Mutual information-based feature selection enhances fMRI brain activity classification

Abstract : In this paper, we adress the question of decoding cognitive information from functional Magnetic Resonance (MR) images using classification techniques. The main bottleneck for accurate prediction is the selection of informative features (voxels). We develop a multivariate approach based on a mutual information criterion, estimated by nearest neighbors. This method can handle a large number of dimensions and is able to detect the non-linear correlations between the features and the label. We show that, by using MI-based feature selection, we can achieve better perfomance together with sparse feature selection, and thus a better understanding of information coding within the brain than the reference method which is a mass univariate selection (ANOVA).
Type de document :
Communication dans un congrès
2008 5th IEEE international symposium on biomedical imaging: From nano to macro, May 2008, Paris, France. pp.592 - 595, 2008, 〈10.1109/ISBI.2008.4541065〉
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00504092
Contributeur : Vincent Michel <>
Soumis le : lundi 19 juillet 2010 - 19:51:52
Dernière modification le : jeudi 7 février 2019 - 14:35:28
Document(s) archivé(s) le : mardi 23 octobre 2012 - 10:41:05

Fichier

Mutual_Information-based_featu...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Vincent Michel, Cécilia Damon, Bertrand Thirion. Mutual information-based feature selection enhances fMRI brain activity classification. 2008 5th IEEE international symposium on biomedical imaging: From nano to macro, May 2008, Paris, France. pp.592 - 595, 2008, 〈10.1109/ISBI.2008.4541065〉. 〈hal-00504092〉

Partager

Métriques

Consultations de la notice

369

Téléchargements de fichiers

216