Adaptive multi-class Bayesian sparse regression - An application to brain activity classification

Abstract : In this article we describe a novel method for regularized regression and apply it to the prediction of a behavioural variable from brain activation images. In the context of neuroimaging, regression or classification techniques are often plagued with the curse of dimensionality, due to the extremely high number of voxels and the limited number of activation maps. A commonly-used solution is the regularization of the weights used in the parametric prediction function. It entails the difficult issue of introducing an adapted amount of regularization in the model; this question can be addressed in a Bayesian framework, but model specification needs a careful design to balance adaptiveness and sparsity. Thus, we introduce an adaptive multi-class regularization to deal with this cluster-based structure of the data. Based on a hierarchical model and estimated in a Variational Bayes framework, our algorithm is robust to overfit and more adaptive than other regularization methods. Results on simulated data and preliminary results on real data show the accuracy of the method in the context of brain activation images.
Type de document :
Communication dans un congrès
MICCAI 2009: fMRI data analysis workshop - Medical Image Computing and Computer Aided Intervention, Sep 2009, London, United Kingdom. pp.1, 2009
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00504093
Contributeur : Vincent Michel <>
Soumis le : lundi 19 juillet 2010 - 20:09:48
Dernière modification le : jeudi 7 février 2019 - 14:35:37
Document(s) archivé(s) le : mardi 23 octobre 2012 - 10:41:12

Fichier

WM_Final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00504093, version 1

Collections

Citation

Vincent Michel, Evelyn Eger, Christine Keribin, Bertrand Thirion. Adaptive multi-class Bayesian sparse regression - An application to brain activity classification. MICCAI 2009: fMRI data analysis workshop - Medical Image Computing and Computer Aided Intervention, Sep 2009, London, United Kingdom. pp.1, 2009. 〈hal-00504093〉

Partager

Métriques

Consultations de la notice

673

Téléchargements de fichiers

255