing are derived using a kinematic model of
the car and trigonometric formulas. Straight road and curved
road sections are successively examined. In both cases, zero
steering angle and constant non-zero steering angle are treated.
Approximate solutions are provided in order to clarify the
contribution to TLC of non-zero values of steering angle or
road curvature.

A. Vehicle positioning

We derive first the positioning of the vehicle front tires
relative to the left and right lane boundaries according to actual
vehicle CG lateral displacement, vehicle geometry and relative
yaw angle. Figure 2 summarizes all used conventions.

1) Positioning relative to left lane boundary: Assume that
the vehicle CG is at a distance yl from the left line of the lane
of a straight road section, with a relative yaw angle ψ. Let
yll (resp. yrl) be the lateral distance of front left (resp. right)
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Fig. 2. Common convention used for vehicle positioning.

tire to the line that would be crossed, the following equations
hold for each front tire

{
yll = yl − lf sinψ − a

2 cos ψ
yrl = yl − lf sin ψ + a

2 cosψ
(1)

All angles including relative yaw angle and steering angle are
counted positive to the left (anti-clockwise). These formula
are still valid for curved road section considering that the road
radius Rr is much larger than yl.

2) Positioning relative to right lane boundary: Similar
formula are obtained for right lane boundary

{
ylr = yr + lf sin ψ + a

2 cosψ
yrr = yr + lf sin ψ − a

2 cos ψ
(2)

Notice in addition that yr = L−yl, where L is the lane width.
Also, when the front wheels steering angle δf is non-zero, the
front tires relative yaw angle is ψL = ψ + δf .

B. Straight road section

r1

Fig. 3. DLC on straight road section using straight and circular vehicle path.

1) Zero steering angle: Assuming that the steering angle is
zero, the vehicle goes straight (figure 3). In the case the line
crossing occurs on the left side of the lane, the distance to line
crossing DLC is simply computed from

DLC =
yll

sin ψ
=

yl − lf sin ψ − a
2 cosψ

sin ψ
(3)

This formula is valid if ψ is positive. When ψ is negative, one
has to use instead the vehicle front right tire distance from the
right boundary of the lane (yrr).

Time to line crossing is obtained by dividing DLC by
vehicle speed v. For a vehicle leaving to the left side of the
lane, it is given by

tLC =
yll

v sin ψ
(4)

Since v sinψ = vl is the lateral velocity, we have that tLC =
yll

vl
which is the common formula used in the literature [18].

We provide here another formula for TLC assuming that the
lateral displacement is subject to a small constant acceleration
γl which appears during driver corrective maneuvers

tLC =
1
γl

(
−v sin ψ +

√(
v2 sin2 ψ + 2γlyll

))
(5)

The series expansion around γl = 0 gives

tLC =
yll

v sin ψ

(
1− 1

2
yll

v2 sin2 ψ
γl

)
(6)

that reduces to the former expression when γl = 0.
Let us consider now a vehicle circular path which corre-

sponds to constant non-zero steering angle.
2) Constant steering angle: The vehicle steering angle is

now constant and positive non-zero and is equal to δf0. In
steady state, the front left tire path is a circle arc of radius
Rvl

such that

Rvl
=

lv
tan δf0

− a

2
=

v

ψ̇
− a

2
(7)

where lv is the vehicle base length and ψ̇ is the yaw rate.
Notice that, as indicated above, the front left tire presents a
relative yaw angle of (ψL = ψ + δf0)

The distance to line crossing is obtained from the following
process

1) Compute r1 = yll

cos ψL
and r2 = Rvl

− r1 (figure 3)
2) Compute the distance d from

d = r2 sin ψL +
√

R2
vl
− r2

2 cos2 ψL (8)

3) Compute the angle ξll as

ξll = cos−1

(
r2
2 + R2

vl
− d2

2Rvl
r2

)
(9)

Finally the distance to line crossing is obtained as

DLC = ξllRvl
(10)

When ψL = 0, the previous equations reduce to r1 = yll, r2 =
Rvl

− yll, d =
√

R2
vl
− r2

2 and ξll = cos−1
(

r2
Rvl

)

The previous equations are established using distance for-
mulas. It is however possible to obtain more simple equa-
tions. According to figure 3, sin ψL = z

d , cosψL = x
d ,

cos ξll = r2+z
Rvl

and sin ξll = x
Rvl

. Combining the four previous
equations leads to

ξll = cos−1

(
cosψL − yll

Rvl

)
− ψL (11)

If ψL and δf are both negative, the lane departure should
occur on the right side of the lane. The formulas in this case
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are similar, but lateral displacement has to be taken relative to
the right lane at the point of contact of the front right wheel.

Suppose now that ψL and δf are of opposite sign, as when
the driver performs a recovering maneuver. In such a case, the
vehicle may first leave the line on one side and then come
back to the lane and finally cross the line on the other side.
However, there exists a relation between Rvl

, yll, ψL and the
lane width L which determines if the first lane departure will
occur on one side or on the other. When ψL < 0 and δf

> 0, the vehicle path radius has to be under a limit value
Rvlimr

> 0 so that the lane departure occurs on the left side.
Similarly when ψL > 0 and δf < 0, the vehicle path radius
has to be also under a limit value Rvliml

< 0 so that the lane
departure still occurs on the left side.

Table I summarizes the cases of TLC calculation when lane
departure is expected on the left border.

TABLE I
SUMMARY OF TLC FOR LEFT LINE ON STRAIGHT ROAD SECTION

Case

δf= 0,
ψ > 0

δf > 0,
ψL> 0

δf > 0,
ψL< 0

δf < 0,
ψL> 0

Rvl ∞ lv
tan δf0

−a
2

< Rvlimr
< Rvliml

TLC yll
v sin ψ

Rvl
v

ξll
Rvl

v
ξll −Rvl

v
ξlr

where Rvliml
= −yll+a cos ψ

1−cos ψL
< 0, Rvlimr

=
L−(yll+a cos ψ)

1−cos ψL
and ξlr = cos−1

(
cosψL − yll

Rvl

)
+ ψL.

A similar table can be drawn up for the lane departure
expected on the right side.

C. Constant radius curved road section
1) Zero steering angle: Suppose now that the vehicle is on

a curved road section of radius Rr, the steering is zero such
that the vehicle continues its trajectory in the direction of its
longitudinal axis.

Dlc1

Dlc2

ψL

yll

Or

Ov

Rr

Rvl

r2

ξll

ζ

Fig. 4. Vehicle on curved road section with zero and non zero steering angle.

Assuming that the lane departure occurs on the left side of
the lane (Figure 4), the computation of DLC is straightforward.
One may obtain

DLC = (Rr + yll) sin ψ −
√

R2
r − (Rr + yll)

2 cos2 ψ (12)

This solution exists if and only if cos ψ ≤ Rr

Rr+yll
. Otherwise,

the lane departure occurs on the right side of the lane and
DLC is given in this case by

DLC = (Rr + yll + a cos ψ) sin ψ+√
(Rr + L)2 − (Rr + yll + a cosψ)2 cos2 ψ

(13)

It is important to notice that on straight road section, when
δf = 0, the sign of ψ determines the side of the lane where
the lane departure occurs. On curved road section, right side
lane departure may occur even if ψ is positive.

Useful approximate formulas that highlight the effect of the
road radius of curvature on the distance to line crossing, when
the radius of curvature goes to infinity can be derived
• Lane departure on the left side assuming ψ > 0

DLC ≈ yll

sin ψ
+

1
2

(
cot2 ψ

sin ψ

)
y2

ll

1
Rr

(14)

• Lane departure on the right side assuming ψ ≤ 0

DLC ≈ yrr

sin ψ
− 1

2

(
cot2 ψ

sinψ

)
y2

rr

1
Rr

(15)

Suppose that ψ = 0, then the lane departure will occur on
the right side of the lane if the road goes to the left. Distance
to line crossing is DLC =

√
(L− yll) (yll + L + 2Rr) and

time to line crossing is tLC =
√

(L−yll)(yll+L+2Rr)

v . On the
other hand, at the initial time, the vehicle lateral acceleration
is γl = v2

Rr+yll
= v2

Rr

1
1+

yll
Rr

≈ v2

Rr
. This leads to the equality

tLC =
√

Rr

v

√
(L− yll)

(
2 +

yll + L

Rr

)
(16)

or assuming Rr >> (yll + L)

tLC ≈
√

2 (L− yll)
γl

(17)

This formula is similar to that for time to collision tc with
an obstacle located at a distance d when the vehicle has a
constant braking deceleration of γb : tc =

√
2d
γb

.

Tables II and III summarize all formulas for lane departure
on left and right sides. All cases of positive and negative road
radius of curvature and vehicle yaw angle errors are covered.

TABLE II
SUMMARY OF TLC FOR LEFT LINE ON CURVED ROAD SECTION ASSUMING

STRAIGHT VEHICLE PATH

Case

Rr > 0,
ψL > ψtl

Rr > 0,
ψL = ψtl

Rr < 0,
ψL ≥ ψtr

TLC D1
v

√
2yllc1

v
D2
v

In these tables, D1=c1 sin ψ −
√

R2
r − c2

1 cos2 ψ, D2 =
c2 sin ψ+

√
R2

r − c2
2 cos2 ψ, D3 = c2 sin ψ−

√
c2
3 − c2

2 cos2 ψ
and D4 = c4 sin ψ +

√
c2
3 − c2

4 cos2 ψ. c1 = Rr + yll,
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TABLE III
SUMMARY OF TLC FOR RIGHT LINE ON CURVED ROAD SECTION

ASSUMING STRAIGHT VEHICLE PATH

Case

Rr < 0,
ψL < ψtr

Rr < 0,
ψL = ψtr

Rr > 0,
ψL ≤ ψtl

TLC D3
v

√−2yrrc2
v

D4
v

c2 = Rr +L+yrr, c3 = Rr +L and c4 = Rr +yrl. The angles
ψtr and ψtl are computed as ψtr = − cos−1

(
Rr+L

Rr+L−yrr

)
and

ψtl = cos−1
(

Rr

Rr+yll

)
.

2) Constant steering angle: According to figure 4, the arc
length is given by DLC = Rvl

ξll. Computation of ξll is
however different in this case. It is achieved by the following
process (see figure 4)
• The distance r2 between the center point of the road curve

and the center point of the vehicle path is given by

r2 =
√

(Rr + yll)
2 + R2

vl
− 2 (Rr + yll)Rvl

cos ψ
(18)

• The angle ζ is then computed as

ζ = cos−1

(
R2

vl
+ r2

2 −R2
r

2r2Rvl

)
(19)

• Finally, the angle ξll is given by

ξll = −ζ + cos−1

(
r2
2 + R2

vl
− (Rr + yll)

2

2r2Rvl

)
(20)

In the previous computation, it has been assumed that both
ψL and δf are positive and that the lane departure occurs on
the left side. However this lane departure may not occur on
left side even in this case. The limit situation is when the path
of the vehicle is tangent to the left border of the lane (figure
5). In such a case, the angle ζ is equal to zero and the two
circle centers Ov and Or are aligned and the distance between
them is r2 = Rvl

− Rr ≥ 0. The corresponding limit value
Rvliml

of Rvl
is given by

Rvliml
=

1
2

(
2 + yll

Rr

)
yll

−1 +
(
1 + yll

Rr

)
cos ψL

(21)

Note that this is only possible for ψL < cos−1
(

Rr

Rr+yll

)
.

In this case the steering angle has to be less than

tan−1

(
lv

Rvliml

)
, in order to avoid a lane departure on the

left.
Assume now that ψL and δf are of opposite signs. Without

loss of generality, we consider the case ψL < 0 and δf > 0,
and we determine the condition to avoid lane departure on the
right side. Limit value Rvlimr

of Rv is

Rvlimr
=

1
2

L
(
2 + L

Rr

)
− yrl

(
2 + yrl

Rr

)
(
1 + L

Rr

)
−

(
1 + yrl

Rr

)
cos ψL

(22)

Rvl

Rr

Or

Ov

yll
ψL

Fig. 5. Limit trajectory for curved road section.

When the vehicle path radius verifies Rvliml
< Rv <

Rvlimr
, TLC is infinite since the vehicle trajectory always

remains within lane boundaries.
Table IV summarizes the cases of TLC calculation when

lane departure is expected on the left border. The road cur-
vature is assumed positive which means that the bend is also
oriented to the left.

TABLE IV
SUMMARY OF TLC FOR LEFT LINE ON CURVED ROAD SECTION

Case
δf =0,

cos ψL< Rr
Rr+yll

ψL>0

δf =δf0>0,

cos ψL< Rr
Rr+yll

δf =δf0>0,

cos ψL> Rr
Rr+yll

Rvl ∞ Rvl
= lv

tan δf0
− a

2

<Rvliml

Rvliml
<Rv

Rv<Rvlimr

TLC 1
v

` (Rr+yll) sin ψ−√
R2

r−(Rr+yll)
2 cos2 ψ

´
Use equation (20) ∞

Similarly table V corresponds to the right side when the
bend is still oriented to the left.

TABLE V
SUMMARY OF TLC FOR RIGHT LINE ON CURVED ROAD SECTION

Case
δf =0 ,
ψL≥0

cos ψL> Rr
Rr+yll

δf =δf0>0,

cos ψL> Rr
Rr+yll

δf > 0

Rvr ∞ Rvr = lv
tan δf0

− a
2

Rvr >Rvlimr

Rvr >Rvliml
Rvr <Rvlimr

TLC A similar to (20) ∞

In table V, A = 1
v

( (Rr+yll+a cos ψL) sin ψL+√
(Rr+L)2−(Rr+yll+a cos ψL)2 cos2 ψL

)
. In

tables IV and V, only non negative values of δf are given,
however similar results may be obtained for negative steering
angles by providing some substitutions. Analogous results may
also be obtained for curved road sections to the right (Rr < 0).

D. Kinematic prediction of vehicle trajectory

Suppose that the road curvature is made available by the
use of an observer for example. Using the lateral positioning
and relative yaw angle obtained by the video sensor together
with the yaw rate sensor, the steering angle and the speed,
it is possible to apply the formula established in section III.
The process has to pass through the tables listed above in
order to determine in which particular case the vehicle is. It
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is also possible to perform vehicle future positions prediction
assuming circular paths. An associated kinematic model which
neglects vehicle slip motion can be used. It is given by (ẋv =
v cos θ, ẏv = v sin θ, θ̇ = v

lf +lr
tan δf ), where θ is the vehicle

heading angle, lf and lr are respectively the distance from
vehicle CG to front and rear axles, and (xv, yv) are the vehicle
global coordinates. The relative yaw angle dynamics is ψ̇ =
θ̇ − v

Rr cos ψ .
Practically, from CG lateral deviation and relative yaw

angle, we determine the front tires path radius and relative
yaw angle. As the first concern is to know if TLC is higher
than a threshold S or not, one first generates for each of the
front tires a circular arc of length Si

N v (i = 1, ..., N) where N
is the number of desired samples. The two lateral deviations
are computed for each sample. If, until the N th sample, they
are with in the lane limits, thus TLC is higher than S and the
procedure stops. Otherwise, if at time sample k, the lateral
deviation is found beyond the lane limits, this means that the
lane boundary has been crossed between (k − 1) and k, the
minimal TLC is thus

(
S(k−1)

N

)
. A refinement is possible in

order to obtain a better approximation by using resampling
within the time interval

[
S(k−1)

N , Sk
N

]
.

Notice that the procedure may be accelerated if a straight
vehicle path is assumed. An initial line segment of length Sv

N
can then be directly generated, and lateral deviations are first
computed for the last points of the arcs. Thus iteration may
be done backward if one is found beyond the boundaries of
the lane. Otherwise, we can conclude that TLC is higher than
S sec with only two lane positioning.

In the following, the effect of vehicle dynamics on TLC
computation is examined. An unknown input proportional
multiple integral observer is proposed for vehicle state and
road curvature estimation.

IV. PREDICTION USING DYNAMIC MODELS

A. Vehicle models

Several models can be used for numerical TLC estimation
on various road types. For high longitudinal speeds assuming
small angles, a dynamic bicycle linear model can be used. It is
formulated in terms of lateral displacement and lateral speed
[1]. This model is well fitted for motorway driving conditions.
First of all, lateral acceleration written in the road frame is
given by

ÿG = γl − v
1

Rr
= v̇l − v2ρr (23)

where ρr = R−1
r is the road curvature.

The vehicle path radius Rvd
of this dynamic model is thus

Rvd
=

(lf + lr)
δf0

(
Kv2 + 1

)
(24)

where K = (lrcr−lf cf )m

cf cr(lr+lf )2
is a stabilizing factor, m is the

vehicle mass, cf , cr are respectively the front and rear tire
cornering stiffness. The factor K is positive for an understeer
vehicle, negative for an oversteer and zero for a neutral
vehicle. Path radius

(
Rvl

= lf+lr
tan δf0

≈ lf+lr
δf0

)
obtained with

the kinematic model has thus to be corrected.

The temporal relation between the lateral acceleration γl,
the lateral speed vl, the yaw rate r and the steering angle δf

is

γl = − (cf + cr)
mv

vl +
1
v

(crlr − cf lf )
m

r +
cf

m
δf (25)

Under the assumption, vl ≈ vβ, which holds for lateral
acceleration under 0.3g, one can notice that the contribution
of the yaw rate to lateral acceleration decreases when speed
increases in favor to sideslip angle. This means that the vehicle
tends to slip rather than to revolve. Thus the computational
method of TLC has to be changed.

In addition to the previous established trigonometric for-
mulas, the following formulas can be used for computation of
TLC. Only left lane departure cases are provided.
• If lateral speed and lateral acceleration are available for

measurement, the first approximate formula which can be
used on straight road sections is

tLC =
−vl +

√
v2

l + 2γlyll

γl
(26)

This formula is simply derived from the lateral motion of
the vehicle assumed to be at a constant lateral acceleration
γl with initial lateral speed vl.

• On straight road section approximation, taking into ac-
count non zero steering angle

tLC =
lv

(
Kv2 + 1

)
cos−1

(
cosψ − yll

lv(Kv2+1)δf0

)
− ψ

vδf0
(27)

This equation is simply derived from the previously
trigonometric equation (10) obtained for non-zero steer-
ing angle on straight road section, where the vehicle path
is replaced in this case by the dynamic one (see table III).

• On curved section, with non zero steering angle, possible
equation is

tLC =

−v sin (ψ + δf0) +

√
v2 sin2(ψ+δf0)+

2v2

„
1

Rvd
− a

2
− 1

Rr

«
yll

v2
(

1
Rvd

− a
2
− 1

Rr

) (28)

This equation is similar to equation (26), in
which v sin (ψ + δf0) is the lateral speed, and
v2

(
1

Rvd
− a

2
− 1

Rr

)
is the lateral acceleration relative to

the road.

B. Lateral speed and curvature estimation

The bicycle model presents a state vector x with 4 state
variables. The state variables are the lateral speed, the lateral
displacement, the relative yaw angle and the yaw rate. Only the
three last variables are available for measurement. In addition,
the road curvature affects the system as an unknown input [1].

{
ẋ = Ax + Bδf + Eρr

y = Cx
(29)

An observer can be designed in order to achieve both
state and unknown input estimation. In [8] a second-order
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polynomial model of the road is assumed in the vehicle
coordinates. A discrete time Kalman filter observer is then
synthesized for both lateral velocity estimation and polynomial
model coefficients estimation. Another Kalman filter which
considers road bank angle but ignores the road geometry in
terms of curvature variation is also presented in [20]. Here
it is assumed that the road curvature is almost constant or
affine varying and we choose a proportional two-Integral
(P2I) observer which is able to estimate the curvature and its
derivative. The road curvature is considered as an unknown
input ρr [7].The P2I observer has the following form





.

x̂ = Ax̂ + Bδf + Lp(y − ŷ) + Eρ̂r2.

ρ̂r2
= ρ̂r1 + Li2 (y − ŷ)

.

ρ̂r1
= Li1 (y − ŷ)

(30)

The second equation describes the integral loop gain added to
the proportional one in the first equation. The matrix gains
Lp, Li1 and Li2 are determined in such a way to enable
asymptotic convergence to zero of the state estimation error,
the unknown input estimation errors and the estimation error
of the derivative of the unknown input, respectively defined
by e = x − x̂, eρ2 = ρr − ρ̂r2 and eρ1 = ρ̇r − ρ̂r1 . This is
achieved by making Hurwitz the matrix




A E 0
0 0 1
0 0 0


−




Lp

Li2

Li1


 [

C 0 0
]

(31)

Thus any eigenvalue assignment method can be applied to
obtain the matrix gain

[
Lp Li2 Li1

]
.

C. Prediction of vehicle future positions

For vehicle future positions dynamic prediction, the model
(29) has to be transformed into a discrete-time model using the
Tustin method. Prediction is performed during the time range
in the frame attached to the road. This frame is obtained by the
orthogonal projection of the vehicle CG on the lane centerline.
This discrete model is of the form xk+1 = Φxk + Γvk,
where xk = [yG, ẏ G, ψ, ψ̇]T and vk = [δf , ρ]T . This model
is initialized using the observer estimation values for both the
state and the road curvature [8]. This prediction is generally
high computational and time consuming, it is only necessary
in the cases where vehicle dynamics are far from steady
state values and positioning values are critical. Prediction
is performed until one of the vehicle front wheels reaches
the lane edge or the fixed limit of time prediction has been
completed [3], [2].

In the following, the established trigonometric formula are
investigated in order to highlight effects of variables appearing
in the different formula on the achieved TLC. Particularly,
limits on acceptable relative yaw angle and lateral acceleration
for minimum TLC values are outlined.

V. SIMULATION ANALYSIS

A. Analysis with zero steering angle on straight road section

It is generally assumed that driver accuracy during lane
keeping maneuvers is about 20cm around the lane centreline at

the vehicle center of gravity. On the other hand lane departures
occur with a relative yaw angle under 6 deg. Let us define
dm = ±20cm. Suppose that ψ is positive, the lane departure
will occur on the left side, and the point of interest is front
left tire contact with the road. Vehicle geometry influences
the lateral displacement of this point. This displacement is
half the wheel-base at zero relative yaw angle and it increases
about 17cm when relative yaw angle is 10 deg. The point is
located at a distance

(
dm + lf sin ψ + a

2 cosψ
)

from the lane
centreline, with lf = 1m and a = 1.4m. In order to maintain
a time to line crossing of tmin = 2 sec for a given speed v,
from equation (3), the relative yaw angle has to be under ψmax

given by

ψmax = −φ + sin−1




L
2 − dm√

(vtmin + lf )2 + a2

4


 (32)

where the angle φ is such that sin φ =
a
2q

(vtmin+lf )2+ a2
4

.

The relative yaw angle has to be under 2 deg for speeds
greater than 45Km/h, and only 1 deg is acceptable at 90Km/h.

The decrease of time to line crossing according to relative
yaw angle is now examined for a fixed speed v = 90Km/h
(figure 6). The solid line corresponds to vehicle located on
the lane centerline while dashed line corresponds to vehicle
center of gravity at 20cm from centerline to the left. When
the vehicle is on the centerline, a TLC of 2.4 sec is obtained
when relative yaw angle is 1 deg.
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Fig. 6. TLC versus relative yaw angle for a fixed speed of 90Km/h on
straight road section and zero steering angle.

One can notice that the TLC decreases quickly and is less
than 1 sec beyond 2 deg of relative yaw angle. Furthermore,
effect of lateral displacement is more important for small
values of ψL. For fixed speed and relative yaw angle, TLC
is proportional to yGl. As an example, a lateral displacement
of 0.5m leads to a TLC of only 2.25 sec for v = 90Km/h and
ψL = 1deg.

B. Analysis with non-zero steering angle on straight road
section

From the kinematic model, the steady state value of the
lateral acceleration is related to longitudinal speed and steering
angle by

γl =
v2

lf + lr
tan δf (33)
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Fig. 7. (a)- Limit values of ψL as a function of the lateral displacement for
different road radius of curvature. (b)- TLC values obtained with the maximum
value of ψL as a function of the lateral displacement for different road radius
of curvature.

where lr = 1.4m.
In the following, the steering angle is chosen according to

speed value such that γl = 3m/s2. The radius of curvature
of vehicle path is computed from the stationary equality(
R−1

vl
= γl

v2

)
.

We first assume that the relative yaw angle is zero. In
this case, TLC is obtained from tLC = Rvl

v cos−1
(

Rvl
−yll

Rvl

)
.

Results obtained when varying the speed show that TLC
is almost constant if the lateral acceleration is maintained
constant. This suggests that lateral acceleration can be locally
used as an indicator of the TLC. On the other hand, one can
also deduce from the previous equation which is the maximal
lateral acceleration achieving a TLC of 2 sec. Assuming a
20cm lateral displacement of CG, the obtained lateral accel-
eration is γl = 4.2m/s2.

Finally, simulations show that a non zero relative yaw angle
leads to a linear decreasing of TLC as the speed increases. The
slope is almost proportional to the relative yaw angle.

C. Analysis on curved road sections

It has been shown previously (table III), that lane departure
on the left side is avoided provided that ψL < ψtl =
cos−1

(
Rr

Rr+yll

)
. Figure 7-a gives the limit values for ψL as

a function of yll for different values of curve radius Rr.
The corresponding TLC limit is shown in figure 7-b for

a speed of 90Km/h. It is obtained on curved road section
assuming straight vehicle trajectory with initial relative yaw
angle ψtl. One can notice that for highway curvatures, the
relative yaw angle has to be under 5deg in order to ensure a
TLC of more than 2sec.
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Fig. 8. (a)- Digitalized map of the LIVIC test track. (b)- Real and estimated
track curvature.

D. Simulation based evaluation on test track profile

In 1999, INRETS established a test track in Satory, 20Km
western Paris. The site is 3.5Km long with various road pro-
files including straight lane, tight bend and squabble (figure 8-
a). Lanes markers absolute positions were digitalized each 5cm
using differential GPS (DGPS). In addition, an experimental
vehicle is equipped with video cameras on each side which
can detect lane markers at vehicle CG with high accuracy [6].

Figure 8-b shows in solid line the curvature of the track.
The P2I observer developed above is able to estimate this
curvature using only video sensor (lateral displacement and
relative yaw angle measurement) and the gyro as shown
in figure 8-b. Figure 9-a give a zoom of the estimation
between time 110sec and 190sec. For better precision with the
lateral positioning, the lateral displacement is measured with 2
vertical cameras at vehicle center of gravity. Figure 9-b shows
that the observer is able to estimate the curvature derivative.
The results obtained with the observer permit to trust that the
DLC based computation of the TLC can be implemented in
near future without use of DGPS and digitalized maps if the
lane edge are of sufficient quality in order to be detected by
video sensors.

Figure 10-a characterizes the test track in terms of distance
to line crossing, when it is assumed that the vehicle is
positioned on the centerline with zero relative yaw angle. This
distance is greater than 300m and reaches 900m on the straight
sections of the track (see figure 8-b for the corresponding
curvature). However, DLC is several times under 100m which
means that small TLC values may be expected for high speeds
or when lateral positioning or relative yaw angle errors are
taken into account.
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Fig. 9. (a)- Zoom on the real and estimated track curvature. (b)- Real and
estimated curvature derivative.

Speed is intentionally limited to 144Km/h (40m/s) on
straight sections, while on curved section the forward speed
is chosen in order to obtain a constant lateral acceleration of
0.3g. The obtained speed profile is used in various forms in
all TLC computations. Evaluation will be performed on the
section from arc length 1500m until the end of the track (figure
10-b).

First, the vehicle is considered at the center of the lane with
zero relative yaw angle. TLC values are shown in figure 11-a.

The steering angle is now chosen at a nominal value
according to equation (7), in order to obtain a vehicle radius
path equal to track curvature at vehicle location. TLC results
are shown in figure 11-b. TLC is particularly enhanced on
curved sections.

Vehicle relative lateral displacement is introduced of the
form of a sinusoidal wave with 20cm magnitude. Results are
provided in figure 11-c. The effect on TLC is only visible in
the region between the two vertical bars.

A supplementary Gaussian random relative yaw angle error
is also introduced. Variance is chosen at 1deg and the obtained
TLC is shown in figure 11-d. One can notice high degradation
of TLC values especially on straight section.

VI. EXPERIMENTAL VALIDATION

In the previous parts, we have discussed about the theoret-
ical computation of approximations of TLC. In practice, two
classes of hypothesis could be used in the computation of the
TLC.

The first class is about road consideration. It depends on the
road sensor available in the vehicle. With only a short range
sensor, the road is considered as a straight line as we can
only measure the lateral displacement and the road relative
yaw angle. Long range sensors give us the knowledge of the
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Fig. 10. (a)- Distance to line crossing along the track, when it is assumed
that the vehicle is positioned on the centerline with zero relative yaw angle.
(b)- Section of track on which TLC is computed.
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Fig. 11. (a)- TLC values for vehicle on centerline with zero relative yaw angle
and zero steering angle. The lateral acceleration is 0.3g. (b)- TLC values for
vehicle on centerline with zero relative yaw angle and nominal steering angle.
The lateral acceleration is 0.3g. (c)-Vehicle within 20cm from the centerline
of the lane, zero relative yaw angle and nominal steering angle. The lateral
acceleration is 0.3g. (d)-Vehicle within 20cm from the centerline, Gaussian
noise relative yaw angle and nominal steering angle. The lateral acceleration
is 0.3g.
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Fig. 12. Different TLC approaches on a curve. (a)- Straight road and vehicle
trajectory approximations. (b)- Straight road approximation and curved vehicle
trajectory. (c)- Real road profile and straight vehicle trajectory approximation.
(d)- Real road profile and curved vehicle trajectory.

road position, and we can fully take into account the road
description.

The second class is relative to the vehicle knowledge.
Without any sensor, we can make no assumption on the vehicle
future path, so we consider it as a straight line. With sensors,
such as yaw rate sensor, speedometer and steering angle, it is
possible to predict the vehicle path for TLC computation. As
mentioned before, advanced dynamic model prediction can be
performed by observer based state and curvature estimation.

Figure 12 shows these different modes of TLC computa-
tions:
• In (a), the TLC is computed considering straight road

approximation and straight vehicle trajectory (denoted
LD/LD in future plots),

• In (b), the TLC is computed considering straight road
approximation and curved vehicle trajectory (denoted
LD/Ce),

• In (c), the TLC is computed considering real road profile
and straight vehicle trajectory (denoted RR/LD),

• In (d), the TLC is computed considering real road profile
and curved vehicle trajectory (denoted RR/Ce),

This set of figures shows the applied TLC computation on a
curve. Consideration of the road in this case is very significant
and leads to large variations in the TLC values.

The following parts will develop experimental validation
of TLC computation. The main problem is to know which
computation is the most efficient according to driving behavior.

This part is devoted to the definition of the experimental
test to validate and compare the different TLC. We present in
the first subsection the sensors used for the TLC computation.
We explain then the basic scenarios used for the validation of
the TLC.

A. Sensors and Scenarios
In order to ensure a high accuracy on the vehicle position

and road description, we use a digital map and a centimeter

TABLE VI
GPS ACCURACY VALIDATION

distance (cm) lateral displacement (cm) absolute
left right measured rounded GPS difference (cm)
83 63 -10 -9 1
70 76 3 3 0
78 68 -5 -5 0
79 67 -6 -6 0
50 96 23 24 1
64 82 9 9 0
67 79 6 6 0
89 57 -16 -16 0
81 65 -8 -9 1
64 82 9 10 1

RTK-GPS. These components are described below:
1) Digital Map: The maps, used for the experimental part,

contain the position of the road edges and the center of the
road. Positions are given with a longitudinal step of fifty
centimeter and the accuracy is about one centimeter.

2) GPS: In order to localize the vehicle on the map, a
RTK GPS is used. The acquisition sampling frequency of the
vehicle position is 20Hz and the accuracy is one centimeter
due to the short distance to the base station. Accuracy of
the vehicle localization on the map using the RTK GPS has
been validated. This GPS was installed in a vehicle driving at
about 50km/h. The RTK GPS and the map have been used
to compute lateral displacement of the vehicle with respect
to the center of the road. In order to validate this measure,
the lateral displacement was also computed using an external
measure. This one was obtained by an experimental process
that consisted of covering a part of the lane with sand and
observing the marks that the vehicle left on this sand. Table
VI summarizes ten measures of lateral displacement using both
methods. All measures are given in centimeters, the difference
between the two methods being rather small, with a mean of
0.4 centimeters. The centimeter accuracy of the GPS and map
system is then validated.

The GPS centimeter mode is available on a large part of
the test track, presented previously. Data used to assess the
centimetric precision on the test track have been recorded
during a one week test. Measures have been taken from 9:00
in the morning to 19:00 under various conditions, with the
vehicle speed reaching 20m/s. More than 200 turns have been
done. This long period ensures us to collect data from various
GPS satellite constellations. Data used in the next parts are
taken on sections with centimetric positioning.

3) Scenario: The tested scenarios represent common driv-
ing situations, with respect to lane departure problems. To
validate the TLC approach, in the first scenario, the driver
is asked to drive normally, following the center of the road.
In this scenario, the TLC is expected to have normal values,
with small variations. Two driver styles were chosen for this
scenario: low and high speeds.

In the second scenario, we wanted to test the reaction of
the TLC, with respect to a driver correction during a slowly
lane departure situation. So, the vehicle goes slowly near the
road mark, and the driver has to correct this situation.

Finally, in the last scenario, the driver must cross the lane.
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Fig. 13. TLC variation during a normal driving scenario. (a)- Drive on a
straight line. (b)- Drive on a curve.

B. Results

1) Normal driving condition: Driver is asked to follow the
center of the road, with an average speed of 50Km/h.

Two relevant situations are plotted in figure 13. A long
straight line, ending with a curve is shown on figure 13-a.
Figure 13-b represents the values of the TLC on a curve. A
first remark is that the values of the TLC are not small, as
the driver, in this test, does not take risk. On these two plots,
the TLC computed using the approximation of straight road
may lead to large values and large variations of TLC. Since in
this case, the driver follows the center of the road, his relative
yaw angle is small. As these approximations of the TLC are
strongly dependent on this angle, a small variation of this
variable has a large impact. On the other hand, information
given using real road profile is reliable. On the straight line,
the vehicle speed is approximatively constant. So, his distance
to line crossing decreases with a constant speed. In the time
versus time representation of figure 13.(a), the slope of the
TLC for these two approximations is near 1.

2) Slow road departure and driver correction: In this
scenario, the driver goes near the lane marks but never crosses
them. Figures 14 and 15 show the vehicle trajectory and
the related TLC. In both figures, the driver has performed
a correction after a slow lane departure, which is the greater
cause of lane departures.

With respect to the figure 14, all TLC computations show
good response to this problem. Values of different compu-
tations are similar: in this case, both road profile and vehicle
trajectory are about a straight line before the driver correction.
Moreover, the DLC is small. So, the different approximations
on the vehicle trajectory and on the road profile lead to
similar results. By using the curvature of the trajectory, the
reaction in the TLC increase as a consequence of the driver
correction is faster of 0.3 sec than with the straight trajectory
approximation.

In figure 15, excepting the TLC computed with straight road
and straight trajectory approximation, all computations show a
risky situation, with small TLC values (below 2 sec and even
1 sec). If we do not take into account the curvature of the
trajectory in the TLC computation, we can see that the TLC
does not reflect quite well the vehicle movement approaching
the road marks. Moreover, the computation using real road
profile and straight driver trajectory, shows false variations:

just before T = 56 sec, the driver corrects his trajectory and
moves away from the road mark, but the TLC value does not
stop decreasing.

3) Road departure: In this last scenario, the driver runs
off the road. This road departure case simulates the loss of
control, for instance on icy road.

Figure 16 shows the vehicle trajectory and the TLC values.
All TLC computations drop to zero when the vehicle crosses
the road mark. Since the vehicle speed is constant, the slope
of the TLC is near 1. The computation, using the vehicle
trajectory curvature and the real road, shows a step of one
second in TLC, two seconds before the lane departure. This
step results of a driver correction. The TLC computation using
both straight line approximations, show bad results as the TLC
values, 2 sec before the lane crossing are very high and not
representative of the emergency of the situation.

Developing a lane departure unit is a big challenge for
accident and death reduction. The lane departure prevention
unit has to provide an information or an alarm to the driver
that takes into account several constraints
• Excessive speed even on straight road section
• Vehicle positioning: excessive lateral displacement and

excessive relative yaw angle
• Excessive lateral acceleration
• Small TLC values.
Decision making strategies for lane departure systems have

been investigated by several authors [19],[22]. A lane depar-
ture warning unit which takes into account the fourth items is
under validation [23].

VII. CONCLUSION

In this paper, TLC computation is presented on the ba-
sis of geometric kinematic formula and dynamic trajectory
prediction. It is pointed out that all necessary data can be
easily measured by a video sensor or DGPS, or estimated
by using a model based observer. Parameter effects analysis
show that the choice of one computation approximation for
TLC is conditioned by the driving situation type and road
characteristics. High accuracy measure of vehicle positioning
is also needed particularly in terms of relative yaw angle.
Experimental validation has not clearly highlighted one TLC
computation as the best, but has allowed us to draw aside the
straight road approximation. In fact, this approximation brings
a too large variation in the TLC values and gives us TLC which
are not representative of the situation. This approximation has
been considered to take into account sensors capacity: as a
matter of fact, it is easier to obtain the road profile at the
location of the vehicle rather than in front of the vehicle. Using
the real road profile, the approximation on vehicle trajectory
leads to different results. With a straight vehicle trajectory,
the TLC plot is smooth and presents good characteristics,
but, compared to the curved trajectory, the reaction to driver
correction is delayed. This study represents a first step in
the use of TLC as a driver risk indicator. We have carried
it out using a RTK GPS and an accurate map. In order to
be largely used, the TLC implementation must require more
common sensors, such as camera-based lane detection as well
as cooperative systems or the use of observer based methods.
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Fig. 14. Slow road departure and driver correction scenario. (a)- Vehicle trajectory. (b)- Related TLC variation.
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Fig. 15. Slow road departure and driver correction scenario. (a)- Vehicle trajectory. (b)- Related TLC variation.
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