The Transparent Dead Leaves Model
Bruno Galerne, Yann Gousseau

To cite this version:

HAL Id: hal-00505281
https://hal.archives-ouvertes.fr/hal-00505281v3
Submitted on 6 Sep 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Abstract

This paper introduces the transparent dead leaves (TDL) random field, a new germ-grain model in which the grains are combined according to a transparency principle. Informally, this model may be seen as the superposition of infinitely many semi-transparent objects. It is therefore of interest in view of the modeling of natural images. Properties of this new model are established and a simulation algorithm is proposed. The main contribution of the paper is to establish a central limit theorem, showing that when varying the transparency of the grain from opacity to total transparency, the TDL model ranges from the dead leaves model to a Gaussian random field.

Keywords: Germ-grain model; dead leaves model; transparency; occlusion; image modeling; texture modeling

1 Introduction

This paper deals with the stochastic modeling of physical transparency. The main contribution is the introduction and study of a new germ-grain model in which the grains are combined according to a transparency principle. To the best of our knowledge, this type of interaction between grains has not been studied before. Classical interactions between grains include addition for shot-noise processes [22, 13], union for Boolean models [26, 24], occlusion for dead leaves models [18, 14, 5] or multiplication for compound Poisson cascades [2, 8].

The proposed model, that we call transparent dead leaves (TDL), is obtained from a collection of grains (random closed sets) indexed by time, as for the dead leaves model of G. Matheron. We assume that each grain is given a random gray level (intensity). Informally, the TDL model may be seen as the superposition of transparent objects associated with the grains. When adding a new grain, new values are obtained as a linear combination of former values and the intensity of the added grain, as illustrated in Figure 1. More precisely, the superposition of a transparent grain \(X \) with gray level \(a \) on an image (a function \(f : \mathbb{R}^d \to \mathbb{R} \)) results in a new image \(\tilde{f} \) defined for each \(y \in \mathbb{R}^d \) by:

\[
\tilde{f}(y) = \begin{cases}
\alpha a + (1 - \alpha) f(y) & \text{if } y \in X, \\
\ f(y) & \text{otherwise},
\end{cases}
\]

(1)
The transparency coefficient of the disc is $\alpha = 0.5$.

where $\alpha \in (0,1]$ is a transparency coefficient. The TDL model is defined as the sequential superposition of grains of a marked Poisson point process $\sum i \delta(t_i, x_i, X_i, a_i)$, with $\sum i \delta(t_i, x_i)$ a homogeneous Poisson point process in $(-\infty, 0) \times \mathbb{R}^d$ and X_i, a_i, i.i.d. random sets and random variables respectively. In particular, the value of the TDL at each point results from the superposition of infinitely many semi-transparent objects.

The main motivation to define such a model originates from the modeling of image formation. Indeed, natural images are obtained from the light emitted by physical objects interacting in various ways. In the case of opaque objects, the main interaction is occlusion. That is, objects hide themselves depending on their respective positions with respect to the eye or the camera. A simple stochastic model for occlusion is given by the dead leaves model, which is therefore useful for the modeling of natural images \cite{11, 7}. When objects are transparent, their interaction may be modeled by Formula (1). This is well known in the field of computer graphics, see \cite{9} where the same principle is used for the creation of synthetic scenes. In this case, transparency is a source of heavy computations, especially in cases where objects are numerous (typically of the order of several thousands), e.g. in the case of grass, fur, smoke, fabrics, etc. The transparency phenomenon may also be encountered in other imaging modality where images are obtained through successive reflexion-transmission steps, as in microscopy or ultrasonic imaging. A related non-linear image formation principle is at work in the field of radiography. In such cases, it is useful to rely on accurate stochastic texture models in order to be able to detect abnormal images. The TDL may be an interesting alternative to Gaussian fields that are traditionally used, see e.g. \cite{12, 23}. A last motivation for the TDL is that, as explained in the next paragraph, it is intermediate between the dead leaves model and Gaussian fields, two models that have proven useful for the modeling of natural textures \cite{7, 10}.

In this paper, we first define the TDL in Section 2 and give some elementary properties in Section 3, where we also address the problem of simulating the model and show some realizations. The TDL covariance is then computed in Section 4. Eventually, the main result of the paper is stated and proved in Section 5, namely that the normalized TDLs converge, as the transparency coefficient α tends to zero, to a Gaussian random field having the same covariance function as the shot noise associated with the grain X and with intensity one. Thus the TDLs with varying transparency coefficient α provide us with a family of models ranging from the dead
leaves model to Gaussian fields.

2 Definition of the TDL model

As explained in the introduction, the TDL model is obtained as the superposition of transparent shapes. Formally it is defined from a marked Poisson point process, in a way similar to the dead leaves model [5]. Let F denote the set of closed subsets of \mathbb{R}^d. On the state space

$$S = (-\infty, 0) \times \mathbb{R}^d \times F \times \mathbb{R},$$

equipped with its natural product σ-algebra, we define the point process

$$\Phi = \sum_i \delta(t_i, x_i, X_i, a_i), \quad (2)$$

where

- $\{(t_i, x_i)\}$ is a stationary Poisson point process of intensity 1 in the half space $(-\infty, 0) \times \mathbb{R}^d$,
- $(X_i)_i$ is a sequence of i.i.d. random closed sets (RACS) with distribution P_X which is independent of the other random objects,
- $(a_i)_i$ is a sequence of i.i.d. real random variables with distribution P_a which is also independent of the other random objects.

Equivalently, Φ is a Poisson point process with intensity measure $\mu = \lambda \otimes \nu_d \otimes P_X \otimes P_a$, where λ denotes the restriction of the one-dimensional Lebesgue measure to $(-\infty, 0)$ and ν_d denotes the d-dimensional Lebesgue measure on \mathbb{R}^d.

Each point (t_i, x_i, X_i, a_i) of the Poisson process Φ is called a leaf. Having fixed a transparency coefficient $\alpha \in (0, 1]$, the TDL process f is obtained by sequentially combining the elements of Φ according to Formula (1), which results in the following definition.

\textbf{Definition 1 (Transparent Dead Leaves model).} The Transparent Dead Leaves model with transparency coefficient α associated with the Poisson process Φ defined by Equation (2) is the random field $f : \mathbb{R}^d \to \mathbb{R}$ defined by

$$f(y) = \sum_{i \in \mathbb{N}} \mathbb{1}(y \in x_i + X_i) \alpha a_i (1 - \alpha)^{\sum_{j \in \mathbb{N}} \mathbb{1}(t_j \in (t_i, 0) \text{ and } y \in x_j + X_j)}. \quad (3)$$

Let us justify that Formula (3) agrees with the informal description of the TDL model. According to Equation (1), the impact of the leaf (t_i, x_i, X_i, a_i) is to add αa_i and to attenuate the previous contributions by a factor $(1-\alpha)$. Hence, the contribution of the leaf (t_i, x_i, X_i, a_i) at a point $y \in x_i + X_i$ is αa_i multiplied by $(1-\alpha)$ to the number of leaves fallen on the point y after the leaf (t_i, x_i, X_i, a_i), that is after time $t = t_i$. This number is precisely the exponent of $(1-\alpha)$ in Formula (3):

$$\sum_{j \in \mathbb{N}} \mathbb{1}(t_j \in (t_i, 0) \text{ and } y \in x_j + X_j).$$

3
Remark (Random functional). Denoting by $N(S)$ the set of point processes taking value in the state space S, one remarks that the TDL random field $f(y)$ has the form

$$f(y) = \sum_{(t_i, x_i, X_i, a_i) \in \Phi} g(y, (t_i, x_i, X_i, a_i), \Phi),$$

where $g : \mathbb{R}^d \times S \times N(S) \to \mathbb{R}$ is a measurable function given by Formula (3). Similar random functionals interpreted as the sum of contributions from each point of a (possibly marked) point process $\{x_i\} \subset \mathbb{R}^d$ appear in several contexts in stochastic geometry. In particular, general central limit theorems hold when the intensity of the point process $\{x_i\}$ tends to infinity, see e.g [3, 21]. Note however that our framework is different since the Poisson process has an additional time component t_i, and consequently, there is always an infinite number of leaves (t_i, x_i, X_i, a_i) influencing the value $f(y)$ (as will be clarified by Proposition 3).

Remark (Variable transparency). For the sake of simplicity, the transparency parameter α is assumed to be the same for all objects. However, one may attach a random transparency α_i to every object in Definition 1 and generalize the results of Sections 3 and 4, as will be briefly commented thereafter.

Since the distribution of the Poisson process Φ is invariant under shifts of the form $(t, x, X, a) \mapsto (t, x + y, X, a)$, the TDL f is a strictly stationary random field.

Before establishing further properties of the TDL random field f, let us introduce some notation and specify several assumptions.

Notation: One defines $\beta = 1 - \alpha$ and one denotes by X and a, respectively, a RACS with distribution P_X and a r.v. with distribution P_a which are both independent of all the other random objects. In addition, γ_X denotes the mean geometric covariogram of the RACS X, that is the function defined by $\gamma_X(\tau) = E(\nu_d(X \cap (\tau + X)))$, $\tau \in \mathbb{R}^d$ (we refer to [19, 17] for properties of the mean geometric covariogram).

Assumptions: Throughout the paper, it is assumed that

$$0 < E(\nu_d(X)) < +\infty.$$

This hypothesis ensures that each point $y \in \mathbb{R}^d$ is covered by a countable infinite number of leaves of Φ, whereas the number of leaves falling on y during a finite time interval $[s_1, s_2]$ is a.s. finite. We also assume that $E(a^2) < +\infty$.

3 One-dimensional marginal distribution and simulation of the TDL model

3.1 The Poisson process of the leaves intersecting a set

As one can observe from Equation (3), the only leaves which have a contribution to the sum defining $f(y)$ are the leaves (t_i, x_i, X_i, a_i) such that $y \in x_i + X_i$. When considering the restriction of f to a Borel set G the only leaves of interest are the ones intersecting G, i.e. the leaves (t_i, x_i, X_i, a_i) such that $x_i + X_i \cap G \neq \emptyset$. The next proposition characterizes the distribution of such leaves, a result to be used further in the paper.

We first introduce two notation: if A and B are two Borel sets then $\bar{A} = \{-x : x \in A\}$ and $A \oplus B = \{x + y : x \in A \text{ and } y \in B\}$. Remark that $x + X \cap G \neq \emptyset \iff x \in G \oplus X$.

4
Proposition 2 (The Poisson process of the leaves intersecting a Borel set). Let $G \subset \mathbb{R}^d$ be a Borel set such that $0 < E \left(\nu_d(X \oplus \tilde{G}) \right) < +\infty$ and let Φ be the Poisson process on $S = (-\infty, 0) \times \mathbb{R}^d \times \mathcal{F} \times \mathbb{R}$ with intensity measure $\mu = \lambda \otimes \nu_d \otimes P_X \otimes P_a$. Denote by Φ^G the point process of the leaves of Φ which intersect G, that is

$$\Phi^G = \{(t, x, X, a) \in \Phi : x + X \cap G \neq \emptyset \},$$

and denote by $A^G \subset \mathbb{R}^d \times \mathcal{F}$ the set $A^G = \{(x, X) : x + X \cap G \neq \emptyset \}$. Then Φ^G is a Poisson process on S with intensity measure

$$\mu^G = \lambda \otimes \left(\nu_d \otimes P_X \right)_{\cdot A^G} \otimes P_a.$$

It is an independently marked Poisson process with ground process $\Pi^G = \{t : (t, x, X, a) \in \Phi^G\}$, a homogeneous Poisson process on $(-\infty, 0)$ of intensity $E \left(\nu_d(X \oplus \tilde{G}) \right)$, and with mark distribution

$$\frac{1}{E \left(\nu_d(X \oplus \tilde{G}) \right)} \left(\nu_d \otimes P_X \right)_{\cdot A^G} \otimes P_a.$$

Proof. Φ^G is the restriction of the Poisson process Φ to the measurable set

$$\{(t, x, X, a) \in (-\infty, 0) \times \mathbb{R}^d \times \mathcal{F} \times \mathbb{R} : (x, X) \in A^G\},$$

thus Φ^G is a Poisson process and its intensity measure μ^G is the restriction of μ to the above set. As for the interpretation of Φ^G as an independently marked one-dimensional Poisson process, it is based on the factorization of the intensity measure μ^G (see [1, Section 1.8] or [25, Section 3.5]). Indeed we have

$$0 < \nu_d \otimes P_X \left(A^G \right) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} 1(y \in G \oplus \tilde{Y}) \nu_d(dy)P_X(dY) = E \left(\nu_d(X \oplus \tilde{G}) \right) < +\infty,$$

and thus we can write

$$\mu^G = E \left(\nu_d(X \oplus \tilde{G}) \right) \lambda \otimes \left[\frac{1}{E \left(\nu_d(X \oplus \tilde{G}) \right)} \left(\nu_d \otimes P_X \right)_{\cdot A^G} \otimes P_a \right],$$

where the measure between square brackets is a probability distribution.

3.2 One-dimensional marginal distribution

Proposition 3 (One-dimensional marginal distribution). Let y be a point in \mathbb{R}^d. Then there exists a sequence $\left(a(y, k) \right)_{k \in \mathbb{N}}$ of i.i.d. r.v. with distribution P_a such that

$$f(y) = \alpha \sum_{k=0}^{+\infty} a(y, k) \beta^k.$$

In particular we have $E(f(y)) = E(a)$ and $\text{Var}(f(y)) = \frac{\alpha}{2 - \alpha} \text{Var}(a)$.

Informally, $a(y, k)$ is the color of the $(k + 1)$-th leaf falling on y. $(a(y, k))_{k \in \mathbb{N}}$ is thus an ordered subfamily of the r.v. $(a_i)_{i \in \mathbb{N}}$ which depends on y.

5
Proof. According to Proposition 2 the point process \(\Phi^y \) of the leaves which cover \(y \) is an independently marked Poisson process, the ground process of which is a Poisson process on \((\mathbb{R}, 0)\) with intensity \(0 < \mathbb{E}(\nu_d(X)) < +\infty \). Hence the falling times of the leaves of \(\Phi^y \) are a.s. distinct and we can number (in a measurable way [25]) the leaves
\[
(t(y, k), x(y, k), X(y, k), a(y, k)), \ k \in \mathbb{N},
\]
according to an anti-chronological order:
\[
0 > t(y, 0) > t(y, 1) > t(y, 2) > \ldots
\]
Proposition 2 also gives the distribution of the marks \((x(y, k), X(y, k), a(y, k))\), and in particular it shows that the r.v. \(a(y, k), k \in \mathbb{N} \) are i.i.d. with distribution \(\mathbb{P}a \). As already mentioned, the only leaves involved in the sum which defines \(f(y) \) are the leaves of \(\Phi^y \). Besides, using the above numbering we have for all \(k \in \mathbb{N} \)
\[
\sum_{(t_j, x_j, X_j, a_j) \in \Phi} 1 \ (t_j \in (t(y, k), 0) \text{ and } y \in x_j + X_j) = k.
\]
Hence Equation (3) becomes
\[
f(y) = \alpha \sum_{k=0}^{+\infty} a(y, k) \beta^k,
\]
and the result follows.

\[\square\]

Remark (Influence of the transparency coefficient \(\alpha \)). Let us write \(f_\alpha \) for the TDL model with transparency coefficient \(\alpha \in (0, 1] \). Proposition 3 shows that the expectation of \(f_\alpha \) does not depend on \(\alpha \). In contrast, the variance \(\text{Var}(f_\alpha(y)) = \frac{\alpha}{2 - \alpha} \text{Var}(\alpha) \) decreases as \(\alpha \) decreases. Besides, \(\text{Var}(f_\alpha(y)) \) tends to 0 as \(\alpha \) tends to 0 (recall that the model is not defined for \(\alpha = 0 \)). However, a central limit theorem for random geometric series [6] shows that for all \(y \in \mathbb{R}^d \) the family of r.v.
\[
\left(\frac{f_\alpha(y) - \mathbb{E}(f_\alpha)}{\sqrt{\text{Var}(f_\alpha)}} \right)_\alpha
\]
converges in distribution to a standard normal distribution as \(\alpha \) tends to 0. This pointwise convergence result will be extended in Section 5, where it will be shown that the family of normalized random fields
\[
\left(y \mapsto \frac{f_\alpha(y) - \mathbb{E}(f_\alpha)}{\sqrt{\text{Var}(f_\alpha)}} \right)_\alpha
\]
converges in the sense of finite-dimensional distributions.

3.3 Simulation of the TDL model

In this section we draw on Proposition 3 to obtain a simulation algorithm for the restriction of the TDL model \(f \) to a finite set \(U \subset \mathbb{R}^d \) (e.g. a finite grid of pixels). The algorithm is based on a coupling from the past procedure, as the algorithm developed by Kendall and Thömmes [15] for simulating the dead leaves model (see also [14, 17]). This algorithm consists in sequentially superimposing transparent random objects but, contrary to the forward procedure described by Equation (1), each new object is placed below the former objects. In the case of the dead leaves model, this yields a perfect simulation algorithm. For the TDL model \(f \), simulation is not perfect since the values \(f(y) \) are the limits of convergent series. Nevertheless, supposing that the intensities
are bounded, we propose for any precision \(\varepsilon > 0 \) an algorithm which produces an approximation \(\bar{f} \) of \(f \). This approximation satisfies
\[
\mathbb{P} \left(\sup_{y \in U} |f(y) - \bar{f}(y)| \leq \varepsilon \right) = 1
\]
therefore providing a kind of perfect simulation with precision \(\varepsilon > 0 \).

In the remaining of this section we suppose that the colors \(a_i \) are a.s. bounded by \(A > 0 \). The control of the precision is based on the following elementary lemma.

Lemma 4 (Precision associated with the leaves layer). Let \(y \in \mathbb{R}^d \) and let
\[
\bar{f}_n(y) = \alpha \sum_{k=0}^{n-1} a(y,k) \beta^k
\]
be the restriction of the sum defining \(f(y) \) to the \(n \) latest leaves which have fallen on \(y \). Then
\[
|f(y) - \bar{f}_n(y)| \leq A \beta^n.
\]

Lemma 4 shows that to approximate \(f(y) \) with a tolerance \(\varepsilon > 0 \) it is enough to cover the point \(y \) with (at least) \(N(\varepsilon) \) leaves, where \(N(\varepsilon) \) is the smallest integer \(n \) such that \(A \beta^n \leq \varepsilon \), that is \(N(\varepsilon) = \left\lceil \frac{\log(\varepsilon / A)}{\log(\beta)} \right\rceil \). The following simulation algorithm relies on this observation.

Algorithm 1 (Simulation of the TDL model with tolerance \(\varepsilon > 0 \)). Let \(U \subset \mathbb{R}^d \) be a finite set. Given a precision \(\varepsilon > 0 \), an approximation \(\bar{f} \) of the TDL model \(f \) is computed by controlling the number of leaves \(L \) at each point:

- **Initialization:** For all \(y \in U \), \(f(y) \leftarrow 0 \); \(L(y) \leftarrow 0 \);
- **Computation of the required number of leaves:** \(N(\varepsilon) = \left\lceil \frac{\log(\varepsilon / A)}{\log(\beta)} \right\rceil ; \)
- **Iteration:** While \(\inf_{y \in U} L(y) < N(\varepsilon) \) add a new leaf:
 1. Draw a leaf \((x,X,a)\) hitting \(U \):
 (a) Draw \(X \sim P_X \);
 (b) Draw \(x \) uniformly in \(U \oplus \hat{X} \);
 (c) Draw \(a \sim P_a \);
 2. Add the leaf \((x,X,a)\) to \(\bar{f} \): for all \(y \in U \), \(\bar{f}(y) \leftarrow \bar{f}(y) + \mathbb{1}(y \in x + X) a a \beta^L(y) ; \)
 3. Update the leaves layer \(L \): for all \(y \in U \), \(L(y) \leftarrow L(y) + \mathbb{1}(y \in x + X) ; \)

Clearly Algorithm 1 a.s. terminates if every point of \(U \) is covered by \(N(\varepsilon) \) leaves in an a.s. finite time. This is always the case since \(U \) is a finite set and \(\mathbb{E}(\nu_d(X)) > 0 \).

Several realizations of some TDL models are represented in Figure 2. Remark that as soon as \(\alpha < 1 \), the TDL random field is not piecewise constant: any region is intersected by the boundaries of some leaves, producing discontinuities.
Figure 2: TDL realizations with various transparency coefficients α. The RACS X_i are all obtained from the original shape 2(a) by applying a rotation of angle $\theta \sim \text{Unif}(0, 2\pi)$ and a homothety of factor $r \sim \text{Unif}(0, 1)$, and $P_a = \text{Unif}(0, 255)$. For $\alpha = 1$, one obtains a colored dead leaves model. As soon as the leaves are transparent ($\alpha < 1$), one can distinguish several layers of leaves and not only the leaves on top. For $\alpha = 0.05$, the variance of the TDL model is nearly 0 (see Proposition 3). Enhancing the contrast of the image reveals the structure of the image (see 2(f)).

4 Covariance of the TDL model

This section is devoted to the computation of the covariance of the TDL. A classical way to achieve this would be to use Palm calculus, leading to relatively heavy computations in this case. Instead, we chose an alternative way relying on some memoryless property of the TDL, as explained below.

The following proposition is an extension of the fact that if $0 > t_0 > t_1 > t_2 > \ldots$ is a homogeneous Poisson process on $(-\infty, 0)$ then the shifted process $0 > t_1 - t_0 > t_2 - t_0 > t_3 - t_0 > \ldots$ is also a Poisson process with the same distribution [16, Chapter 4].

Proposition 5 (Last hitting leaf and the Poisson process preceding the last hit). Let F be a locally compact topological space with a countable base [25]. Let Ψ be a Poisson process in $(-\infty, 0) \times F$ with intensity measure of the form $\lambda \otimes \eta$ where λ is the one-dimensional Lebesgue measure on $(-\infty, 0)$ and η is a measure on F. Let $A \subset F$ be an η-measurable set satisfying $0 < \eta(A) < +\infty$. Define

$$t_0 = \sup \{ t_i \mid (t_i, y_i) \in \Psi \cap ((-\infty, 0) \times A) \},$$

y_0 the a.s. unique $y \in F$ such that $(t_0, y) \in \Psi \cap ((-\infty, 0) \times A)$, and

$$\Psi_{t_0} = \sum_{(t_i, y_i) \in \Psi} \mathbb{1}(t_i < t_0) \delta_{(t_i - t_0, y_i)}.$$

Then
• \(t_0, y_0, \) and \(\Psi_{t_0}\) are mutually independent,
• \(-t_0\) has an exponential distribution with parameter \(\eta(A)\),
• \(y_0\) has distribution \(Q_A\) defined for all \(B \in \mathcal{B}(F)\) by \(Q_A(B) = \frac{\eta(B \cap A)}{\eta(A)}\),
• \(\Psi_{t_0}\) is a Poisson process with intensity measure \(\lambda \otimes \eta\), i.e. \(\Psi_{t_0}\) has the same distribution as \(\Psi\).

Proposition 5 will be applied below to the Poisson process \(\Phi\) of the colored leaves to compute some statistics of the TDL model \(f\). As a first example, let us reobtain the expectation of \(f\) by using Proposition 5. Let \(y \in \mathbb{R}^d\) and let us denote by \((t_0, x_0, X_0, a_0)\) the leaf which hits \(y\) at the maximal time \(t_0\). Then one can decompose \(f(y)\) into

\[
f(y) = \alpha a_0 + \beta f_{t_0}(y),
\]

where \(f_{t_0}\) is the TDL model associated with the time-shifted point process \(\Phi_{t_0}\) and, as before, \(\beta = 1 - \alpha\). According to Proposition 5, \(a_0\) has distribution \(P_0\) and both point processes \(\Phi\) and \(\Phi_{t_0}\) have the same distribution. Consequently, \(f(y)\) and \(f_{t_0}(y)\) also have the same distribution, and in particular the same expectation. Hence, the above decomposition of \(f(y)\) leads to the equation

\[
\mathbb{E}(f(y)) = \alpha \mathbb{E}(a) + \beta \mathbb{E}(f(y)) ,
\]

which gives \(\mathbb{E}(f(y)) = \mathbb{E}(a)\), in accordance with Proposition 3.

The very same method is used below to compute the covariance of \(f\). This method will also be applied in Section 5.3 to derive a technical result useful for the central limit theorem of Section 5.

We recall that \(\gamma_X(\tau) = \mathbb{E}(\nu_d(X \cap (\tau + X)))\) is the mean coviagram of \(X\). In addition, one denotes the covariance of \(f\) by

\[
\text{Cov}(f)(\tau) = \text{Cov}(f(y), f(y + \tau)) = \mathbb{E}((f(y) - \mathbb{E}(a))(f(y + \tau) - \mathbb{E}(a))).
\]

Proposition 6 (Covariance of the TDL model). The TDL model \(f\) is a square-integrable stationary random field and its covariance is given by

\[
\text{Cov}(f)(\tau) = \frac{\alpha \gamma_X(\tau)}{2\mathbb{E}(\nu_d(X))} \mathbb{E}(a) \text{ Var}(a), \ \tau \in \mathbb{R}^d.
\]

Proof. Let \(y\) and \(z\) be such that \(z - y = \tau\) and write \(m = \mathbb{E}(a) = \mathbb{E}(f)\) as a shorthand notation. We have to compute \(\text{Cov}(f)(\tau) = \mathbb{E}((f(y) - m)(f(z) - m))\).

Denote by \((t_0, x_0, X_0, a_0)\) the last leaf which hits \(y\) or \(z\) at the maximal time \(t_0\), and let \(\Phi_{t_0}\) be the corresponding time-shifted Poisson process. According to Proposition 5, \((x_0, X_0, a_0)\) is independent of \(\Phi_{t_0}\). In addition \(\Phi_{t_0} \underset{d}{=} \Phi\), and consequently, noting \(f_{t_0}\) the TDL associated with \(\Phi_{t_0}\), \((f_{t_0}(y), f_{t_0}(z)) \underset{d}{=} (f(y), f(z))\). Proposition 5 also shows that \(a_0\) has distribution \(P_0\). As for the distribution of \((x_0, X_0)\), a straightforward computation shows that

\[
\nu_d \otimes P_X \left(\{(x, X), \{y, z\} \cap x + X \neq \emptyset\}\right) = \mathbb{E}(\nu_d(X \otimes \{-y, -z\})) = 2\gamma_X(0) - \gamma_X(\tau)
\]

and

\[
\nu_d \otimes P_X \left(\{(x, X), \{y, z\} \subset x + X\}\right) = \mathbb{E}(\nu_d(-y + X \cap -z + X)) = \gamma_X(\tau).
\]
Hence we have
\[\mathbb{P}\left(\{y, z\} \subset x_0 + X_0\right) = \frac{v_d \otimes P_X\left(\{(x, X), \{y, z\} \subset x + X\}\right)}{v_d \otimes P_X\left(\{(x, X), \{y, z\} \cap x + X \neq \emptyset\}\right)} = \frac{\gamma_X(\tau)}{2\gamma_X(0) - \gamma_X(\tau)}, \]
and by symmetry
\[\mathbb{P}(y \in x_0 + X_0 \text{ and } z \notin x_0 + X_0) = \mathbb{P}(z \in x_0 + X_0 \text{ and } y \notin x_0 + X_0) = \frac{\gamma_X(0) - \gamma_X(\tau)}{2\gamma_X(0) - \gamma_X(\tau)}. \]

In conditioning with respect to the coverage of the last leaf \((l_0, x_0, X_0, a_0)\) we have
\[E((f(y) - m)(f(z) - m)) = E((f(y) - m)(f(z) - m) | \{y, z\} \subset x_0 + X_0) \frac{\gamma_X(\tau)}{2\gamma_X(0) - \gamma_X(\tau)} + E((f(y) - m)(f(z) - m) | y \in x_0 + X_0 \text{ and } z \notin x_0 + X_0) \frac{\gamma_X(0) - \gamma_X(\tau)}{2\gamma_X(0) - \gamma_X(\tau)} + E((f(y) - m)(f(z) - m) | z \in x_0 + X_0 \text{ and } y \notin x_0 + X_0) \frac{\gamma_X(0) - \gamma_X(\tau)}{2\gamma_X(0) - \gamma_X(\tau)}. \]

By symmetry it is clear that the two last terms of the above sum are equal. On the event \(\{y, z\} \subset x_0 + X_0\) we have
\[f(y) - m = \alpha(a_0 - m) + \beta(f_{l_0}(y) - m) \quad \text{and} \quad f(z) - m = \alpha(a_0 - m) + \beta(f_{l_0}(z) - m), \]
so that
\[(f(y) - m)(f(z) - m) = \alpha^2(a_0 - m)^2 + \beta^2(f_{l_0}(y) - m)(f_{l_0}(z) - m) + \alpha\beta(a_0 - m)((f_{l_0}(y) - m) + (f_{l_0}(z) - m)). \]

By Proposition 5, \(a_0, (x_0, X_0), \text{ and } (f_{l_0}(y), f_{l_0}(z))\) are mutually independent, hence
\[E((f(y) - m)(f(z) - m) | \{y, z\} \subset x_0 + X_0) = \alpha^2E((a_0 - m)^2) + \beta^2E((f_{l_0}(y) - m)(f_{l_0}(z) - m)) + \alpha\betaE(a_0 - m)^2 + \alpha\betaE((f_{l_0}(y) - m) + (f_{l_0}(z) - m)). \]

On the event \(\{y \in x_0 + X_0 \text{ and } z \notin x_0 + X_0\}\) we have
\[f(y) - m = \alpha(a_0 - m) + \beta(f_{l_0}(y) - m) \quad \text{and} \quad f(z) - m = f_{l_0}(z) - m. \]

Hence, by the same arguments,
\[E((f(y) - m)(f(z) - m) | y \in x_0 + X_0 \text{ and } z \notin x_0 + X_0) = \betaE(f(y), f(z)). \]
Replacing the terms in the decomposition of \(E((f(y) - m)(f(z) - m))\) leads to an equation involving the covariance \(\text{Cov}(f(y), f(z))\), the values \(\gamma_X(0)\) and \(\gamma_X(\tau)\) of the mean covariogram of \(X\), and the variance \(\text{Var}(a)\). Simplifying this equation one obtains the enunciated formula. \(\square\)

Remark (Variable transparency and second-order property). The technique used in this section enables us to generalize second-order formulas to the case where the transparency parameter \(\alpha\) is assumed to be different for each object, that is, when it is
assumed that each object X_i is assigned a transparency α_i distributed as a random variable α and independent of other objects. First, it is straightforward to show that in this case we still have $E(f(y)) = E(a)$. Then, a simple application of Formula (4) yields $\text{Var} f(y) = E(\alpha^2) \text{Var}(a)(2E(\alpha) - E(\alpha^2))^{-1}$. Observe that a direct computation starting from the definition of f would be much more arduous. Eventually, applying the same technique, one can show that the covariance of the model with variable transparency satisfies, for $\tau \in \mathbb{R}^d$,

$$\text{Cov}(f)(\tau) = \frac{E(\alpha^2) \gamma_X(\tau)}{2E(\alpha)E(\nu_d(X)) - E(\alpha^2)\gamma_X(\tau)} \text{Var}(a).$$

5 Gaussian convergence as the objects tend to be fully transparent

Recall that the TDL model with transparency coefficient α is denoted f_α.

Theorem 7 (Normal convergence of the TDL model). Suppose that $\text{Var}(a) > 0$. Then, as the transparency coefficient α tends to zero, the family of random fields $\left(\frac{f_\alpha - E(f_\alpha)}{\sqrt{\text{Var}(f_\alpha)}}\right)_{\alpha}$ converges in the sense of finite-dimensional distributions to a stationary Gaussian random field with covariance function

$$C(\tau) = \frac{\gamma_X(\tau)}{E(\nu_d(X))} = \frac{\gamma_X(\tau)}{\gamma_X(0)}.$$

Before proving Theorem 7 let us illustrate the normal convergence of the normalized family of r.v. $\left(\frac{f_\alpha - E(f_\alpha)}{\sqrt{\text{Var}(f_\alpha)}}\right)_{\alpha}$ with Figure 3. The five first images of Figure 3 are normalized TDL realizations obtained from the same random colored leaves but with various transparency coefficients α. The last image is a realization of the limit Gaussian random field given by Theorem 7. Observe that this Gaussian field is also the limit of the normalized shot noise associated with X when the intensity of germs tends to infinity [13].

The remaining of this section is devoted to the proof of Theorem 7. The proof consists in showing that the finite moments of the normalized TDL random fields converge to the corresponding moments of the limit Gaussian r.f. As for the computation of the covariance (see Section 4), this convergence is established by conditioning with respect to the coverage of the last leaf hitting the considered set of points (see below for details).

5.1 Some classical results of probability theory

This section gathers two classical theoretical results needed to prove Theorem 7.

5.1.1 Moments and convergence in distribution

Proposition 8 (Moments and convergence in distribution). Let (f_n) be a sequence of r.f. having finite moments of all order and let f_G be a Gaussian r.f. If for all $p \in \mathbb{N}$,
Figure 3: From colored dead leaves to Gaussian random fields: Visual illustration of the normal convergence of the normalized TDL random fields
\[
\left(\frac{f_\alpha - \mathbb{E}(f_\alpha)}{\sqrt{\text{Var}(f_\alpha)}} \right)_\alpha
\]
(see Theorem 7). As \(\alpha \) decreases to 0 the normalized TDL realizations look more and more similar to the Gaussian texture 3(f).
for all (not necessarily distinct) \(y_1, \ldots, y_p \in \mathbb{R}^d \),

\[
\lim_{n \to +\infty} E \left(\prod_{j=1}^{p} f_n(y_j) \right) = E \left(\prod_{j=1}^{p} f_G(y_j) \right),
\]

then \((f_n)\) converges to \(f_G\) in the sense of finite-dimensional distributions.

5.1.2 A Recurrence relation for the moments of a multivariate normal distribution

Explicit expressions for the moments of a multivariate normal distribution are given by Isserlis' theorem that is recalled below (see e.g. [20] and the references therein).

Theorem 9 (Isserlis' theorem). Let \(Y_1, \ldots, Y_{2N+1}, N \geq 1 \), be normalized (i.e. \(E(Y_i) = 0 \) and \(\text{Var}(Y_i) = E(Y_i^2) = 1 \)), jointly Gaussian r.v. Then

\[
E(Y_1Y_2 \ldots Y_{2N}) = \sum \prod E(Y_i Y_j) = \sum \prod \text{Cov}(Y_i, Y_j),
\]

and

\[
E(Y_1Y_2 \ldots Y_{2N+1}) = 0,
\]

where the notation \(\sum \prod \) means summation over all distinct ways of partitioning the set \(\{Y_1, \ldots, Y_{2N}\} \) into \(N \) pairs \(\{Y_i, Y_j\} \) and taking the product of the \(N \) terms \(E(Y_i Y_j) = \text{Cov}(Y_i, Y_j) \).

From Isserlis' theorem one deduces a recurrence relation for the moments of a multivariate normal distribution.

Proposition 10 (A recurrence relation for the moments of a multivariate normal distribution). Let \(Y = (Y_1, \ldots, Y_p) \), \(p \geq 2 \), be a normalized Gaussian vector. Then,

\[
E \left(\prod_{j=1}^{p} Y_j \right) = \frac{2}{p} \sum_{\{j,k\} \subseteq \{1, \ldots, p\}} \text{Cov}(Y_j, Y_k) E \left(\prod_{l \in \{1, \ldots, p\} \setminus \{j,k\}} Y_l \right).
\]

Proof. If \(p \geq 2 \) is odd, then by Isserlis' theorem the above formula is trivial. Hence, in the following we suppose that \(p \) is even. First let \(j \in \{1, \ldots, p\} \). Factorizing with all the pairs containing \(j \) in Isserlis' identity, one obtains

\[
E \left(\prod_{j=1}^{p} Y_j \right) = \sum_{k=1}^{p} \sum_{k \neq j} \text{Cov}(Y_j, Y_k) E \left(\prod_{l \in \{1, \ldots, p\} \setminus \{j,k\}} Y_l \right).
\]

The above identity is valid for all \(j \in \{1, \ldots, p\} \). Summing these \(p \) identities gives

\[
E \left(\prod_{j=1}^{p} Y_j \right) = \frac{1}{p} \sum_{j=1}^{p} \sum_{k=1}^{p} \sum_{k \neq j} \text{Cov}(Y_j, Y_k) E \left(\prod_{l \in \{1, \ldots, p\} \setminus \{j,k\}} Y_l \right).
\]

Now remark that in this double sum over \((j, k) \), the terms \(\text{Cov}(Y_j, Y_k) E \left(\prod_l Y_l \right) \) only depend on the pair \(\{j, k\} \) but not on the order. Hence, the above expression simplifies to

\[
E \left(\prod_{j=1}^{p} Y_j \right) = \frac{2}{p} \sum_{\{j,k\} \subseteq \{1, \ldots, p\}} \text{Cov}(Y_j, Y_k) E \left(\prod_{l \in \{1, \ldots, p\} \setminus \{j,k\}} Y_l \right).
\]
5.2 Notation and plan of the proof of Theorem 7

Let s be a real number such that $0 < s < \frac{1}{6}$ (this choice for s will become clear later). For all $\alpha \in (0, 1]$, one defines the truncation operator

$$T_\alpha(b) = \begin{cases}
 b & \text{if } b \in [-\alpha^{-s}, \alpha^{-s}], \\
 \alpha^{-s} & \text{if } b > \alpha^{-s}, \\
 -\alpha^{-s} & \text{if } b < -\alpha^{-s}.
\end{cases}$$

For all $\alpha \in (0, 1]$, f_α denotes the TDL model with transparency coefficient α and $g_\alpha(y) = f_\alpha(y) - \mathbb{E}(a) \sqrt{\text{Var}(f_\alpha)}$ denotes its normalization. For all $\alpha \in (0, 1]$, f^T_α denotes the TDL model with transparency coefficient α associated with the Poisson process

$$\Phi^T = \{(t_i, x_i, X_i, T_\alpha(a_i)), (t_i, x_i, X_i, a_i) \in \Phi\},$$

that is the TDL model obtained by truncating the colors a_i of the leaves of Φ. We have

$$\mathbb{E}(f^T_\alpha) = \mathbb{E}(T_\alpha(a)) \quad \text{and} \quad \text{Var}(f^T_\alpha) = \frac{\alpha}{2 - \alpha} \text{Var}(T_\alpha(a)).$$

As for the TDL f_α, one defines

$$g^T_\alpha(y) = \frac{f^T_\alpha(y) - \mathbb{E}(T_\alpha(a))}{\sqrt{\text{Var}(f^T_\alpha)}}.$$

Thanks to the truncation, f^T_α is bounded by α^{-s}. In particular, for all $\alpha \in (0, 1]$, f^T_α and g^T_α have finite moments of all order.

We will denote by f_G a centered stationary Gaussian random field with covariance function $C : \tau \mapsto \frac{\gamma_X(\tau)}{\sqrt{\lambda_X(\tau)}}$.

The proof of Theorem 7 is divided into two parts:

1. One shows that the normalized TDL with truncated colors g^T_α converges in distribution to f_G by the method of moments. More precisely the sufficient condition of Proposition 8 will be shown to be true by induction on the number of points p.

2. One shows that the family $g_\alpha - g^T_\alpha$ converges to 0 in L^2.

By Slutsky’s theorem (see e.g. [4]), these two properties ensure that g_α converges in distribution to f_G.

5.3 Normal convergence of the normalized TDL having truncated colors

With the above notation, by Proposition 8, it is enough to show the following lemma.

Lemma 11 (Convergence of Moments). For all $p \in \mathbb{N}$, for all (not necessarily distinct) $y_1, \ldots, y_p \in \mathbb{R}^d$,

$$\lim_{\alpha \to 0} \mathbb{E} \left(\prod_{j=1}^p g^T_\alpha(y_j) \right) = \mathbb{E} \left(\prod_{j=1}^p f_G(y_j) \right).$$

14
We will show this lemma by induction on \(p \). First note that, by definition of \(g^T_\alpha(y_j) \), the statement is true for \(p = 0 \) and \(p = 1 \).

For the proof by induction we now consider an integer \(p \geq 2 \) and \(p \) points \(y_1, \ldots, y_p \) of \(\mathbb{R}^d \), and we suppose that the convergence of moments holds for all moments of order \(k < p \).

5.3.1 Decomposition of the multivariate characteristic function by conditioning with respect to the coverage of the last hitting leaf

We consider the random vector

\[
\begin{pmatrix}
g^T_\alpha(y_1), & \ldots, & g^T_\alpha(y_p)
\end{pmatrix} = \left(\frac{f^T_\alpha(y_1) - \mathbb{E}(T_\alpha(a))}{\sigma^T_\alpha}, \ldots, \frac{f^T_\alpha(y_p) - \mathbb{E}(T_\alpha(a))}{\sigma^T_\alpha} \right),
\]

where \(\sigma^T_\alpha = \sqrt{\text{Var}(f^T_\alpha)} \). We denote by \(\phi_\alpha(t_1, \ldots, t_p) \) the multivariate characteristic function of this random vector, that is

\[
\phi_\alpha(t_1, \ldots, t_p) = \mathbb{E} \left(e^{i(t_1 g^T_\alpha(y_1) + \cdots + t_p g^T_\alpha(y_p))} \right).
\]

One denotes by \(\psi_\alpha \) the characteristic function of the random variable \(T_\alpha(a) - \mathbb{E}(T_\alpha(a)) \), where \(a \) follows the color distribution \(P_\alpha \), that is

\[
\psi_\alpha(t) = \mathbb{E} \left(e^{it(T_\alpha(a) - \mathbb{E}(T_\alpha(a)))} \right).
\]

In addition, we introduce the shorthand notation \(\mathcal{Y} \) for the set \(\mathcal{Y} = \{ y_1, \ldots, y_p \} \).

In what follows we apply Proposition 5 in considering the leaves of \(\Phi^T \) which hit the set \(\mathcal{Y} \). Hence let \((t_0, x_0, \mathcal{X}_0, T_\alpha(a_0)) \) denote the last leaf covering at least one point of \(\mathcal{Y} \), and denote by \(g^T_{\alpha,t_0} \) the corresponding time-shifted random field. Then for all \(y_j \in \mathcal{Y} \), one has the decomposition

\[
g^T_\alpha(y_j) = \begin{cases}
\alpha \frac{T_\alpha(a_0) - \mathbb{E}(T_\alpha(a))}{\sigma^T_\alpha} + \beta g^T_{\alpha,t_0}(y_j) & \text{if } y_j \in x_0 + \mathcal{X}_0, \\
\alpha g^T_{\alpha,t_0}(y_j) & \text{otherwise},
\end{cases}
\]

which can also be written as follows

\[
g^T_\alpha(y_j) = \alpha 1(y_j \in x_0 + \mathcal{X}_0) \frac{\alpha T_\alpha(a_0) - \mathbb{E}(T_\alpha(a))}{\sigma^T_\alpha} + \beta 1(y_j \in x_0 + \mathcal{X}_0) g^T_{\alpha,t_0}(y_j).
\]

Besides, by Proposition 5, \(g^T_{\alpha,t_0} \), \((x_0, \mathcal{X}_0) \) and \(a_0 \) are mutually independent.

To obtain a decomposition of the characteristic function \(\phi_\alpha \) we will condition with respect to the coverage of the last leaf \(x_0 + \mathcal{X}_0 \). Hence, for all subsets \(\mathcal{X} \subset \mathcal{Y} \), \(\mathcal{X} \neq \emptyset \), let us denote by \(A_\mathcal{X} \subset \Omega \) the event

\[
A_\mathcal{X} = \{(x_0 + \mathcal{X}_0) \cap \mathcal{Y} = \mathcal{X}\}
\]

and

\[
p_\mathcal{X} = \mathbb{P}(A_\mathcal{X}).
\]

The events \(A_\mathcal{X}, \mathcal{X} \neq \emptyset \), form a partition of the probability space \(\Omega \), and in particular

\[
\sum_{\mathcal{X} \subset \mathcal{Y}, \mathcal{X} \neq \emptyset} p_\mathcal{X} = 1.
\]

15
Remark that on the event A_X, the above decomposition of $g^T_\alpha(y_j)$ becomes
$$g^T_\alpha(y_j) = \alpha \mathbb{1}(y_j \in X) \frac{T_\alpha(a_0) - E(T_\alpha(a))}{\sigma^2_\alpha} + \beta^1(y_j \in X) g^{T}_{\alpha,T_\alpha}(y_j).$$
Hence, using the mutual independence of the different random variables,
$$\phi_\alpha(t_1, \ldots, t_p) = E \left(e^{(t_1 g_\alpha^2(y_1) + \cdots + t_p g_\alpha^2(y_p))} \right) = \sum_{X \subset Y, X \neq \emptyset} E \left(e^{(t_1 g_\alpha^2(y_1) + \cdots + t_p g_\alpha^2(y_p))} \big| A_X \right) \mathbb{P}_X$$
$$= \sum_{X \subset Y, X \neq \emptyset} \psi_\alpha \left(\frac{\alpha}{\sigma^2_\alpha} \sum_{j=1}^p \mathbb{1}(y_j \in X)t_j \right) \phi_\alpha \left(\beta^1(y_1 \in X)t_1, \ldots, \beta^1(y_p \in X)t_p \right) \mathbb{P}_X. \quad \text{(6)}$$

The next step of the proof consists in differentiating the above decomposition of the multivariate characteristic function in order to obtain a recurrence relation for the moments of $(g^T_\alpha(y_1), \ldots, g^T_\alpha(y_p))$.

5.3.2 A Recurrence relation for the moments of g^T_α

We compute below the partial derivative $\frac{\partial^p \phi_\alpha}{\partial t_1 \cdots \partial t_p}(t_1, \ldots, t_p)$ of the characteristic function ϕ_α to obtain an expression for the moment $E \left(\prod_{j=1}^p g^T_\alpha(y_j) \right)$. Starting from Equation (6), to compute $\frac{\partial^p \phi_\alpha}{\partial t_1 \cdots \partial t_p}(t_1, \ldots, t_p)$ one needs to differentiate with respect to each variable t_j the functions of the form
$$F_X(t_1, \ldots, t_p) = \psi_\alpha \left(\frac{\alpha}{\sigma^2_\alpha} \sum_{j=1}^p \mathbb{1}(y_j \in X)t_j \right) \phi_\alpha \left(\beta^1(y_1 \in X)t_1, \ldots, \beta^1(y_p \in X)t_p \right).$$
First let us introduce some notation. In what follows, for every subset $I = \{i_1, \ldots, i_k\} \subset \{1, \ldots, p\}$, we write $\#I = k$ for the cardinality of I, and
$$\frac{\partial^k f}{\partial t_I}(t_1, \ldots, t_p) = \frac{\partial^k f}{\partial t_{i_1} \partial t_{i_2} \cdots \partial t_{i_k}}(t_1, \ldots, t_p).$$
Besides, I^c denotes the complementary set of indices $I^c = \{1, \ldots, p\} \setminus I$. With these notation,
$$\frac{\partial^p F_X}{\partial t_1 \cdots \partial t_p}(t_1, \ldots, t_p)$$
$$= \sum_{k=0}^p \sum_{\#I = k, I \subset \{1, \ldots, p\}} \frac{\partial^k}{\partial t_I} \left[\psi_\alpha \left(\frac{\alpha}{\sigma^2_\alpha} \sum_{j=1}^p \mathbb{1}(y_j \in X)t_j \right) \right] \frac{\partial^{p-k}}{\partial t_{I^c}} \left[\phi_\alpha \left(\beta^1(y_1 \in X)t_1, \ldots, \beta^1(y_p \in X)t_p \right) \right]$$
$$= \sum_{k=0}^p \left(\frac{\alpha}{\sigma^2_\alpha} \right)^k \sum_{\#I = k, I \subset \{1, \ldots, p\}} \left(\prod_{y \in I} \mathbb{1}(y \in X) \right) \psi^{(k)}_\alpha \left(\frac{\alpha}{\sigma^2_\alpha} \sum_{j=1}^p \mathbb{1}(y_j \in X)t_j \right) \phi_\alpha \left(\beta^1(y_1 \in X)t_1, \ldots, \beta^1(y_p \in X)t_p \right).$$
Summing over all subsets \(\mathcal{X} \), one has the identity

\[
\frac{\partial^p \phi_\alpha}{\partial t_1 \ldots \partial t_p} (t_1, \ldots, t_p) = \sum_{k=0}^{p} \left(\frac{\alpha}{\sigma^2} \right)^k \sum_{I \subset \{1, \ldots, p\}} \sum_{\mathcal{X} \subset \mathcal{Y}} \left(\prod_{i \in I} \mathbb{1}(y_i \in \mathcal{X}) \right) \psi^{(k)}_\alpha \left(\frac{\alpha}{\sigma^2} \sum_{j=1}^{p} \mathbb{1}(y_j \in \mathcal{X}) t_j \right) \left(\prod_{i \in \mathcal{X}^c} \beta^{1(y_i \in \mathcal{X})} \right) \frac{\partial^{p-k}}{\partial t_1 \ldots \partial t_k} \phi_\alpha (0, \ldots, 0, \mathcal{X}).
\]

Evaluating at \((t_1, \ldots, t_p) = (0, \ldots, 0)\), this gives

\[
\frac{\partial^p \phi_\alpha}{\partial t_1 \ldots \partial t_p} (0, \ldots, 0) = \sum_{k=0}^{p} \left(\frac{\alpha}{\sigma^2} \right)^k \psi^{(k)}_\alpha (0) \left(\prod_{i \in \mathcal{X}^c} \beta^{1(y_i \in \mathcal{X})} \right) \frac{\partial^{p-k}}{\partial t_1 \ldots \partial t_k} \phi_\alpha (0, \ldots, 0, \mathcal{X}).
\]

In the above sum, remark that for \(k = 0, \mathcal{I} = \emptyset \) and thus all the terms are proportional to \(\frac{\partial^p \phi_\alpha}{\partial t_1 \ldots \partial t_p} (0, \ldots, 0) \). Besides, since \(T_\alpha (a) - \mathbb{E} T_\alpha (a) \) is centered, \(\psi^{(1)}_\alpha (0) = 0 \), and thus for \(k = 1 \) all the terms are zero. Hence we have the following equation:

\[
\frac{\partial^p \phi_\alpha}{\partial t_1 \ldots \partial t_p} (0, \ldots, 0) \left(1 - \sum_{\mathcal{X} \subset \mathcal{Y}} \sum_{\mathcal{X} \neq \emptyset} \left(\prod_{j=1}^{p} \beta^{1(y_j \in \mathcal{X})} \right) p_\mathcal{X} \right) = \sum_{k=1}^{p} \left(\frac{\alpha}{\sigma^2} \right)^k \psi^{(k)}_\alpha (0) \left(\prod_{i \in \mathcal{X}^c} \beta^{1(y_i \in \mathcal{X})} \right) \frac{\partial^{p-k}}{\partial t_1 \ldots \partial t_k} \phi_\alpha (0, \ldots, 0, \mathcal{X}).
\]

5.3.3 Recurrence relation for the limit of the moments

The next step of the proof consists in dividing by \(\alpha \) and letting \(\alpha \) tend to 0 in Equation (7) above. First, recalling that \(\beta = 1 - \alpha \), and using that \(\sum p_\mathcal{X} = 1 \), one has

\[
1 - \sum_{\mathcal{X} \subset \mathcal{Y}} \left(\prod_{j=1}^{p} \beta^{1(y_j \in \mathcal{X})} \right) p_\mathcal{X} = \sum_{\mathcal{X} \subset \mathcal{Y}} p_\mathcal{X} - \sum_{\mathcal{X} \subset \mathcal{Y}} \beta^{\#_\mathcal{X}} p_\mathcal{X} = \sum_{\mathcal{X} \subset \mathcal{Y}} \left(\sum_{\mathcal{X} \neq \emptyset} \left(\prod_{i \in \mathcal{X}^c} \beta^{1(y_i \in \mathcal{X})} \right) p_\mathcal{X} \right) (1 - (1 - \alpha)^{\#_\mathcal{X}}).
\]

Hence

\[
\lim_{\alpha \to 0} \frac{1}{\alpha} \sum_{\mathcal{X} \subset \mathcal{Y}} (1 - (1 - \alpha)^{\#_\mathcal{X}}) p_\mathcal{X} = \sum_{\mathcal{X} \subset \mathcal{Y}} (\#_\mathcal{X}) p_\mathcal{X}.
\]

17
and by definition of p_X;

\[
\sum_{X \subset \mathcal{Y}} (\#X)p_X = \mathbb{E}(\#((x_0 + X_0) \cap \mathcal{Y})) = \mathbb{E}\left(\sum_{j=1}^{p} \mathbb{I}(y_j \in x_0 + X_0)\right) = p \mathbb{E}(\nu_d(X))
eq 0.
\]

Let us now turn to the limit of the right-hand side of Equation (7) when dividing by α and letting α tend to 0. First let us show that all the terms for which $k \geq 3$ will tend to 0. By induction for all $k \geq 2$, the terms $\frac{\partial^{p-k}}{\partial I_{2k}} \phi_\alpha (0, \ldots, 0)$ have a finite limit when α tends to 0. Besides, for all $k \geq 3$,

\[
\left|\psi^{(k)}_\alpha (0)\right| = |i^k \mathbb{E}\left((T_\alpha (a) - \mathbb{E}(T_\alpha (a)))^k\right)| \leq \mathbb{E}\left(|T_\alpha (a) - \mathbb{E}(T_\alpha (a))|^k\right) \leq 2^k \alpha^{sk},
\]

and

\[
\sigma^T_\alpha = \sqrt{\mathbb{E}(\text{Var}(T_\alpha (a)))} \sim \sqrt{\frac{\text{Var}(a)}{\alpha}} \frac{1}{2},
\]

where $u(a) \sim a \to v(a)$ means that $u(a)/v(a)$ tends to 1 as α tends to 0. Using the classic notation $u(a) = O_{\alpha \to 0} v(a)$ (meaning that there exists some constant Γ such that $|u(a)| \leq \Gamma v(a)$ in the neighborhood of 0), one observes that for all $k \geq 3$,

\[
\frac{1}{\alpha} \left(\frac{\alpha}{\sigma^T_\alpha}\right)^k \psi^{(k)}_\alpha (0) \sum_{I \subset \{1, \ldots, p\}} \frac{\partial^{p-k}}{\partial I_{2k}} \phi_\alpha (0, \ldots, 0) \left(\sum_{X \subset \mathcal{Y}} \mathbb{I}(I_{J \in I}) \prod_{i \in I} (y_i \in X) \prod_{i \in I^c} \beta^1(y_i \in X) \right) p_X
\]

\[= O_{\alpha \to 0} \left(\frac{1}{2} \alpha^{(1/2)k - sk - 1}\right).
\]

But since $s < 1/6$, the above exponent $\frac{1}{2}k - sk - 1$ is positive for all $k \geq 3$. Hence all the terms for which $k \geq 3$ tend to 0.

Now for $k = 2$, we have $\psi^{(2)}_\alpha (0) = i^2 \mathbb{E}(T_\alpha (a))$. Besides, by induction,

\[
\lim_{\alpha \to 0} \frac{\partial^{p-2}}{\partial I_{(j_1,j_2)}} \phi_\alpha (0, \ldots, 0) = (i)^{p-2} \mathbb{E}\left(\prod_{l \in \{1, \ldots, p\} \setminus \{j_1, j_2\}} f_G(y_l)\right).
\]

Hence, considering subsets I of $\{1, \ldots, p\}$ with two elements,

\[
\lim_{\alpha \to 0} \frac{1}{\alpha} \left(\frac{\alpha}{\sigma^T_\alpha}\right)^2 \psi^{(2)}_\alpha (0) \sum_{I \subset \{1, \ldots, p\}} \frac{\partial^{p-2}}{\partial I_{2k}} \phi_\alpha (0, \ldots, 0) \left(\sum_{X \subset \mathcal{Y}} \mathbb{I}(I_{J \in I}) \prod_{i \in I} (y_i \in X) \prod_{i \in I^c} \beta^1(y_i \in X) \right) p_X
\]

\[= (i)^{p} \sum_{\{j_1,j_2\} \subset \{1, \ldots, p\}} \mathbb{E}\left(\prod_{l \in \{1, \ldots, p\} \setminus \{j_1, j_2\}} f_G(y_l)\right) \left(\sum_{X \subset \mathcal{Y}} \mathbb{I}(y_{j_1} \in X) \mathbb{I}(y_{j_2} \in X) \right) p_X .
\]

In addition remark that

\[
\sum_{X \subset \mathcal{Y}} \mathbb{I}(y_{j_1} \in X) \mathbb{I}(y_{j_2} \in X) p_X = \mathbb{P}(\{y_{j_1}, y_{j_2}\} \subset x_0 + X_0) = \frac{\gamma_X (y_{j_1} - y_{j_2})}{\mathbb{E}(\nu_d (\mathcal{Y} \oplus X))}.
\]
Coming back to Equation (7), one sees that \(\frac{\partial^{p} \phi}{\partial t_{1} \cdots \partial t_{p}} (0, \ldots, 0) \) admits a finite limit when \(\alpha \) tends to 0. Noting \((i)^{p} L \) this finite limit, that is

\[
L = \lim_{\alpha \to 0} \mathbb{E} \left(\prod_{j=1}^{p} g^{T}_{\alpha} (y_{j}) \right),
\]

we have the expression

\[
L = \frac{\mathbb{E} (\nu_{d} (Y \oplus \bar{X}))}{p \mathbb{E} (\nu_{d} (X))} \sum_{(j_{1}, j_{2}) \subset \{1, \ldots, p\}} \mathbb{E} \left(\prod_{j \in \{1, \ldots, p\} \setminus \{j_{1}, j_{2}\}} f_{G} (y_{j}) \right) \frac{\gamma X (y_{j_{1}} - y_{j_{2}})}{\mathbb{E} (\nu_{d} (Y \oplus \bar{X}))} \prod_{j \in \{1, \ldots, p\} \setminus \{j_{1}, j_{2}\}} f_{G} (y_{j}).
\]

This is exactly the recursive formula for the moments of a Gaussian vector given by Proposition 10. Hence,

\[
L = \lim_{\alpha \to 0} \mathbb{E} \left(\prod_{j=1}^{p} g^{T}_{\alpha} (y_{j}) \right) = \mathbb{E} \left(\prod_{j=1}^{p} f_{G} (y_{j}) \right),
\]

which completes the proof of Lemma 11.

5.4 Convergence in \(L^{2} \) of the difference of the normalized random fields

At this stage to conclude the proof of Theorem 7 we have to demonstrate the following lemma.

Lemma 12 (Convergence to 0 in \(L^{2} \) of \(g_{\alpha} - g^{T}_{\alpha} \).) Let \(g_{\alpha} \) and \(g^{T}_{\alpha} \) be, respectively, the normalized TDL model and the normalized TDL model with truncated colors. Then for all \(y \in \mathbb{R}^{d} \),

\[
g_{\alpha} (y) - g^{T}_{\alpha} (y) \xrightarrow{L^{2}} 0.
\]

Proof. Since \(a \in L^{2} \) and for all \(b \in \mathbb{R}, |T_{\alpha} (b)| \leq |b| \) and \(\lim_{\alpha \to 0} T_{\alpha} (b) = b \), by dominated convergence

\[
\lim_{\alpha \to 0} \operatorname{Var}(a - T_{\alpha} (a)) = 0,
\]

and in particular

\[
\lim_{\alpha \to 0} \operatorname{Var}(T_{\alpha} (a)) = \operatorname{Var}(a).
\]

Let \(y \in \mathbb{R}^{d} \). Recall that

\[
\operatorname{Var}(f_{\alpha}) = \frac{\alpha}{2 - \alpha} \operatorname{Var}(a) \quad \text{and} \quad \operatorname{Var}(f^{T}_{\alpha}) = \frac{\alpha}{2 - \alpha} \operatorname{Var}(T_{\alpha} (a)).
\]
One has

\[
g_\alpha(y) - g^T_\alpha(y) = \frac{f_\alpha(y) - \mathbb{E}(a)}{\sqrt{\text{Var}(f_\alpha)}} - \frac{f^T_\alpha(y) - \mathbb{E}(T_\alpha(a))}{\sqrt{\text{Var}(f^T_\alpha)}}
\]

\[
= \frac{f_\alpha(y) - \mathbb{E}(a)}{\sqrt{\text{Var}(f_\alpha)}} - \frac{f^T_\alpha(y) - \mathbb{E}(T_\alpha(a))}{\sqrt{\text{Var}(f_\alpha)}} + \frac{f^T_\alpha(y) - \mathbb{E}(T_\alpha(a))}{\sqrt{\text{Var}(f^T_\alpha)}}
\]

\[
= \frac{f_\alpha(y) - f^T_\alpha(y) - \mathbb{E}(a - T_\alpha(a))}{\sqrt{\text{Var}(f_\alpha)}} + \left(\frac{\sqrt{\text{Var}(f^T_\alpha)}}{\sqrt{\text{Var}(f_\alpha)}} - 1 \right) g^T_\alpha(y).
\]

Let us denote by \(I_1(\alpha)\) and \(I_2(\alpha)\) the two terms above. Remark that the numerator of \(I_1(\alpha)\) is a TDL model with color distribution \(a - T_\alpha(a)\). Hence we have

\[
\mathbb{E}(I_1(\alpha)^2) = \frac{\alpha}{\alpha - \alpha} \frac{\text{Var}(a - T_\alpha(a))}{\alpha} = \frac{\text{Var}(a - T_\alpha(a))}{\text{Var}(a)} \to 0, \quad \alpha \to 0.
\]

In addition,

\[
\mathbb{E}(I_2(\alpha)^2) = \left(\frac{\sqrt{\text{Var}(f^T_\alpha)}}{\sqrt{\text{Var}(f_\alpha)}} - 1 \right)^2 = \left(\frac{\sqrt{\text{Var}(T_\alpha(a))}}{\sqrt{\text{Var}(a)}} - 1 \right)^2 \to 0, \quad \alpha \to 0.
\]

Hence, \(g_\alpha(y) - g^T_\alpha(y)\) is the sum of two r.v. which tends to 0 in \(L^2\). This completes the proof.

Acknowledgments

This work was supported by ANR MATAIM. The authors are grateful to Professors Jean-Michel Morel and François Roueff for their insightful suggestions.

References

