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For heavy tails, with a positive tail index γ, classical tail index estimators, like the Hill estimator,

are known to be quite sensitive to the number of top order statistics k used in the estimation,

whereas second-order reduced-bias estimators show much less sensitivity to changes in k. In the

recent minimum-variance reduced-bias (MVRB) tail index estimators, the estimation of the second

order parameters in the bias has been performed at a level k1 of a larger order than that of the

level k at which we compute the tail index estimators. Such a procedure enables us to keep the

asymptotic variance of the new estimators equal to the asymptotic variance of the Hill estimator,

for all k at which we can guarantee the asymptotic normality of the Hill statistics. These values

of k, as well as larger values of k, will also enable us to guarantee the asymptotic normality of the

reduced-bias estimators, but, to reach the minimal mean squared error of these MVRB estimators, we

need to work with levels k and k1 of the same order. In this note we derive the way the asymptotic

variance varies as a function of q, the finite limiting value of k/k1, as the sample size n increases to infinity.

Keywords and phrases: Statistics of extremes; reduced-bias semi-parametric estimation; tail index;

asymptotic theory.
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1 Introduction

In statistics of extremes, and whenever we are interested in large values, a model F is said to be

heavy-tailed if the right tail function, F := 1−F , is a regularly varying function with a negative

index of regular variation equal to −1/γ, γ > 0. We then use the notation F ∈ RV−1/γ , where,

for any real a, RVa stands for the class of regularly varying functions at infinity with an index of

regular variation equal to a, i.e., positive measurable functions g such that lim
t→∞

g(tx)/g(t) = xa,

for all x > 0. Equivalently, the quantile function U(t) = F←(1 − 1/t), t ≥ 1, with F←(x) =

inf{y : F (y) ≥ x}, is of regular variation with index γ, i.e.,

F is heavy-tailed ⇐⇒ F = 1− F ∈ RV−1/γ ⇐⇒ U ∈ RVγ (1)

for some γ > 0 (Gnedenko, 1943; de Haan, 1970, 1984). Then, we are in the domain of attraction

for maxima of an extreme value distribution function (d.f.), EVγ(x) = exp(−(1 + γx)−1/γ),

x ≥ −1/γ, and we write F ∈ DM(EVγ>0). The parameter γ is the tail index, the primary

parameter of extreme events.

The second order parameter, ρ (≤ 0), rules the rate of convergence in the first order condition

in (1), and it is the parameter appearing in

lim
t→∞

lnU(tx)− lnU(t)− γ lnx
A(t)

=
xρ − 1
ρ

, (2)

which holds for every x > 0, and where |A| must be in RVρ (Geluk and de Haan, 1987). We

shall moreover assume that ρ < 0. This condition has been widely accepted as an appropriate

condition to specify the tail of a Pareto-type distribution in a semi-parametric way.

In order to obtain information on the order of the asymptotic bias of any second-order

reduced-bias tail index estimator, we need further assuming a third order condition, ruling now

the rate of convergence in the second order condition in (2), and which guarantees that

lim
t→∞

( lnU(tx)− lnU(t)− γ lnx
A(t)

− xρ − 1
ρ

)
/B(t) =

xρ+ρ
′ − 1

ρ+ ρ′
(3)

for all x > 0, and where |B| must be in RVρ′ . There appears then a third order parameter

ρ′ ≤ 0, which we also assume to be negative. Such a condition has already been used in Gomes

et al. (2002) and Fraga Alves et al. (2003), for the full derivation of the asymptotic behaviour of

ρ-estimators and in Gomes et al. (2004; 2007; 2008a) and Caeiro et al. (2005), for the study of
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specific reduced-bias tail index estimators. More restrictively, and for some details in the paper,

we shall assume that we can choose in (3),

A(t) = c tρ =: γ β tρ, B(t) = c′ tρ
′

=: β′ tρ
′
, β, β′ 6= 0 ρ, ρ′ < 0. (4)

Condition (3) (and a fortiori condition (2)), as well as (4), hold for most common Pareto-type

distributions, like the extreme value, the Fréchet, the Generalized Pareto and the Student’s t.

For intermediate k, i.e., a sequence of integers k = kn, k ∈ [1, n), such that

k = kn →∞ and kn = o(n), as n→∞, (5)

we shall consider, as basic statistics, the log-excesses over a random high level, i.e.,

Vik := lnXn−i+1:n − lnXn−k:n, 1 ≤ i ≤ k < n, (6)

and the scaled log-spacings,

Wi := i {lnXn−i+1:n − lnXn−i:n} , 1 ≤ i ≤ k < n, (7)

where Xi:n denotes, as usual, the i-th ascending order statistic (o.s.), 1 ≤ i ≤ n, associated to an

independent, identically distributed (i.i.d.) random sample (X1, X2, · · · , Xn). It is well known

that if (5) holds, and under the first order framework in (1), the log-excesses, Vik, 1 ≤ i ≤ k, in

(6), are approximately the k o.s.’s from an exponential sample of size k and mean value γ. Also,

under the same conditions, the scaled log-spacings, Wi, 1 ≤ i ≤ k, in (7), are approximately

i.i.d. and exponential with mean value γ. Consequently, the Hill estimator of γ (Hill, 1975),

H(k) ≡ Hn(k) =
1
k

k∑
i=1

Vik =
1
k

k∑
i=1

Wi, (8)

is consistent for the estimation of γ under the first order framework and for intermediate k. Note

that the Hill estimator in (8) is the maximum likelihood estimator of the tail index γ, under a

strict Pareto model, with d.f. FP (x) = 1− x−1/γ , x ≥ 1. Under the second order framework in

(2) and for intermediate k, i.e., if (5) holds, the asymptotic distributional representation

Hn(k) d= γ +
γ√
k
Z

(1)
k +

A(n/k)
1− ρ

+ op(A(n/k)) (9)

holds, where Z(1)
k =

√
k
(∑k

i=1Ei/k−1
)
, with {Ei} i.i.d. standard exponential random variables

(r.v.’s), is asymptotically standard normal (de Haan and Peng, 1998). How to choose k in some
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optimal sense as a function of the sample size n is thus an important problem. Under condition

(2) and with A(t) chosen as in (4), the optimal k for the estimation of γ through the Hill

estimator in (8), in the sense of minimal asymptotic mean squared error, is given by

kH0 ≡ kH0 (n;β, ρ)=
((1− ρ)n−ρ

β
√
−2ρ

)2/(1−2ρ)
. (10)

We thus need to estimate β and ρ, in order to estimate kH0 . But the Hill estimator is quite

sensitive to k, with a large bias for moderate k. Hence the need for bias reduction techniques.

The most simple minimum-variance reduced-bias (MVRB) estimators in the literature are

the bias-corrected Hill estimators in Caeiro et al. (2005), with the functional form,

H β̂,ρ̂(k) := H(k)
(

1− β̂
(n
k

)ρ̂
/(1− ρ̂)

)
, (11)

dependent upon the Hill estimator H(k) and (β̂, ρ̂), adequate consistent estimators of the second

order parameters β and ρ, respectively. To achieve consistency of (β̂, ρ̂) we need to use a number

k1 of top o.s.’s such that
√
k1A(n/k1)→∞ (see Section 3). If we further have ρ̂−ρ = op(1/ lnn),

√
k(H β̂,ρ̂(k)−γ) is asymptotically normal with mean value equal to zero and variance γ2 at least

for intermediate values k such that
√
kA(n/k)→ λ, finite (Caeiro et al., 2005), i.e. if k = o(k1).

Further information on the order of the asymptotic bias of the reduced-bias estimator in (11),

for a slightly more restrictive class of models than the one in (3), is provided in Caeiro and

Gomes (2008a). For the use of this estimator in quantile estimation, see Gomes and Pestana

(2007) and Caeiro and Gomes (2008b).

In Section 2 of this paper, we shall provide details on conditions under which we are able

to keep the asymptotic variance of the MVRB-estimators in (11) equal to γ2, together with

their behaviour under a third order framework, working essentially with values k = o(k1). In

Section 3, we shall briefly review the estimation of the second order parameters β and ρ. Next,

in Section 4, we provide some information on the asymptotic behaviour of
√
k
{
H β̂,ρ̂(k) − γ

}
,

whenever
√
kA(n/k)→∞,

√
k A2(n/k)→ λA and

√
k A(n/k)B(n/k)→ λB , both finite, λA or

λB 6= 0, and when we consider the estimators of ρ in Section 3, computed at any “optimal” level

k1 = kopt1 , in the sense of a level such that
√
k1 A

2(n/k1)→ λA1
and
√
k1 A(n/k1)B(n/k1)→ λB1

,

both finite, λA1
or λB1

6= 0. For the class of models under consideration, i.e., models for which

(3) holds, with A and B chosen as in (4) for arbitrary ρ, ρ′ < 0, we thus have k/k1 → q > 0,

whenever n → ∞. Finally, in Section 5, we advance with a small-scale simulation study to

illustrate possible adaptive choices of k and k1.
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2 Asymptotic behaviour of the MVRB-estimators under a third

order framework

In a trial to keep the asymptotic variance of the reduced-bias estimators in (11) equal to γ2, we

can state the following theorem, a generalization of Theorem 3.1 in Caeiro et al. (2005), where

Un
p∼ Vn denotes that Un/Vn converges in probability towards one, as n→∞.

Theorem 1. Under the third order framework in (3), with A and B chosen as in (4), if (5)

holds, with Z(1)
k the asymptotically standard normal r.v. in (9) and Hβ,ρ(k) equal to the quantity

H β̂,ρ̂(k) given in (11), with β̂ and ρ̂ replaced by β and ρ, respectively,

Hβ,ρ(k) d= γ +
γ√
k
Z

(1)
k −A(n/k)

( A(n/k)
γ(1− ρ)2

− B(n/k)
1− ρ− ρ′

+Op

( 1√
k

))
(1 + op(1)). (12)

Consequently, and as n→∞, if

√
k A(n/k)→∞, with

√
k A2(n/k)→ λA and

√
k A(n/k) B(n/k)→ λB , (13)

λA and λB finite,
√
k
(
Hβ,ρ(k)− γ

)
converges in distribution to a Normal

(
b
H
, γ2
)

r.v., with

b
H
≡ b

H
(γ, ρ, ρ′) ≡ ABIAS

H
= −λA/(γ(1− ρ)2) + λB/(1− ρ− ρ

′) =: λAuH + λBvH . (14)

Let (β̂, ρ̂) be any consistent estimator of the vector of second order parameters (β, ρ) such that

ρ̂− ρ = op(1/ lnn), as n→∞. (15)

Then, with a
H

= −1/(1− ρ),

H β̂,ρ̂(k)−Hβ,ρ(k)
p∼ a

H
A(n/k)

{(
β̂ − β

)
/β + (ρ̂− ρ)

[
ln(n/k)− a

H

] }
. (16)

Consequently,
√
k
{
H β̂,ρ̂(k) − γ

}
is asymptotically normal with null mean value and variance

σ2
0 = γ2, not only when

√
k A(n/k) → 0, but also whenever

√
k A(n/k) → λ, finite. This

same result still holds for levels k such that
√
k A(n/k) → ∞, provided that

√
k A2(n/k)→ 0,

√
k A(n/k)B(n/k)→ 0, and β̂ − β as well as (ρ̂− ρ) lnn are op

(
1/
√
k A(n/k)

)
.

Proof. Under the conditions in the theorem, directly from (3) and the same line of reasoning of

de Haan and Peng (1998), the asymptotic distributional representation

Hn(k) d= γ +
γ√
k
Z

(1)
k +

(
A(n/k)
1− ρ

+
A(n/k) B(n/k)

1− ρ− ρ′
+Op

(A(n/k)√
k

))
(1 + op(1))

5
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follows. On the other hand, as Hβ,ρ(k) = Hn(k)(1 − A(n/k)/(γ(1 − ρ))), we get (12), and

consequently, the stated asymptotic normality of
√
k
(
Hβ,ρ(k)− γ

)
.

Next, and directly from the expression of Hβ,ρ(k), we get

∂Hβ,ρ

∂β

p∼ − A(n/k)
β(1− ρ)

,
∂Hβ,ρ

∂ρ

p∼ −A(n/k)
1− ρ

(
ln(n/k) +

1
1− ρ

)
.

The use of Cramer’s delta-method, together with the validity of (15), enables us to write

H β̂,ρ̂(k) = Hβ,ρ(k)− A(n/k)
1− ρ

{ β̂ − β
β

+ (ρ̂− ρ)
(

ln(n/k) +
1

1− ρ

)}
(1 + op(1)).

Consequently, (16) follows, as well as the remaining of the theorem, provided that we pay

attention to the validity of (12).

Remark 1. Note that the optimal level, in the sense of minimal asymptotic mean squared error,

for the estimation of the tail index γ through the reduced-bias estimator Hβ,ρ(k) (assuming thus

that β and ρ are known) is such that (13) holds. An important question to answer is how far

can this same result be true for the reduced-bias estimator H β̂,ρ̂(k) in (11).

3 A brief review of the second order parameters’ estimators

3.1 The estimation of ρ

We shall base the estimation of ρ on estimators of the type of the ones in Fraga Alves et al.

(2003). Such a class of estimators has been first parameterised in a tuning parameter τ ≥ 0,

but more generally we may have τ real (Caeiro and Gomes, 2006). It is defined as,

ρ̂τ (k) ≡ ρ̂n(k; τ) := −

∣∣∣∣∣3(T (τ)
n (k)− 1)

T
(τ)
n (k)− 3

∣∣∣∣∣ , T (τ)
n (k) :=

(
M

(1)
n (k)

)τ − (M (2)
n (k)/2

)τ/2(
M

(2)
n (k)/2

)τ/2 − (M (3)
n (k)/6

)τ/3 , (17)

for τ 6= 0 and with the usual continuation for τ = 0, where, with Vik given in (6),

M (j)
n (k) :=

1
k

k∑
i=1

V j
ik, j ≥ 1

[
M (1)
n ≡ H, the Hill estimator in (8)

]
.

We shall here summarize a result proved in Fraga Alves et al. (2003), making now explicit

the random behaviour of the term leading to the asymptotic variance, needed later on, when

dealing with the estimation of the three parameters, γ, β and ρ, at levels of the same order.

6
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Theorem 2 (Fraga Alves et al., 2003). Under the second order framework in (2), if k is in-

termediate, i.e., (5) holds, and if
√
k A(n/k) → ∞, as n → ∞, the statistics ρ̂n(k; τ) in (17)

converge in probability towards ρ, as n → ∞, for any real τ . If (3) holds, with ρ < 0, we

can further guarantee that there exist constants (uρ,τ , vρ,ρ′ , σρ) and an asymptotically standard

normal r.v. WR
k , such that

ρ̂n(k; τ)− ρ d=
σρ W

R
k√

k A(n/k)
+
(
uρ,τA(n/k) + vρ,ρ′B(n/k)

)
(1 + op(1)). (18)

Moreover, with Z(α)
k = 1√

k

∑k
i=1E

α
i /Γ(α+ 1)−

√
k, for any α ≥ 1, Γ(t) denoting the complete

Gamma function, we can write

WR
k =

(
(3− ρ)Z(1)

k − (3− 2ρ)Z(2)
k + (1− ρ)Z(3)

k

)
/
√

2ρ2 − 2ρ+ 1. (19)

Consequently, if (13) holds,
√
k A(n/k) (ρ̂n(k; τ)− ρ) is asymptotically normal with a mean

value λAuρ,τ + λBvρ,ρ′ and variance

σ2
ρ ≡ σ2

ρ(γ) =
(
γ(1− ρ)3/ρ

)2 (2ρ2 − 2ρ+ 1
)
. (20)

Let us next assume that k1 = kopt1 is “optimal” for the estimation of ρ, in the sense of a

value k1 that enables us to guarantee the asymptotic normality of the ρ-estimator with a non-

null asymptotic bias. That level k1 is then such that
√
k1 A(n/k1)B(n/k1) → λB1

, finite,

and
√
k1 A2(n/k1) → λA1

, also finite, with at least one of them non-null, let us say λB1
.

We then get k1 = O
(
n−2(ρ+ρ′)/(1−2(ρ+ρ′))

)
. Denoting ρ̂ = ρ̂n(k1; τ) for any τ , i.e., any of the

ρ-estimators in this section computed at such a level k1, {ρ̂− ρ} is, in probability, of the order

of 1/
(√
k1A(n/k1)

)
= O

(
nρ

′/(1−2(ρ+ρ′))
)

= o(1/ lnn), i.e., (15) holds, and this is the crucial

condition on ρ̂, needed in Theorem 1, if we want to keep equal to γ2 the asymptotic variance

of the reduced-bias estimator in (11). At the current state-of-the-art, such a k1 has only a

theoretical interest. From a practical point of view additional research is needed, in order to

have adaptive ways of selecting this optimal threshold k1 = kopt1 .

3.2 Estimation of β based on the scaled log-spacings

We have here considered the β-estimator obtained in Gomes and Martins (2002) and based on

the scaled log-spacings Wi, 1 ≤ i ≤ k, in (7). On the basis of any consistent estimator ρ̂ of the

7
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second order parameter ρ, we shall consider the β-estimator, β̂(k; ρ̂), where, for any ρ < 0,

β̂(k; ρ) :=

(
k
n

)ρ {( 1
k

k∑
i=1

(
i
k

)−ρ )( 1
k

k∑
i=1

Wi

)
−
(

1
k

k∑
i=1

(
i
k

)−ρ
Wi

)}
(

1
k

k∑
i=1

(
i
k

)−ρ )( 1
k

k∑
i=1

(
i
k

)−ρ
Wi

)
−
(

1
k

k∑
i=1

(
i
k

)−2ρ
Wi

) . (21)

Gomes and Martins (2002) kept up to the second order framework and studied the behaviour of

β̂(k; ρ) in (21). From Theorem 3 in Gomes et al. (2008a), we can guarantee that under the second

order framework in (2), with ρ < 0 and ρ̂τ (k) in (17), the rate of convergence of β̂(k; ρ̂τ (k)) is

of the order of
{

ln(n/k)/(
√
k A(n/k))

}
. Under the assumption that ln(n/k) = o(

√
kA(n/k)),

β̂(k; ρ̂τ (k)) is thus consistent for the estimation of β, and if (15) holds for ρ̂τ (k),

β̂(k; ρ̂τ (k)− β p∼ −β ln(n/k) (ρ̂τ (k))− ρ) . (22)

Here, we go into the third order framework in (3), and assume, just as in Gomes et al. (2008a),

that β and ρ are going to be estimated at the same level k. On the basis of Theorem 2, we can

state, without the need of a proof:

Theorem 3. Under the third order framework in (3), if apart from
√
kA(n/k)/ ln(n/k)→∞,

we assume (13), then, with σ2
ρ given explicitly in (20),

√
k A(n/k)

(
β − β̂(k; ρ̂τ (k))

)
/(β ln(n/k))

is asymptotically Normal
(
λAuρ,τ + λBvρ,ρ′ , σ

2
ρ

)
, with (uρ,τ , vρ,ρ′ , σρ) implicitly given in (18).

4 Further results on the asymptotic behaviour of the MVRB

tail index estimators

Let us define, for any real τ ,

H̃τ (k; k1) := H β̂(k1;bρτ (k1)),bρτ (k1)(k), (23)

with H β̂,ρ̂(k), ρ̂τ (k) and β̂(k, ρ) given in (11), (17) and (21), respectively. On the basis of

Theorems 1, 2 and 3, we state the following result.

Theorem 4. For the class of models in (3), with A and B chosen as in (4), let us consider

a value k1 = kopt1 “optimal” for the estimation of ρ, in the sense that
√
k1A(n/k1) → ∞,

√
k1A

2(n/k1) → λA1
, finite, and

√
k1A(n/k1)B(n/k1) → λB1

, also finite, with at least one of

them non-null, and the tail index estimator H̃τ (k; k1) given in (23).

8
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1. If k = o(k1),
√
k
(
H̃τ (k; k1)−γ

)
is asymptotically normal with null mean value and variance

equal to γ2.

2. Let us next assume that
√
k A(n/k)→∞ and, with λA and λB finite,

√
k A2(n/k)→ λA

and
√
k A(n/k)B(n/k)→ λB . More specifically, let k and k1 be sequences of intermediate

integers such that k/k1 → q > 0, finite, Then,

√
k
(
H̃τ (k; k1)− γ

) d→
n→∞

Normal
(
b∗, σ2(q)

)
,

where, with (u
H
, v

H
) defined in (14), (uρ,τ , vρ,ρ′) the constants in (18) and a

H
= −1/(1−ρ),

b∗ = λA
(
u
H

+ uρ,τ q
ρa

H

(
ln q − a

H

))
+ λB

(
v
H

+ vρ,ρ′ q
ρ′a

H

(
ln q − a

H

) )
, and

σ2(q) = σ2(q; γ, ρ) = γ2
(
1 + q1−2ρ

(
ln q + 1/(1− ρ)

)2(1− ρ)4(2ρ2 − 2ρ+ 1)/ρ2
)
, (24)

i.e., we get the same rate of convergence, of the order of 1/
√
k, for H̃τ (k; k1), but with a

non-null bias and an asymptotic variance dependent upon q. Such an asymptotic variance

is equal to γ2 for q = 0 and q = q0 = exp(−1/(1− ρ)), and increases with q, after q0.

Proof. From equations (16) and (22),

R̂n(k; k1) :=
√
k
{
H̃τ (k; k1)−Hβ,ρ(k)

}
p∼ a

H
(ρ̂− ρ)

√
kA (n/k)

(
ln (k/k1)− a

H

)
.

If
√
k1 A2(n/k1) → λA1

and
√
k1 A(n/k1)B(n/k1) → λB1

, both finite, then ρ̂ − ρ =

Op
(
1/
(√
k1 A(n/k1)

))
and

R̂n(k; k1)
p∼
√
kA(n/k) (ρ̂− ρ)

ln(k/k1)
1− ρ

= Op

(( k
k1

) 1
2
−ρ

ln
( k
k1

))
.

1. If k = o(k1), R̂n(k; k1) converges in probability towards zero, as n → ∞, and the stated

asymptotic normality follows.

2. Let us next think that k/k1 → q > 0. Since
√
k1 A(n/k1) ∼

√
k A(n/k) qρ−

1
2 , A(n/k1) ∼

qρA(n/k) and B(n/k1) ∼ qρ′B(n/k), we can write

√
k
(
H̃τ (k; k1)− γ

)
= γ Z

(1)
k +

√
kA(n/k)

(
u
H
A(n/k) + v

H
B(n/k)

)
(1 + op(1))

+
(
σρW

R
k1 +

√
k A(n/k)qρ−

1
2

(
uρ,τA(n/k) qρ + vρ,ρ′B(n/k) qρ

′
)

(1 + op(1))
)

× q
1
2
−ρ a

H

(
ln q − a

H
+ o(1)

)
(1 + o(1)),

9
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with a
H

= −1/(1− ρ), (u
H
, v

H
) defined in (14) and (uρ,τ , vρ,ρ′ , σρ,WR

k ) given in (18), WR
k

and σρ made explicit in (19) and (20), respectively. Then

√
k
(
H̃τ (k; k1)− γ

)
= γ Z

(1)
k + σρ q

1
2
−ρ a

H

(
ln q − a

H

)
WR
k1

+
√
k A2(n/k)

(
u
H

+ uρ,τ q
ρa

H

(
ln q − a

H

))
(1 + op(1))

+
√
k A(n/k)B(n/k)

(
v
H

+ vρ,ρ′ q
ρ′a

H

(
ln q − a

H

))
(1 + op(1)).

As Cov
(
Z

(1)
k , WR

k1

)
= 0, the variance of

{
γ Z

(1)
k + σρ q

1
2
−ρ a

H

(
ln q − a

H

)
WR
k1

}
is the

value σ2(q; γ, ρ) in (24), and the remaining of the proof follows straightforwardly.

Remark 2. Note that if we choose k1 = kopt1 , optimal for the estimation of ρ, the values k in

Theorem 1, such that
√
kA(n/k)→∞,

√
kA2(n/k)→ 0 and

√
kA(n/k)B(n/k)→ 0, satisfy the

condition k = o(k1) in item 1. of Theorem 4.

The pattern of σ2(q; γ, ρ) in (24), as a function of q, is of the same type for all (γ, ρ), and is

pictured in Figure 1, left: this variance converges towards σ2
0 = γ2, as q → 0, next increases till a

value slightly larger than γ2, then decreases again till γ2 at q0 = exp (−1/(1− ρ)), e−1 < q0 < 1,

and finally increases fast, taking the value σ2
1 = γ2

(
1 + ((1− ρ)/ρ)2 − 2(1ρ)3/ρ

)
, for q = 1.

As the variance of the estimator H̃τ (k; k1) in (23), with k/k1 → q > 0, is well approximated

by σ2(q; γ, ρ)/k, we provide in Figure 1, right, the pattern of σ2(q; γ, ρ)/q, which provides an

indication on the behaviour of the variance of our estimator as a function of q.
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Figure 1: Pattern of σ2(q; γ, ρ) (left) and σ2(q; γ, ρ)/q (right), as a function of q, for γ = 1 and ρ = −1.

Remark 3. If we compare Theorems 1 and 4, we see that the estimation of γ, β and ρ at the same

level k induces an increase in the asymptotic variance of the final γ-estimator, unless we choose

10
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q = q0 = exp(−1/(1 − ρ)) and k = q × k1, with k1 optimal for the estimation of ρ. The use of

q = 1 in (24) leads us to the asymptotic variance σ2
1 = σ2(1) = γ2

{
1+((1− ρ)/ρ)2−2(1−ρ)3/ρ

}
,

greater than σ2
0 = γ2, the value associated with q = 0 in (24). As noticed before in Gomes and

Martins (2002), the asymptotic variance of the estimator in Feuerverger and Hall (1999) (where

also the three parameters are computed at the same level k) is given by σ2
FH

:= γ2 ((1− ρ)/ρ)4,

the asymptotic variance also achieved by Peng and Qi (2004), for an approximate second-order

reduced-bias maximum likelihood tail index estimator. Moreover, it is also known that if we

estimate ρ at an adequate large level k1, but estimate both γ and β at the same level k, we

already induce an extra increase in the asymptotic variance of the final γ-estimator, which is

then equal to σ2
D

= γ2((1 − ρ)/ρ)2, the minimal asymptotic variance of any “asymptotically

unbiased” estimator in Drees’ class of functionals (Drees, 1998). We have

σ0 < σD < σ1 < σFH if |ρ| < 0.8832 and σ0 < σD < σFH < σ1 if |ρ| > 0.8832.

In Figure 1 we provide both a picture and some values of σ0/γ ≡ 1, σD/γ, σ1/γ and σFH/γ, as

functions of |ρ|.

0.1 1.00 11.00 12.19 121.00

0.2 1.00 6.00 7.37 36.00

0.3 1.00 4.33 5.87 18.78

0.4 1.00 3.50 5.19 12.25

0.5 1.00 3.00 4.85 9.00

1.0 1.00 2.00 4.58 4.00

1.5 1.00 1.67 4.96 2.78

2.0 1.00 1.50 5.50 2.25

2.5 1.00 1.40 6.10 1.96

3.0 1.00 1.33 6.74 1.78
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Figure 2: Asymptotic standard deviations, σ0 , σD and σ1 , together with σF H , for γ = 1

It is obvious from Figures 1 and 2 that, whenever possible, it seems convenient to esti-

mate both β and ρ externally, at a k1-value higher than the value k used for the estimation

of the tail index γ, if we want to work with a tail index estimator potentially better than the

Hill estimator for all k. Ideally, the value k1 should be optimal for the estimation of the sec-

ond order parameter ρ. The optimal rate k/k1 depends obviously on ρ, but it is not a long
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way from 0.5 for the most common models. Indeed, for ρ = −0.25,−0.5,−1,−1.5,−2 we get

qmin := arg minq σ2(q; γ, ρ)/q = 0.46, 0.53, 0.62, 0.68, 0.72, respectively, a value quite close to

q0 = exp (−1/(1− ρ)) = 0.45, 0.51, 0.61, 0.67, 0.72, respectively.

5 A small-scale simulation study

In practice, and at the current state-of-the-art, Theorem 1 and the first part of Theorem 4 are

more relevant than the second part of Theorem 4, in the sense that it is easier to work with

k = o(k1), with k1 not necessarily “optimal” but enabling the validity of condition (15), basing

the estimation of γ on a value k that can be merely the estimated optimal kH0 in (10), or a

slightly larger value of the same order. For non-optimal, but practical ways of choosing such a

k, see Gomes et al. (2008b). But the second part of Theorem 4 is potentially more powerful. We

merely need to have adequate ways of estimating the optimal level k1 = kopt1 for the estimation

of ρ through the estimator in (17), again in the sense of minimal mean squared error. Provided

that an estimate k̂opt1 of kopt1 is available, as well as an estimate ρ̂ of ρ, we should then compute

the tail index estimator H in (11) at a level like k̂ = k̂opt1 × exp(−1/(1− ρ̂)) or even k̂ = k̂opt1 /2.

For the estimation of the second order parameters (β, ρ), we advise the following Algorithm

(similar to the one in Gomes and Pestana, 2007) :

S1. Given a sample (X1, X2, · · · , Xn), plot, for τ = 0 and τ = 1, the estimates ρ̂τ (k) in (17).

S2. Consider {ρ̂τ (k)}k∈K, for k ∈ K =
([
n0.995

]
,
[
n0.999

])
, and compute their median, denoted

ρτ . Choose the tuning parameter τ0 := arg minτ
∑

k∈K (ρ̂τ (k)− ρτ )2, and work with ρ̂τ0 :=

ρ̂τ0(kh1 ), with the superscript h in kh1 standing for “heuristic”, and

kh1 =
[
n0.995

]
. (25)

S3. Consider the β-estimator β̂τ0 = β̂(kh1 ; ρ̂τ0), with β̂(k; ρ) given in (21).

The choice of the level kh1 in (25) is not crucial for the estimation of (β, ρ). We merely

need to consider any reasonably large value of the order of n1−ε for small ε, due to the high

stability of ρ̂τ0(k) around the target ρ for large values k and for a large class of models. With

a slight restriction in the class of models where asymptotic normality holds, we are then able

to guarantee the validity of (15). The choice of the level kh1 in (25) can however be crucial if

12
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we decide replacing the optimal k1 = kopt1 in Theorem 4 by k1 = kh1 in (25), unless |ρ| is close

to 1. As we do not have yet techniques for the estimation of kopt1 , optimal for the estimation of

ρ, but we know that for a large variety of heavy-tailed models ρ = ρ′ and consequently, such a

kopt1 is of the order of n−4ρ/(1−4ρ), we have decided not to pay attention to the scale factor in

kopt1 = Cβ,β′,ρn
−4ρ/(1−4ρ), and to consider the following extra step for a heuristic γ-estimation:

S4. Compute γ̂ = H β̂,ρ̂(k̂), with k̂ = n−4ρ̂τ0/(1−4ρ̂τ0 ) × exp(−1/(1− ρ̂τ0)).

As soon as we have techniques for an estimation of Cβ,β′,ρ, an interesting topic beyond the scope

of this paper, such an estimate should be included as a scale in the value k̂ in Step S4.

Remark 4. This algorithm leads in almost all situations to τ = 0 whenever |ρ| ≤ 1 and

τ = 1, otherwise. Such an educated guess usually provides slightly better results than a “noisy”

estimation of τ , it has been recommended in practice and will be used in the simulations of this

Section.

We have performed Monte Carlo simulation experiments for the following parents with ρ = ρ′:

the Fréchet model, with d.f. F (x) = exp(−x−1/γ), x ≥ 0, γ > 0, for which ρ = ρ′ = −1, β = 1/2,

β′ = 5/6, and the Generalized Pareto (GP ) model, with d.f. F (x) = 1 − (1 + γx)−1/γ , x ≥ 0,

γ > 0, for which ρ = ρ′ = −γ and β = β′ = 1. To understand whether the choice in S4.

has some robustness to models with ρ 6= ρ′, we have also simulated an extreme value d.f., with

γ = 0.75. For this model we get ρ = −γ = −0.75 and ρ′ = γ − 1 = −0.25. For all these

distributions Theorem 4 holds, provided that we choose k1 = O
(
n−2(ρ+ρ′)/(1−2(ρ+ρ′))

)
.

For each value of n = 200, 500, 1000, 2000, 5000 and 10000, for each model and for the

estimate (β̂τ , ρ̂τ ) of (β, ρ), suggested before in this Section, we have simulated the distributional

behaviour of Ĥ0τ := Hn(k̂H0τ ), Ĥ0τ |H := H β̂τ ,ρ̂τ
(k̂H0τ ) and Ĥ0τ |1 := H β̂τ ,ρ̂τ

(k̂), with k̂ provided in

Step S4. of the algorithm, H, kH0 and H given in (8), (10) and (11), respectively. In Table 1

we present relative efficiency (REFF ) and bias-reduction indicators (BRI) of Ĥ0τ |H (first line)

and Ĥ0τ |1 (second line) relatively to Ĥ0τ , the Hill estimator computed at its estimated optimal

level. We have thus simulated REFF bH0τ |H | bH0τ
, REFF bH0τ |1| bH0τ

, BRI bH0τ |H | bH0τ
and BRI bH0τ |1| bH0τ

,

where for any two estimators γ̂1 and γ̂2 of γ, we define

REFFγ̂1|γ̂2 :=
√
MSEs(γ̂2)/MSEs(γ̂1), BRIγ̂1|γ̂2 := |Es(γ̂2 − γ)/Es(γ̂1 − γ)| ,

13
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so that the higher than one these indicators are, the better the first estimator performs com-

paratively with the second one. We also present in the third line of each entry of Table 1 the

indicator associated with the behaviour of H relatively to H, when both γ-estimators are com-

puted at their simulated optimal levels. These results were based on multi-sample simulations

of size 5000× 10. For details on multi-sample simulation, see Gomes and Oliveira (2001).

Table 1: REFF and BRI indicators

REFF indicators BRI indicators

n n

200 500 1000 2000 5000 10000 200 500 1000 2000 5000 10000

Fréchet parent, γ = 1 (ρ = ρ′ = −1)

1.026 1.055 1.082 1.109 1.152 1.188 1.845 4.151 10.168 77.432 12.422 6.355

0.974 1.046 1.101 1.160 1.252 1.332 1.789 3.925 10.322 727.308 11.106 5.674

1.200 1.190 1.226 1.299 1.453 1.594 75.998 29.310 5.296 5.742 11.611 16.333

GP parent, γ = 0.5 (ρ = ρ′ = −0.5)

1.639 1.582 1.543 1.509 1.471 1.444 2.099 1.939 1.836 1.750 1.655 1.593

1.636 1.575 1.518 1.452 1.349 1.267 2.200 1.882 1.694 1.542 1.368 1.256

1.377 1.343 1.310 1.277 1.250 1.219 1.289 1.231 1.200 1.251 1.194 1.145

GP parent, γ = 1 (ρ = ρ′ = −1)

1.201 1.156 1.134 1.114 1.099 1.087 2.651 2.305 2.126 1.955 1.839 1.736

1.162 1.184 1.210 1.235 1.272 1.289 2.669 2.217 1.950 1.700 1.455 1.280

1.881 2.066 2.237 2.428 2.743 3.012 8.584 22.085 15.020 217.431 58.593 343.201

GP parent, γ = 2 (ρ = ρ′ = −2)

1.172 1.063 1.046 1.060 1.188 1.166 3.634 2.597 2.359 2.342 2.327 2.207

1.169 1.792 2.128 2.087 1.191 1.170 4.141 2.879 2.329 1.924 1.520 1.320

1.165 1.142 1.133 1.133 1.124 1.131 1.459 1.319 1.321 1.244 1.084 1.118

EVγ parent, γ = 0.75 (ρ = −0.75, ρ′ = −0.25)

1.198 1.267 1.304 1.321 1.326 1.330 5.737 138.758 116.318 768.958 36.751 26.594

1.067 1.220 1.322 1.416 1.535 1.625 4.049 20.948 98.951 43.883 20.256 16.500

1.459 1.611 1.788 1.975 2.232 2.389 7.142 3.331 2.858 3.234 3.370 3.466

Remark 5. Note that only a small percentage of values is smaller than one. They are associated

with a sample size n = 200, the REFF measure and a Fréchet parent. Those values are written

in italic.

Finally, and on the basis of the first replicate, with size 5000, we present as a function of the

sample fraction k/n the patterns of simulated mean values and mean squared errors of H and
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H0(k; kh1 ) in (8) and (23), respectively, for n = 500, 1000, 5000 and a Generalized Pareto parent,

with γ = 0.5.
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Figure 3: Mean values and mean squared errors of H and H0(k; kh1 ), as a function of the sample fraction k/n used in

the estimation, for a few values of n and a Generalized Pareto parent, with γ = 0.5

Figure 3 draws again our attention to the potentiality of these MVRB estimators: they

overpass the Hill estimator for all k, both in terms of bias and mean squared errors.
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