GPU implementation of a 3D bayesian CT algorithm and its application on real foam reconstruction

Nicolas Gac¹, Alexandre Vabre², Ali Mohammad-Djafari¹, Asier Rabanal¹, Fanny Buyens²

¹ Laboratoire des Signaux et Systèmes (L2S, UMR 8506 CNRS - SUPELEC - Univ Paris Sud 11) Supélec, Plateau de Moulon, F-91192 Gif-sur-Yvette, FRANCE.
² CEA-LIST, F-91191 Gif sur Yvette, FRANCE

Emails: nicolas.gac@lss.supelec.fr, alexandre.vabre@cea.fr, djafari@lss.supelec.fr

First International Meeting on Image Formation in X-Ray Computed Tomography, 6-9 June 2010, Salt Lake City, US

Few projections challenge

Challenge: 3D CT cone beam reconstructions from limited projections (like in dose reduction context) require alternative methods to standard analytical filtered backprojection.

Proposed method: A bayesian iterative algorithm based on a Gauss/Markov/Potts model.

Beyond limitations: Parallelization on a 8 GPUs server has allowed us to go beyond the computing time limitations.

Inverse problem: Getting the object \(f \) from the projection data \(g \) collected from a cone beam 3D CT:

\[
g = Hf + \epsilon
\]

\(^{(1)}\)

Prior model: Object \(f(r) \) is composed of \(K \) regions \(\mathcal{R}_k \) corresponding to \(K \) materials labeled by a hidden variable \(z(r)=k \). A Markov/Potts model corresponding to the compactness of materials is used for \(z \).

It’s a Gaussian model corresponding to the homogeneity of materials is used for each region \(\mathcal{R}_k \). It’s:

\[
p(f(r)/z(r) = k) = N(m_k, n_k)
\]

\(^{(2)}\)

Steps of the Iterative method:

1) **Reconstruction step:** Updating \(f \) by computing \(f^{(i+1)} = \arg \max_y \{p(f|z, \theta, g)\} \). This is done by using a gradient type optimization algorithm:

\[
f^{(i+1)} = f^{(i)} + \alpha \left[H'(g - Hf^{(i)}) + \lambda D'Df^{(i)} \right]
\]

\(^{(3)}\)

2) **Segmentation step:** Updating \(z \) by generating a sample from \(p(z|f, \theta, g) \) with a sampling algorithm from a Potts-Markov model.

3) **Characterization step:** Updating the hyperparameters using \(p(\theta|f, z, g) \). This step can be done either analytically or by sampling from known probability laws such as Gaussians or Inverse Gamma.

GPU implementation of the \(H \) and \(H' \) operators

Goal: Acceleration of the projection \((Hf) \) and backprojection \((H'g) \) which are the most time consuming operators.

GPU acceleration: Thanks to an implementation on Graphic Processing Unit we reach a two orders of magnitude acceleration.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projector</td>
<td>755 ms (128 ms for CPU/GPU memory transfer)</td>
</tr>
<tr>
<td>Backprojector</td>
<td>234 ms (133 ms for CPU/GPU memory transfer)</td>
</tr>
</tbody>
</table>

Reconstruction time on a GTX 295 (96 * 256³ data)

Foam reconstructed (CEA-LIST real data set)

The data set is coming from a study on water kinetics in open-cell nickel foams using x-ray microtomography. The experiments are conducted on a small sample size (1 mm³ foam) to estimate the thin geometry and model the water behavior at a scale of few pores.

Future works

- Optimization of our Gauss/Markov/Potts method
- Optimization of the CPU/GPU memory transfer
- Parallelization on the 8 GPU server of other operators (3D convolution, Potts sampling...)
- Semi automatic setting of the regularization parameters
- Technologic transfer with an industrial partner