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Abstract: 

A 3D matrix failure algorithm based upon Puck’s failure theory has been developed.  

The problem of calculating the orientation of a potential fracture plane, which is 

necessary to assess the onset of matrix failure, has been addressed.  Consequently, a 

fracture angle search algorithm is proposed.  The developed algorithm incorporates a 

numerical search of function extremes which minimises the required computational 

time for finding the accurate orientation of a potential fracture plane.  For illustration, 

the algorithm together with the three dimensional Puck failure model has been 

implemented in LS-DYNA explicit FE code.  The fracture angle search algorithm is 

verified using a virtual uniaxial compression test. 
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 1. INTRODUCTION 

The development of physically based failure criteria for Inter Fibre Failure (IFF) in 

long fibre reinforced polymer composites has been the focus of research for many 

years.  The first promising approach was proposed by Hashin [1] in 1980 who 

developed failure criteria for plane stress based on the Mohr Coulomb failure theory.  

The criteria stated that failure was caused by the stresses acting on an inclined fracture 

plane.  However, Hashin did not pursue the calculation of the orientation of that plane 

because of the required computational effort.  Further sound physical basis of the 

failure theory was posed by Puck [2] who extended the model, which now 

distinguishes three IFF modes: a) a tensile and b) a compressive shear matrix failure, 

in both of which the crack is perpendicular to direction 2-2, as well as c) a more 

complex failure mode in which the fracture plane rotates about 1-1 axis to form a 

wedge which can cause fibre failure in adjacent layers.  Further suggestions for an 

extension to a 3D state of stress were made in [2].  An extensive experimental study 

in [3] verified the failure criteria for cases with plane stress states and three 

dimensional states of stress. 

Initially, Puck’s model was not well recognised in the research community.  The 

reason was the large number of unknown parameters and the computationally 

expensive search of the fracture plane orientation.  In order to simplify the application 

of the failure model, Puck proposed pragmatic solutions for some of the parameters in 

[4].  As the theory was ranked very highly in the World Wide Failure Exercise 

(WWFE) [5, 6] the model attracted additional attention and further development was 

undertaken by Davila and Camanho [7], Pinho et al [8] and Greve and Pickett [9]. 
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 The computationally expensive search for the angle of the fracture plane still remains 

a limiting factor.  The application of the model in explicit Finite Element Analysis 

(FEA) requires a reliable, accurate, yet numerically efficient fracture plane orientation 

search algorithm.  For plane stress, analytical formulations are already available [4].  

The fracture angle for three dimensional states of stress, however, cannot be 

expressed in a closed form.  Therefore, a numerical search procedure needs to be 

employed.  So far, no efficient algorithms for finding the fracture plane angle for three 

dimensional states of stress have been proposed in open literature.   

This paper introduces a computationally efficient fracture angle search algorithm of a 

full 3D Puck failure theory for IFF.  The algorithm has been verified using a virtual 

uniaxial compression test and the capabilities of the overall model have been 

presented. 

2. THE PUCK FAILURE CRITERION FOR IFF 

The Puck IFF criteria are valid for UD composite laminates.  The UD ply is treated as 

transverse isotropic and is assumed to behave in a brittle manner.  The key idea of the 

Puck failure model is the assumption of a Mohr-Coulomb type of failure for loading 

transverse to the fibre direction.  Failure is assumed to be caused by the normal and 

shear stresses which are acting on the stress action plane ( nσ , 1nτ  and ntτ , see Figure 

1).  Positive normal stress on this plane promotes fracture while negative normal 

stress increases the material’s shear strength thus impeding fracture.  Pucks stress 

based failure criteria enable the calculation of the material exposure e  as a failure 

indicator.  Failure occurs under the following condition 

1=e . (1) 
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 The values of e  range between 0 (which denotes that material is not loaded) to 1 

(which denotes the onset of IFF).  A material exposure above 1 is physically 

inadmissible and denotes the initiation of damage of the material.  The material 

exposure e  is a function of the stress state �  and the orientation of the stress action 

plane against the thickness direction θ  

),( �θe . 
(2) 

Fracture will occur on the stress action plane where ),( �θe  has it's global maximum.  

This plane is called the fracture plane.  The angle of the fracture plane is called the 

fracture angle frθ .  The definition of fracture plane and fracture angle frθ  is 

illustrated in Figure 1.  

Puck's criteria define a master failure surface on the fracture plane.  Only the stresses 

which act on that plane (Mohr's fracture plane stresses nσ , 1nτ  and ntτ ) are assumed 

to contribute to IFF.  The fracture plane stresses are obtained by rotating the three 

dimensional stress tensor from material coordinates to the fracture plane.  The 

relationship between the stresses in the ply coordinate system and the Mohr stresses in 

the inclined fracture plane reads 
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From Figure 1 it can be seen that only nσ , 1nτ  and ntτ  contribute to IFF.  The fracture 

plane tractions are given by 

frfrfrfrn θθσθσθσσ sincos2sincos 23
2

33
2

22 ++= , 

frfrn θσθστ sincos 13121 +=  

)sin(coscossincossin 22
233322 frfrfrfrfrfrnt θθσθθσθθστ −++−= . 

(5) 

From Eqns (5) it is clear that all components of stress tensor, except 11σ , contribute to 

IFF.  

The master failure surface on the fracture plane is defined in terms of Mohr-Coulomb 

fracture plane stresses thus yielding the following failure criteria 
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(6) 

In order to evaluate Eqn (6) it is essential that frθ  is known.  The parameters in Eqn 

(6) are defined as follows (see [4]):  

• nR : resistance of the fracture plane against normal failure 

• 1nR , ntR : resistance of the fracture plane against shear  

• 1np , ntp : slope parameters representing internal friction effects (Mohr-

Coulomb type of failure). 

Unlike traditional failure criteria, Puck uses fracture plane resistances R .  The 

fracture plane resistance is the resistance of the material against fracture caused by 



 

 

 

ACCEPTED MANUSCRIPT 

 only one component of stress acting on that plane [4].  Two of these values can be 

obtained directly from simple uniaxial or shear experiments and are identical to the 

respective strength properties  

tn YR = , 

121 SRn = . (7) 

The fracture plane resistance ntR  usually cannot be measured directly.  The reason is, 

that unidirectional fibre reinforced composite materials (e.g. GFRP CFRP) when 

subjected to a pure transverse shear loading ( 23σ ) fail at an angle �45≈frθ .  In order 

to assume 23SRnt =  the failure must happen in the same plane where 23σ  is acting as 

a single stress (eg. �0=frθ  or �90=frθ ).  In fact, what could be measured as shear 

strength 23S , denotes not a pure shear failure, but a failure due to single normal tensile 

stress acting on the fracture plane [2] (see stress state1 in Table 2).  Puck proposes to 

calculate ntR  from uniaxial compression tests.  Specimens loaded uniaxially 

transverse to the fibre tend to fail by a shear failure on a fracture plane which is 

inclined by 0
frθ .  This and the experimentally observed compressive stress at failure 

cY  allow calculating the stress state at failure on the fracture plane.  Further 

assumption of a Mohr Coulomb type failure allows for the shear stress at failure ntτ  to 

be obtained in the case of 0=nσ .  This is the missing fracture plane resistance ntR  

(see Eqn. (8)). 

The slope parameters 1np  and ntp  characterise the slope of the fracture envelope at 

0=nσ  and can be derived experimentally by combined loading experiments [4]. 
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 The experimental data necessary to define fully the failure surface is usually not 

available.  Puck gives some pragmatic solutions for the parameters to be derived from 

simple uniaxial compression experiments [4].  The “missing” parameters are 

evaluated as follows: 

0tan2 fr

c
nt

Y
R

θ
= , 

0

1
2 tan(2 )nt

fr

p
θ

= − , 

nt

n
ntn R

R
pp 1

1 = . 

(8) 

This fully defines the master failure surface.  An example of a master failure surface 

obtained using the data in Table 1 is plotted in Figure 2.  The failure surface is open 

for negative nσ  because compressive stress nσ  impedes IFF.   

The master failure surface is not normally used directly in the design of components 

made of UD composite materials since stress analysis usually relies upon the 

assessment of stress state in the material coordinate system.  For known fracture 

angles the master failure surface can be projected on the material coordinate system.  

Two projected failure surfaces in 22σ - 33σ - 12σ  stress space and 22σ - 33σ - 23σ  stress 

space are plotted as examples in Figure 3.  Please note that due to symmetry in respect 

to the 22σ - 33σ  plane, only half of the failure surfaces are plotted in Figure 3 

Cutting a section of the projected failure surfaces in Figure 3 allows plotting of the 

commonly used failure envelopes 1222 σσ −  (plane 023 =σ ) and 2322 σσ −  (plane 

012 =σ ) which are displayed in Figure 4.  The failure surfaces and envelopes have 

been obtained using the constitutive parameters listed in Table 1. 
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 3. DETERMINATION OF THE FRACTURE ANGLE 

It is clear from Eqn (5) and (6) that the material exposure e  for IFF is a function of all 

components of stress (except 11σ ) and the fracture angle 

),,,,,( 1323123322 fre θσσσσσ . 
(9) 

Hence, failure can only be assessed if the fracture angle is known.  Ability to calculate 

frθ  requires further understanding of the relationship between the material exposure 

e  and the orientation of the action plane θ .  The material exposure e  can be 

presented graphically for a fixed stress states while allowing for θ  to vary.  Due to 

symmetry the range of θ  can be limited to �� 9090 ≤≤− θ  [2].  In Figure 5 )(θe  is 

plotted for the stress states presented in Table 2.  From Figure 5 it becomes clear that 

the fracture plane orientation is given by the angle for which the function )(θe  

reaches the global maximum, which denotes the critical stress action plane.  Hence, 

the fracture angle frθ  is given by 

( )θθ ee fr max)( = . 
(10) 

Stress state 1 in Figure 5 would therefore cause fracture in a plane inclined by 

�45=frθ  as observed experimentally.  According to [2] )(θe  only has one global 

maximum in the interval �� 9090 ≤≤− θ .  However, it can be shown that for special 

cases the function )(θe  has two global extremes (as illustrated in Figure 5 for stress 

state 3).  The function )(θe  is then symmetric and two theoretical fracture angles 

(same magnitude, but alternating sign) are possible.   

The calculation of the fracture angle therefore turns into a search for the global 

maximum of the function )(θe  within the interval �� 9090 ≤≤− θ .  For 2D stress 
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 states analytical solutions exist, however, for three dimensional stress states analytical 

solutions have not been proposed yet. 

The lack of analytical solutions requires numerical solutions to be applied.  The 

fracture angle frθ  can be obtained by calculating )(θe  at a certain number of angles 

θ in the domain �� 9090 ≤≤− θ .  The accuracy of frθ  then depends upon the number 

of angles θ  for which )(θe  has been evaluated.  This stepwise scan of )(θe  is a 

computationally very expensive procedure since for every point of )(θe  the stress 

tensor has to be rotated by θ .   

An efficient and accurate numerical algorithm for evaluation of the global maximum 

of )(θe  is proposed in this paper.  Numerical bisection methods for bracketing the 

extremes of one dimensional functions have been studied and the Golden Section 

Search [10] has been adapted to the problem of finding the fracture plane angle.  In 

the remainder of this section the developed numerical algorithms are introduced 

which enable a robust approach to determination of the fracture angle. 

3.1. Golden Section Search 

The Golden Section Search is a function maximisation/minimisation technique.  The 

technique only applies to functions where an extreme is known to exist within the 

search range.  The extreme is found by successively narrowing the search range by 

evaluating the function at triples of points.  The distances of these points form Golden 

Ratios which gives the technique its name. 

The function )(θe  is evaluated at 1θ , 2θ  and 3θ .  The angle 3θ  is chosen by means of  

ϕ=
a
b

 (11) 
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 with ϕ  being the golden ratio 

2
51 +=ϕ . (12) 

An additional point )( 4θe  is evaluated.  The position of the point is chosen as follows 

c
a

a
b =  (13) 

thus guaranteeing that 4θ  is symmetric to 3θ  in the original search range.  The 

decision how to narrow the search range in the next calculation step is taken by 

comparing )( 3θe  and )( 4θe .  In case )()( 34 θθ ee ≥  (indicated as )( b4θe  in Figure 6) 

the new search range is limited by 3θ  and 2θ , otherwise (indicated as )( a4θe  in 

Figure 6) the search continues between 1θ  and 4θ .  The choice of ϕ  as ratio 

guarantees that the extreme is bracketed in the larger section which leads to an 

optimal method of function maximisation [10].  The iterative maximum search is 

performed until the distance between the outer points of the bracket is tolerably small.  

The decision what is tolerably small should be linked to the expected accuracy for 

frθ .  Since the accurate value for frθ  is definitely somewhere between the outer 

bounds )( 1θe  and )( 2θe , the distance 

12 θθ −=k  (14) 

is compared with the exit criterion exitk .  The iteration is stopped when the condition 

exitkk =  
(15) 
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 is satisfied.  Thereby exitk  denotes the lowest guaranteed accuracy of the obtained 

fracture angle frθ .  An example for the Golden Section search is illustrated in Figure 

7. 

3.2. Extended Golden Section Search 

Figure 7 shows that the Golden Section Search algorithm quickly brackets the 

maximum, but needs a quite large number of iterations to find the accurate value for 

frθ .  It is therefore proposed to combine the Golden Section Search with a curve 

interpolation technique called Inverse Parabolic Interpolation [10].  

Initially, the Golden Section search is used to bracket the maximum sufficiently 

accurately.  It is then assumed that )(θe  can be approximated by a parabola near the 

already bracketed maximum.  The upper and lower bound of the last Golden Section 

Search iteration and an arbitrary point between them are chosen to define a parabola.  

These three points ( )),( 111 θθ eP , ( )),( 222 θθ eP  and ( )),( 333 θθ eP  fully define the 

parabola ( )θp  by 

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )2313

21
3

3212

31
2

3121
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−−+
−−
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e
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(16) 

As the maximum of ( )θp  is normally sufficiently close to the sought maximum of 

( )θe  the following approximation for frθ  is adopted 

( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( )12323212

12
2

3232
2

12
2 2

1
θθθθθθθθ
θθθθθθθθθθ

eeee
eeee

fr −−−−−
−−−−−−≈ . (17) 
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 Thus, the unnecessary iterations close to the maximum of ( )θe  are avoided without 

compromising the accuracy of the algorithm.  An example for the extended Golden 

Section Search is illustrated in Figure 8. 

3.3. Numerical efficiency 

The application of the Puck IFF model in an explicit FE environment requires a fast 

fracture angle search algorithm to find the fracture plane.  Within the fracture angle 

search, the transformation of the stress state from material coordinates on the fracture 

plane is the most computationally expensive step.  The algorithm which evaluates the 

smallest number of values of ( )θe  for a given accuracy, will give the most 

numerically efficient solution.  Following, the three approaches, stepwise scan of 

( )θe , Golden Section Search and extended Golden Section Search are judged for their 

numerical efficiency.  The assessment of the numerical efficiency presented is 

performed using stress state 1 in Table 2.  The required number of values of ( )θe  

depends on the respective stress state, but similar results have been achieved for other 

stress states.  The stepwise scan is performed using a decreasing scanning step 

allowing for an assessment of scan step and fracture angle accuracy.  The Golden 

Section search and the extended Golden Section search were performed for 

decreasing values of the exit criterion which results in a increasing number of 

evaluated points and a decreasing error for frθ .  The quoted error was calculated 

using the fracture angle frθ  obtained from a stepwise scan with a scanning step of 

0.01°.  The comparison of the results is presented in Figure 9. 

Figure 9 demonstrates the advantages of the extended Golden Section Search.  

Reliable fracture angles are already calculated from as few as 6 evaluated points.  The 

Golden Section search already needs 13 points for a similar accuracy.  The stepwise 
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 scan fails to predict the fracture angle with similar accuracy for a scanning step 

greater then one, which results in 180 and more necessary evaluated points.  It should 

be noted that the extended Golden Section Search requires at least 4 evaluated points 

and the Golden Section Search requires at least 2 data points.  For this reason no error 

is quoted below these values.   

4. VERIFICATION OF THE FRACTURE ANGLE SEARCH 

The reliability of the fracture angle algorithm is demonstrated by a comparison of 

reference fracture envelopes obtained by dense stepwise scanning )(θe  and envelopes 

obtained using the proposed fast angle search algorithm.  The reference values of 

function )(θe  were calculated by varying the angle by 0.5° for every successive data 

point thus giving a reliable prediction of the fracture angle for comparison.  The 

failure envelopes predicted using the extended Golden Section Search algorithm are 

displayed in Figure 10. 

It is demonstrated that the proposed fracture angle search algorithm reliably finds the 

correct fracture angles.  The fracture angle prediction obtained using the extended 

Golden Section Search algorithm is virtually identical to that obtained by the 

computationally expensive stepwise scan of )(θe  thus resulting in practically 

identical failure envelopes. 

The proposed fracture angle algorithm is suitable for application in both implicit and 

explicit FE.  The implementation of the new fracture angle search algorithm in 

explicit FE, in particular, has already promoted the use of the 3D Puck failure model 

in aerospace and marine applications of authors’ interest.  To-date, due to the 

computational cost of the fracture angle search, the application of this sophisticated 

failure theory was prohibitive.  For illustration, the algorithm has been implemented 
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 in the commercially available explicit FE solver LS-DYNA which enabled a virtual 

uniaxial compression test to be used for verification of the proposed algorithm.  The 

aim of the simulation was to demonstrate that the potential fracture plane can be 

predicted by the model and that the fracture angle search works reliably for 3D states 

of stress.  For the calculation of the material exposure, the constitutive parameters 

given in Table 1 were used.  Since no experimental results were available within this 

study, experimental results presented in [3] are given for comparison.  The FE model 

and its results along side with the experimental results [3] are presented in Figure 11.   

The material exposure is accurately predicted to be the highest at the same locations 

within the specimen’s gauge section where the experiments showed the evidence of 

IFF.  The contour plot of the material exposure in Figure 11 shows that the highest 

values form a plane whose slope is inclined by 0
frθ  from the loading direction.  A 

potential failure initiates near an edge due to stress concentrations as expected.  Due 

to symmetry the FE model predicts two crossing planes of a potential failure.  In 

experiments only one fracture plane is observed, usually triggered by imperfections.  

The example shows that the newly implemented fracture angle search, as a part of the 

Puck failure model, is able to predict correctly the potential fracture plane thus 

promising realistic predictions of matrix failure in the design of composite 

components. 

5. CONCLUSIONS 

A variant of Puck failure model for predictive modelling of matrix failure in 3D has 

been implemented into LS-DYNA for explicit FE simulations.  In this paper, the 

problem of fracture angle calculation is outlined and potential solutions are presented.  

On that basis, an accurate and numerically efficient fracture angle search algorithm 
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 was developed.  The proposed algorithm is expected to become widely used given the 

recent increased interest in three dimensional failure theory.  Further potential 

applications might arise with the outcome of the World Wide Failure Exercise II 

(WWFEII), which is currently ongoing. 

Failure envelopes, calculated using the proposed fracture angle search algorithm, are 

compared with an accurate but computationally expensive method of predicting the 

fracture plane angle in Puck’s model.  The comparison demonstrates the accuracy of 

the newly proposed approach.  Additionally, a virtual uniaxial compression test was 

performed.  The predicted fracture plane was in good agreement with results of 

similar experiments.  

The FE implementation of the fracture angle search algorithm enables a wider 

application of the Puck failure model for the design of composite components and 

structures.  Puck's physically based failure theory has been proven to be more realistic 

compared to other theories [6].  The future work will focus onto generating a more 

elaborate experimental data set based on simple and complex 3D stress states for 

validation of the fracture angle search algorithm and the constitutive model as a 

whole.  The implementation of the Puck IFF failure model as presented here will be 

part of a three dimensional composite damage model, which is currently under 

development. 
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Figures and captions 

 

Figure 1 Definition of the fracture plane by the fracture angle θfr for the Puck IFF model 

 

Figure 2 The master failure surface described by Eqn (6) computed using the parameters in Table 1 

 

Figure 3 Projection of the master failure surface on the material coordinate system 
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Figure 4 Example of the projection of the master failure surface on the material coordinates 

 

Figure 5 The stress action plane dependent material exposure for the stress states in Table 2 

 

Figure 6 Golden Section Search algorithm schematic 
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Figure 7 Fracture angle search by Golden Section Search 

 

Figure 8 Fracture angle search by extended Golden Section Search 

 

Figure 9 Assessment of numerical efficiency and accuracy of the fracture angle search algorithms 
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Figure 10 Verification of the fracture angle algorithm by comparison of failure envelope obtained by 
stepwise scanning of e(θ) and the extended Golden Section Search 

 

Figure 11 Application example: uniaxial compression of UD composite transverse to the fibres (image 
of the failed specimen reproduced from [3]) 
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Tables 

 
Table 1 Typical properties for a Carbon Epoxy composite [3] 

tensile strength 2 direction tY  59.1 MPa 

compressive strength 2 direction cY  231.2 MPa 

in plane shear strength 12S  98.4 MPa 

fracture angle for pure compression 0
frθ  51° 

 
Table 2 Example stress states for which the Puck failure model predicts IFF (calculated using 

properties in Table 1) 

stress state 11σ  22σ  33σ  12σ  23σ  13σ  nσ  1nτ  ntτ  frθ  

1 (pure shear) 0.0 0.0 0.0 0.0 59.1 0.0 59.1 0.0 0.0 45° 

2 (pure shear) 0.0 0.0 0.0 98.4 0.0 0.0 0.0 98.4 0.0 0° 

3 (uniaxial 
compression) 0.0 -231.2 0.0 0.0 0.0 0.0 -92.0 0.0 -113.2 51° 

4 (arbritary 3D) 0.0 -10.0 40.0 21.0 24.0 43.3 49.7 47.8 0.75 67° 

 
 


