Multi-Class Sparse Bayesian Regression for Neuroimaging data analysis

Abstract : The use of machine learning tools is gaining popularity in neuroimaging, as it provides a sensitive assessment of the information conveyed by brain images. In particular, finding regions of the brain whose functional signal reliably predicts some behavioral information makes it possible to better understand how this information is encoded or processed in the brain. However, such a prediction is performed through regression or classification algorithms that suffer from the curse of dimensionality, because a huge number of features (i.e. voxels) are available to fit some target, with very few samples (i.e. scans) to learn the informative regions. A commonly used solution is to regularize the weights of the parametric prediction function. However, model specification needs a careful design to balance adaptiveness and sparsity. In this paper, we introduce a novel method, Multi-Class Sparse Bayesian Regression (MCBR ), that generalizes classical approaches such as Ridge regression and Automatic Relevance Determination. Our approach is based on a grouping of the features into several classes, where each class is regularized with specific parameters. We apply our algorithm to the prediction of a behavioral variable from brain activation images. The method presented here achieves similar prediction accuracies than reference methods, and yields more interpretable feature loadings.
Type de document :
Communication dans un congrès
International Workshop on Machine Learning in Medical Imaging (MLMI) In conjunction with MICCAI 2010, Sep 2010, Beijing, China. 6357, pp.50-58, 2010, LNCS. 〈10.1007/978-3-642-15948-0〉
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00505057
Contributeur : Vincent Michel <>
Soumis le : jeudi 22 juillet 2010 - 14:28:15
Dernière modification le : jeudi 7 février 2019 - 16:16:38
Document(s) archivé(s) le : mardi 23 octobre 2012 - 10:55:37

Fichier

vm_mlmi.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Vincent Michel, Evelyn Eger, Christine Keribin, Bertrand Thirion. Multi-Class Sparse Bayesian Regression for Neuroimaging data analysis. International Workshop on Machine Learning in Medical Imaging (MLMI) In conjunction with MICCAI 2010, Sep 2010, Beijing, China. 6357, pp.50-58, 2010, LNCS. 〈10.1007/978-3-642-15948-0〉. 〈hal-00505057〉

Partager

Métriques

Consultations de la notice

777

Téléchargements de fichiers

349