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REGULARITY OF THE EUCLID ALGORITHM.

APPLICATION TO THE ANALYSIS OF FAST GCD ALGORITHMS.

EDA CESARATTO, JULIEN CLÉMENT, BENOÎT DAIREAUX, LOÏCK LHOTE,

VÉRONIQUE MAUME-DESCHAMPS, AND BRIGITTE VALLÉE

Abstract. There exist fast variants of the gcd algorithm which are all based on principles due to

Knuth and Schönhage. On inputs of size n, these algorithms use a Divide and Conquer approach,
perform FFT multiplications with complexity µ(n) and stop the recursion at a depth slightly
smaller than lg n. A rough estimate of the worst–case complexity of these fast versions provides
the bound O(µ(n) logn). Even the worst-case estimate is partly based on heuristics and is not
actually proven. Here, we provide a precise probabilistic analysis of some of these fast variants,
and we prove that their average bit–complexity on random inputs of size n is Θ(µ(n) logn,
with a precise remainder term, and estimates of the constant in the Θ–term. Our analysis

applies to any cases when the cost µ(n) is of order Ω(n logn), and is valid both for the FFT
multiplication algorithm of Schönhage–Stassen, but also for the new algorithm introduced quite

recently by Fürer [12]. We view such a fast algorithm as a sequence of what we call interrupted
algorithms, and we obtain two main results about the (plain) Euclid Algorithm which are of
independent interest. We precisely describe the evolution of the distribution of numbers during
the execution of the (plain) Euclid Algorithm, and we exhibit an (unexpected) density ψ which
plays a central rôle since it always appear at the beginning of each recursive call. This strong
regularity phenomenon proves that the interrupted algorithms are locally “similar” to the total
algorithm. This finally leads to the precise evaluation of the average bit–complexity of these fast
algorithms. This work uses various tools, and is based on a precise study of generalised transfer
operators related to the dynamical system underlying the Euclid Algorithm.

1. Introduction

Gcd computation is a widely used routine in computations on long integers. It is omnipresent
in rational computations, public key cryptography or computer algebra. Many gcd algorithms
have been designed since Euclid. Most of them compute a sequence of remainders by successive
divisions, which leads to algorithms with a quadratic bit–complexity (in the worst-case as well
as in the average-case). Using Lehmer’s ideas [20] (which replace large divisions by large mul-
tiplications and small divisions), computations can be speeded-up by a constant factor, but the
asymptotic complexity remains quadratic. Major improvements in this area are due to Knuth [19],
who designed the first subquadratic algorithm in 1970, and to Schönhage [24] who subsequently
improved it the same year. They use Divide and Conquer techniques combined with Lehmer’s ideas
to compute in a recursive way the quotient sequence (whose total size is O(n)). Moreover, if a fast
multiplication with subquadratic complexity (FFT, Karatsuba...) is performed, then one obtains
a subquadratic gcd algorithm (in the worst-case). Such a methodology has been recently used
by Stehlé and Zimmermann [25] to design a Least-Significant-Bit version of the Knuth-Schönhage
algorithm. According to experiments due to [5] and [22], these algorithms (with an FFT multipli-
cation) become efficient only for integers of size larger than 10000 words, whereas, with Karatsuba
multiplication, they become efficient for smaller integers (around 100 words). A precise description
of the Knuth-Schönhage algorithm can be found in [29, 22] for instance.

1.1. Previous results. The average-case behaviour of the quadratic gcd algorithms is now well
understood. First results are due to Heilbronn and Dixon in the seventies, who studied for the
first time the mean number of iterations of the Euclid Algorithm. Then Brent analysed the Binary
algorithm [4], and Hensley [14] provided the first distributional analysis for the number of steps
of the Euclid Algorithm. Since 1995, the Caen Group [26, 28, 27] and its collaborators have
performed an average-case analysis of various parameters of a large class of Euclidean algorithms.
More recently, distributional results have also been obtained for the Euclid algorithm and some of
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its variants: first Baladi and Vallée prove that a whole class of so–called additive costs of moderate
growth follows an asymptotic gaussian law [2] (for instance, the number of iterations, the number
of occurrences of a given digit, and so on...). In 2006, Lhote and Vallée [21] showed that a more
general class of parameters also follows an asymptotic gaussian law. This class contains the length
of a remainder at a fraction of the execution, and the bit-complexity. To the best of our knowledge,
there are yet few results on “efficient” gcd algorithms. In [7], the authors perform an average-case
analysis of Lehmer’s algorithm, and exhibit the average speed-up obtained using these techniques.
However, as far as we know, there does not exist any probabilistic analysis of subquadratic gcd
algorithms. It is the goal of this paper to perform such a study.

1.2. Our results. There are two algorithms to be analyzed: the HG algorithm and the G algo-
rithm. The G algorithm computes the gcd, and the HG algorithm (for “half-gcd” Algorithm) only
simulates the “first half” of the G algorithm. We first show that these algorithms can be viewed as
a sequence of the so–called Interrupted Euclidean algorithms. An Interrupted Euclidean algorithm
is a subsequence formed by successive iterations of the plain algorithm, as we now explain: On
an input (A,B), the plain Euclid algorithm builds a sequence of remainders Ai, a sequence of
quotients Qi, and a sequence of matrices Mi [see Section 2.1]. On an input (A,B) of binary size
n, the Interrupted Euclidean algorithm E[δ,δ+γ] starts at the index k of the execution of the Euclid
Algorithm, as soon as the remainder Ak has already lost δ n bits (with respect to the initial A which
has n bits) and stops at index k+ i as soon as the remainder Ak+i has lost γ n additional bits (with
respect to the remainder Ak). The HG algorithm just simulates the interrupted algorithm E[0,1/2].
A quite natural question is: How many iterations are necessary to lose these γ n bits? Of course, it
is natural to expect that this subsequence of the Euclidean algorithm is just locally similar to the
“total” Euclidean Algorithm; in this case, the number of iterations would be close to γ P (where
P is the number of iterations of the “total” Euclid algorithm). We prove in Theorem 1 that this
is indeed the case: This is why we say that the algorithm is “regular”.

For a probabilistic study of fast variants, a precise description of the evolution of the distribution
during the execution of the plain Euclid Algorithm is of crucial interest. For real inputs, we know
that the continued fraction algorithm does not terminate (except for rationals ...). Moreover, as
the continued fraction algorithm is executed, the distribution of reals tends to the distribution
associated to the Gauss density ϕ, defined as

(1) ϕ(x) =
1

log 2

1

1 + x
.

For rational inputs, we begin with a given distribution on the set of the inputs x := A1/A0 of size
n, and we consider the rationals xk := Ak+1/Ak. We focus on the first index k where the binary
size of xk is less than (1 − δ)n and we denote the corresponding rational xk by x〈δ〉. What is the
distribution of the rational x〈δ〉? The evolution of this distribution is clearly more intricate than in
the real case, since at the end of the Algorithm (when δ = 1), the distribution is the Dirac measure
at x = 0. We obtain here a precise description of this distribution (see Theorem 2 and Figure 1)
which surprisingly involves the density function

(2) ψ(x) :=
12

π2

∑

m≥1

log(m+ x)

(m+ x)(m+ x+ 1)
.

We also need precise results on the distribution of some truncations of remainders. This is done
in Theorem 3. Then, the choice of parameters in the fast algorithms must take into account
this evolution of distribution. This is why we are led to introduce some variants of the classical
algorithms, denoted by HG and G for which the precise analysis can be performed.

The fast versions also involve other functions, which are called the Adjust functions. Such functions
perform a few steps of the (plain) Euclid Algorithm. However, the bit-complexity of the Adjust
functions depends on the size of the quotients which are computed during these steps. Even for
estimating the worst–case complexity of the fast variants, the Adjust functions are not precisely
analyzed. The usual argument is “The size of a quotient is O(1)”. Of course, this assertion is false
in the worst-case, and only true on average, provided that the distribution on input pairs be made
precise. Moreover, the Adjust functions are related to some specific steps, which happen just when
the pairs have lost a fraction of their bits. We are then led to study the mean value of the size of
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Figure 1. Density distribution of x〈δ〉 in the case δ = 1/2, corresponding to the density
distribution of the rational xk := Ak+1/Ak obtained as soon as ℓ(Ak) is smaller than
(1/2)ℓ(A0). The diagram compares Monte-Carlo simulations to the exact value of ψ(x).
For simulations, we consider 3 537 944 rationals with 48 bits, drawn according to the
Gauss density ϕ. For estimating the density, the interval [0, 1] is subdivided into equal
subintervals of length 1/50.

the quotients computed at these specific steps, and we prove that it is asymptotic to a constant
L which is defined in (19). And, we also need this type of result for our truncated data. This is
covered by Theorem 4.

There are now two main fast multiplication algorithms, both based on FFT principles. We consider
in fact a whole class of possible fast multiplication algorithms, for which the following is true:

There exist a function a(n) satisfying1 a(n) = O(log logn), a(n) = Ω(1) and two constants A1, A2

(probably large) such that, for any pair of integers u, v whose respective sizes satisfy ℓ(u) = n and
ℓ(v) = Kn for some integer K, the bit–cost M(u, v) of the product between two numbers u and v
satisfies

(3) A1K µ(n) ≤M(u, v) ≤ A2K µ(n) with µ(n) = n log na(n).

In particular, Fürer proved this year [12] that it is possible to choose a(n) = 2O(log⋆ n), and
improves the previous function a(n) = log logn, due to Schönhage and Strassen.

Such a fast multiplication also leads to a fast division:
There exist two constants A3, A4 (larger than A1, A2) such that, for any pair of integers u, v whose
respective sizes satisfy ℓ(u) = n and ℓ(v) = Kn for some integer K > 1, the bit–cost D(u, v) of the
division between two numbers v and u satisfies2

(4) A3 (K − 1)µ(n) ≤ D(v, u) ≤ A4 (K − 1)µ(n) with µ(n) = n log na(n).

Finally, we obtain the exact average-case complexity of our versions of the two main algorithms of
interest, the HG algorithm, and the G algorithm itself. When they use a fast multiplication which
satisfies (3), we prove the following estimates [Theorems 6 and 7] for the average bit-complexity
B, G of both algorithms, on the set of random inputs of size n:

En[B] = Θ(1)n log2 na(n)

[
1 +O

(
1

a(n)

)]
, En[G] = Θ(1)n log2 na(n)

[
1 +O

(
1

a(
√
n log n)

)]
.

Furthermore, we obtain precise information about the Θ–term, which involves two types of con-
stants : first, the constants A1, A2, which intervene in the cost of the mutiplication [see (3)], second,
together with the density ψ defined in (2), another mysterious “spectral” constant σ (defined in
Section 1.3). Our proven average bit–complexity of the HG,G algorithms then appears to be of
the same order as the usual (heuristic) bound on the worst-case complexity of HG,G algorithms.

1the notation f = Ω(g) means that there exists B > 0 such that, for n large enough, fn ≥ Bgn
2In this case (K − 1)n is the size of the quotient
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1.3. Methods. All our main conclusions obtained here are “expected”, and certainly will not
surprise the reader. However, the irruption of the density ψ is unexpected, and an actual proof of
this phenomenon is not straightforward. This is due to the fact that there are correlations between
successive steps of the Euclid Algorithm. Accordingly, the tools which are usual in analysis of
algorithms [11], like generating functions, are not well–suited in this case. All the analyses which
will be described here are instances of the dynamical analysis paradigm, where one proceeds in
three main steps: First, the (discrete) algorithm is extended into a continuous process, which can
be defined in terms of the dynamical system related to the Gauss map. Then, the transfer operator
Hs defined as

Hs[f ](x) :=
∑

m≥1

1

(m+ x)2s
f

(
1

m+ x

)

serves to describe how the distribution evolves, in the continuous world. Finally, the executions
of the gcd algorithm are now described by particular trajectories (i.e., trajectories of “rational”
points), and a transfer “from the continuous to the discrete” must be performed, using Dirichlet
series.

The present paper mainly uses two previous works, and can be viewed as an extension of them:
first, the average-case analysis of the Lehmer-Euclid algorithm performed in [7]; second, the dis-
tributional methods described in [2, 21]. First, we again use the general framework that Daireaux
and Vallée have developed for the analysis of the Lehmer-Euclid Algorithm, which explains how
the Lehmer-Euclid algorithm can be viewed as a sequence of Interrupted Euclidean algorithms
E[δ,δ+γ]. Whereas some “easy” properties of the transfer operator Hs were used in [7], we here
need properties which were already crucial in previous distributional analysis [2, 1, 21] –namely,
the US Property for the quasi-inverse (I − Hs)

−1 of the transfer operator–. The US(α) Property
can be summarized in an informal way as follows:

Property US(α). When Hs acts on the functional space C1(I) of functions with a continuous
derivative on the unit interval I := [0, 1], the following holds on the strip S := {s, 1−α ≤ ℜs ≤ 1}

(i) The quasi-inverse (I − Hs)
−1 has a unique pôle located at s = 1.

(ii) It is of polynomial growth with respect to |ℑs| for s large enough.

The main result of Dolgopyat, made more precise by Baladi and Vallée, proves that there exists an
α > 0 for which Property US(α) holds. The arguments which show the existence of such a strip
are not all constructive, and we do not know any explicit strictly positive lower bound on α. In
the paper, such a lower bound is denoted by σ, and the parameter σ := min(σ, 1/2) plays a central
rôle in our analyses: This is the mysterious constant which intervenes in the constants of our two
main Theorems. It intervenes also in all the (exponential) remainder terms [see Theorems 1, 2, 3,
4, 5].

In order to establish our main results, we are led to studying parameters of various type, whose
generating functions involve operators Gs,t which depend on two variables s, t. However, for small
t’s, all these operators can be viewed as a perturbation of the quasi-inverse (I−Hs)

−1 and the US

Property extends to these perturbed quasi-inverses. In particular, the existence of a strip S where
the US property holds uniformly with respect to t is crucial in the analysis.

Plan and notations. Section 2 describes the main algorithms HG and G. Section 3 presents the
main steps towards a proven analysis. Then, we state our main results of general interest, without
proofs. In Section 4, we describe the versions HG and G to be analyzed, and, with the results (yet
unproved of Section 3), we show the two main results about their average bit-complexity. Section
5 describes the general framework of the Dynamic Analysis paradigm, and Section 6 is devoted
to the proof of the main results stated in Section 3. Some technical results are gathered in an
appendix (Section 7).
We denote the logarithm in base 2 by lg x, and ℓ(x) denotes the binary size of integer x, namely
ℓ(x) := ⌊lg x⌋ + 1.

2. Fast and Interrupted Euclidean algorithms

We present in this section the main algorithms studied in this paper. We first describe the
general structure of the Knuth-Schönhage algorithm. We explain how the HG algorithm can be
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seen as a sequence of interrupted Euclidean algorithms, where the sequence of divisions is stopped
as soon as the integers have lost a fraction of their number of bits.

2.1. Euclid’s algorithm. Let (A1, A0) be a pair of positive integers with A1 ≤ A0. On input
(A1, A0), the Euclid algorithm computes the remainder sequence (Ak) with a succession of divisions
of the form

(5) Ak = Qk+1Ak+1 +Ak+2, with Qk+1 =

⌊
Ak
Ak+1

⌋
,

and stops when Ap+1 = 0. The integer Qk is the k–th quotient and the successive divisions are
written as

Ak = Qk+1Ak+1, with Ak :=

(
Ak+1

Ak

)
and Qk :=

(
0 1
1 Qk

)
,

so that

(6) A0 = M(i)Ai with M(i) := Q1Q2 · · · Qi.

In the following, we consider a part of the plain Euclidean Algorithm E , (which is sometimes called
a “slice”) between index i and index j, namely the interrupted algorithm E(i,j) which begins with
the pair Ai as its input and computes the sequence of divisions (5) with i ≤ k ≤ j − 1. Its output
is the pair Aj together with the matrix

(7) M(i,j) =

j∏

k=i+1

Qk, M(1,i) = M(i),

with matrix M(i) defined in (6). We define the size of a matrix M as the maximum of the binary
sizes of its coefficients. The size ℓ(i,j) of the matrix M(i,j) satisfies

(8) ℓ(i,j) ≤ 2(j − i) +

j∑

k=i+1

ℓ(Qk)

The (naive) bit-complexity C(i,j) of the algorithm E(i,j) satisfies

(9) C(i,j) :=

j∑

k=i+1

ℓ(Ak) · ℓ(Qk) ≤ ℓ(Ai+1) ·
j∑

k=i+1

ℓ(Qk).

The Lehmer Algorithm [20, 18] replaces large divisions by large multiplications and small divisions.
The fast algorithm applies recursively the principles of Lehmer, and using fast FFT multiplica-
tions of complexity Θ(µ(n)) (with µ(n) = n log n log log n) replaces the costly computation of the
remainder sequence Ai (which requires O(n2) bit operations), by a sequence of matrix products: it
divides the total Euclidean Algorithm into interrupted Euclidean algorithms, of the form E(i,j) and
computes matrices of the form M(i,j), defined in (7). The recursion, based on Divide and Conquer
techniques, is stopped when the integers are small enough, and, at this moment, the algorithm
uses small divisions. One finally obtains a subquadratic gcd algorithm.

2.2. How to replace large divisions by small divisions? Lehmer remarked that, when two
pairs (A,B) and (a, b) are sufficiently close (i.e., the rationals A/B and a/b are close enough),
the Euclid algorithm on (A,B) or (a, b) produces (at least at the beginning) the same quotient
sequence (Qi). This is why the following definition is introduced:

Definition. Consider a pair (A,B) with A ≤ B and an integer b of length ℓ(b) ≤ ℓ(B). We
denote by π[b](A,B) any pair (a, b) which satisfies

∣∣∣∣
A

B
− a

b

∣∣∣∣ ≤
1

b
.

And the criterion (due to Lehmer and made precise by Jebelean) is:

Lemma 1. [Lehmer, Jebelean] For a pair (A,B) with A ≤ B and n := ℓ(B), consider, for m ≤ n,
the small pair (a, b) = π[b](A,B) of length ℓ(b) = m, and the sequence of the remainders (ai) of the
Euclid Algorithm on the small input (a, b). Denote by k the first integer k for which ak satisfies
ℓ(ak) ≤ ⌈m/2⌉. Then the sequence of the quotients qi of the Euclid Algorithm on the small input
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(a, b) coincides with the sequence of the quotients Qi of the Euclid Algorithm on the large input
(A,B) for i ≤ k − 3.

Usually, this criterion is used with a particular pair π[b](A,B) where the integer b is obtained by
the m-truncation of B, i.e., the suppression of its (n − m) least significant bits. Then a is easy
to compute since it may be chosen itself as the m-truncation of A. In this case, the π[b] function
corresponds to truncation of both A and B and is denoted by Tm(A,B). However, the Jebelean
criterion holds for any choice of (a, b) = π[b](A,B), even if the integer a is less easy to compute in
the general case: the integer a can be chosen as the integer part of the rational (Ab)/B, and its
computation needs a product and a division.

2.3. Interrupted Algorithms. In Jebelean’s property (Lemma 1), the Euclid Algorithm on the
small pair (a, b) of binary size m is stopped as soon the remainder ak has lost ⌈m/2⌉ bits. This is a
particular case of the so–called Interrupted Euclidean Algorithm of parameter δ (with 0 < δ < 1),
which stops as soon as the current remainder has lost δm bits (with respect to the input which has
m bits). This (general) interrupted Algorithm denoted by Eδ, and described in Figure 2, is defined
as follows: On the input (A,B) of size n, this algorithm begins at the beginning of the Euclid
Algorithm, and stops as soon as the remainder Ai has lost δ n bits (with respect to the input B).
Then, with the notations defined in Section 2.1, one has Eδ = E(1,Pδ), with

(10) Pδ := min
{
k; lgAk ≤ (1 − δ)n

}
.

Figure 2 also describes the Êδ Algorithm, which is just a slight modification of the Eδ Algorithm,

where the last three steps are suppressed (in view of applications of Lemma 1), and P̂δ denotes the

variable Pδ − 3. Then, Pδ, and P̂δ are just the number of iterations of the Eδ, Êδ algorithms and
P1 = P is just the number of iterations of the Euclid Algorithm.

In the following, it will be convenient to consider more general interrupted algorithms, of the form
E[δ,δ+γ]. The Algorithm E[δ,δ+γ] is defined as follows: On the input (A,B) of size n, this algorithm
begins at the Pδ-th iteration of the Euclid Algorithm, as soon as the remainder Ak has lost δ n
bits (with respect to the input B) and stops when the remainder Ai has lost γ n additional bits
(with respect to the input B). Then, E[0,δ] = Eδ = E(0,Pδ) and E[δ,γ+δ] = E(Pδ,Pδ+γ), where Pδ is
defined in (10). Of course, we can also design the variants with a hat, where the last three steps
are suppressed.

Algorithm Eδ(A,B)
n := ℓ(B)
i := 1
A1 := A,A0 := B
M0 := I
While lgAi > (1 − δ) · n
Qi := ⌊Ai−1/Ai⌋
Ai+1 := Ai−1 −QiAi

Mi := Mi−1 · Qi

i := i+ 1
Return (Ai−1, Ai,Mi−1)

Algorithm bEδ(A,B)
n := ℓ(B)
i := 1
A1 := A,A0 := B
M0 := I
While lgAi > (1 − δ) · n
Qi := ⌊Ai−1/Ai⌋
Ai+1 := Ai−1 −QiAi

Mi := Mi−1 · Qi

i := i+ 1
Return (Ai−3, Ai−2,Mi−3)

Figure 2. The Eδ Algorithm, and the Êδ algorithm, which is a slight modification
of the Eδ Algorithm.

2.4. Implementing the interrupted algorithms with the help of the HG Algorithm. This

is the Ê1/2 algorithm which is used in Jebelean’s Lemma. This lemma is a main tool to compute
(in a recursive way) a function HG [for Half-gcd]. On an input (A,B) of binary size n, this function

returns exactly the same result as Ê1/2, but runs faster. With the algorithm HG, it is possible to
design a fast algorithm denoted G which computes the gcd itself. Let us explain the main principles
how the HG algorithm can be used inside the E[δ,δ+γ] algorithm. This is described in Figure 3 and
we comment now this figure.
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Algorithm E[δ,δ+γ](A,B)

Input. The pair (A′, B′) obtained after Pδ iterations of the E Algorithm on
the input pair (A,B).
Output. The pair (C ′, D′) which would be obtained after Pδ+γ iterations of
the E Algorithm on the input pair (A,B).

(i) Truncate the input (A′, B′), with a truncation length m = 2γn, and
obtain a small pair (a, b) of length m.

(ii) Perform the HG algorithm on the pair (a, b), which produces a pair
(c, d) and a matrix M.

(iii) Perform the product ( CD ) := M−1
(
A′

B′

)
.

(iv) Use the Adjust function, which performs some steps of the Euclid Al-
gorithm from the pair (C,D) and stops as soon the current remainder
pair (C ′, D′) has a size equal to ⌊(1 − δ − γ)n⌋.

Figure 3. An implementation of the E[δ,δ+γ] Algorithm using the HG algorithm.

Suppose that the Euclid Algorithm, on an input (A,B) of length n, has already performed Pδ
iterations. Now, the current pair, denoted by (A′, B′) has a binary size close to (1− δ)n. We may
use the Jebelean Property to continue. Then, we choose a length m for truncating of the form
m = 2γn, an integer b of length m, and consider the small pair (a, b) = π[b](A

′, B′) with π[b] defined
in Section 2.1. The HG algorithm on this pair (a, b) will produce a matrix M which would have
been produced by the Euclid algorithm on the pair (A′, B′). Then, the pair (C,D) computed as

( CD ) = M−1
(
A′

B′

)
is a remainder pair of the Euclid algorithm on the input (A,B). The size of

the matrix M is approximately m/2, but smaller than m/2 (due to the three backward steps of
Lemma 1), and thus of the form (m/2) − r(A,B), where r(A,B) is the number of bits which are
“lost” for the matrix M during the three backward steps. Then, with (8), r(A,B) satisfies,

(11) 3 ≤ r(A,B) ≤ Q(A,B) with Q(A,B) :=

P1/2(a,b)∑

i=P1/2(a,b)−2

ℓ(qi) + 1.

Here, qi are the quotients that occur in E(a, b), and Pδ(a, b) is defined in (10). If the truncature
length m is chosen as a linear function of the input size n, of the form m = 2γn, then the size of
the pair (C,D) is approximately equal to [1 − δ − γ]n, but slightly larger. If we wish to obtain a
remainder pair (C ′, D′) of length [1 − δ − γ]n, we have to perform, from the pair (C,D) a certain
number of steps of the Euclid Algorithm, in order to cancel the loss due to the backward steps.
This is the goal of the Adjust function, whose cost R(A,B) will be estimated with (9) as

(12) 3(1 − δ)n ≤ R(A,B) ≤ (1 − δ)n ·Q(A,B).

We recall that, in the papers where the worst-case of fast GCD’s is studied, the authors suppose
that Q is O(1) (in the worst case). We will prove that the mean value of Q on Ωn will be indeed
asymptotic to a precise constant η, which will be defined later. Then, the asymptotic cost of Step
(iv) will be of order O(n).

Step (iii) performs a matrix product and uses a fast multiplication of type (3). The integer pair
(A′, B′) has size ≈ (1 − δ)n, while the coefficients of the matrix M−1 have size ≈ γn. Then, if
there exists an integer K for which (1− δ) = Kγ, the total cost S(A,B) of Step (iii) is “expected”
to satisfy

(13) 4A1
1 − δ

γ
µ(γn) ≤ S(A,B) ≤ 4A2

1 − δ

γ
µ(γn).

Finally, we have designed an algorithm which produces the same result as the interrupted algorithm
E[δ,δ+γ], and is described in Figure 3.

In Section 3.4, we shall state a class of results which prove that these last estimates (13) hold in
the average case, as soon as a convenient choice of parameters δ, γ is done. In the same vein, these
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results will prove that the mean value of parameter R on Ωn is of order O(n), which will entail,
with (11, 12), that the cost R of the Adjust functions will be negligible with respect to the cost of
matrix products.

2.5. The usual designs for the HG and G algorithms. How to use this idea for computing (in
a recursive way) the HG Algorithm? The usual choice for γ is γ = 1/4, more precisely m = ⌈n/2⌉.
Then, the previous description provides a method to obtain E[0,1/4] (with a first choice δ = 0), then

Ê[1/4,1/2] (with a second choice δ = 1/4). Since Ê[0,1/2] = E[0,1/4] · Ê[1/4,1/2], we are done. Remark
that using the “hat” algorithm in the second step leads to modifying the Adjust function for this
step, which may also perform some backward steps in the Euclid Algorithm on the large inputs.

The general structure of the algorithm HG is described in Figure 3. The recursion is stopped when

the naive algorithm Ê1/2 becomes competitive. This defines a threshold for the binary size denoted
by S (remark that S = S(n) is a function of the input size n).

With this HG algorithm, we can obtain an algorithm named G which computes the gcd. The
idea for designing such an algorithm is to decompose the total Euclid Algorithm into interrupted
algorithms, as

E[0,1] = E[0,1/2] · E[1/2,3/4] · . . . · E[1−(1/2)k,1−(1/2)k+1] · . . .
Then, the HG algorithm, when running on inputs of size n/(2k) produced by the E[0,1−(1/2)k]

algorithm can easily simulate the E[1−(1/2)k,1−(1/2)k+1] algorithm.

This decomposition also stops when the naive algorithm gcd becomes competitive. This defines a
threshold for the length denoted by T (remark that T = T (n) is also a function of the input size
n).

Algorithm G(A,B)
1 n := ℓ(B)
2 T :=

√
n log n

3 While ℓ(A) ≥ T do

4 (A,B,M1) := HG(A,B)
5 Return gcd(A,B)

Algorithm HG(A,B)
n := ℓ(B)
S := log2 n
Return HG(A,B, S)

Algorithm HG(A,B, S)
1 n := ℓ(B)

2 If n ≤ S then return bE1/2(A,B)
3 M := I
4 m := ⌊n/2⌋;
5 For i := 1 to 2 do

6 (ai, bi) := Tm(A,B)
7 (ci, di,Mi) := HG(ai, bi, S)

8

“
Ci
Di

”
:= M−1

i ( A
B )

9 Adjusti(Ci, Di,Mi)
10 (A,B) := (Ci, Di)
11 M := M ·Mi

12 Return (A,B,M)

Figure 4. General structure of the classical algorithms HG and G.

We now consider the HG Algorithm, where all the products use a FFT multiplication which satisfies
(3). In this case, we choose the recursion depth H so that the main cost will be the “internal”

cost, of order Θ(µ(n)) log n, since the cost due to the leaves (where the naive Ê1/2 is performed)

will be of asymptotic smaller order. Then, H satisfies the relation3

2H ·
( n

2H

)2

≈≤ µ(n) log n,

so that
n

2H
≈≤ S(n) = log2 n, H ≈≥ lg n− 2 lg lgn.

This is the “classical” version of the Knuth–Schönhage algorithm. Clearly, the cost of this algorithm
comes from three types of operations:

(i) the two recursive calls of line 7;

3The notation a(n) ≈≤ b(n) means: There exist two constants A,B with 0 < A < B < 1 for which

Ab(n) ≤ a(n) ≤ Bb(n)
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(ii) the products done at lines 8 and 11: with a clever implementation, it is possible to use
in line 8 the pair (c, d) just computed in line 7. If all the matrices and integer pairs have
–on average– the expected size, the total expected cost due to the products is [12 + 8 +
8] µ(n/4) = 28 :,Θ(1)µ(n/4), where the constants hidden in the Θ–term are A1, A2 defined
in (3);

(iii) the two functions Adjust performed at line 9, whose total average cost is R(n).

We consider as the set of all possible inputs of the HG algorithm the set Ω := {(u, v); 0 ≤ u ≤ v},
and the set of all possible inputs of size n,

(14) Ωn := {(u, v); 0 ≤ u ≤ v, ℓ(v) = n}

is endowed with some probability Pn. We denote by B(n) the average number of bit operations
performed by the algorithm HG on Ωn. Since each of the two recursive calls is made on data with
size n/2, it can be “expected” that B(n) asymptotically satisfies

(15) B(n) ≈ 2B(
n

2
) + 28 Θ(1)µ(

n

4
) +R(n) for n > S.

Moreover, the average cost R(n) can be “expected” to be negligible with respect to the multi-
plication cost µ(n). If the FFT multiplication is used of type (3), the total average bit–cost is
“expected” to be

B(n) ≈ Θ(µ(n) log n) = Θ(n(logn)2 a(n)),

where the constants hidden in the Θ-terms are 7A1, 7A2, with A1, A2 defined in (3).

With this (heuristic) analysis of the HG algorithm, it is easy to obtain the (heuristic) average
bit–complexity of the G algorithm which makes a recursive use of the HG algorithm and stops as
soon as the naive algorithm becomes competitive. It then stops at a recursion depth M , when

( n

2M

)2

≈≤ µ(n) log n,

so that

n

2M
≈≤ T (n) =

√
n log n, M ≈≥

1

2
lg n− lg lg n.

The average bit–cost G(n) of the G algorithm on data of size n satisfies

G(n) ≈
M−1∑

i=0

B(
n

2i
) so that G(n) ≈ Θ(B(n)).

3. The main steps towards a proven analysis.

The analysis is based on the Divide and Conquer equation (15), which is not a “true” equality.
It is not clear why a “true” equality should hold, since each of the two recursive calls is done on
data which do not possess a priori the same distribution as the input data. And, of course, the
same problem will be asked at each depth of the recursion. If we wish a “Divide and Conquer”
probabilistic approach to be possible, we have to make precise the evolution of the distribution
during the Euclid Algorithm, but also the distribution of the truncated data.

We first state in Section 3.1 our main two results, Theorems 1 and 2, which are of general interest.
In particular, Theorem 2 involves the density ψ already defined in (2) which plays a central rôle
in our analysis. These theorems are stated here, but not proved. This will be done in Section
6. Then, in Section 3.3, we explain how Theorem 2 can be applied to truncated data, as soon
as the truncation is a probabilistic one, defined in Section 3.2. Section 3.4 explains the analysis
of the Adjust Functions, and provides estimates for the mean bit–complexity of the interrupted
algorithms described in Section 2.4, in particular the mean–complexity of Steps (iii) and (iv).
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3.1. Evolution of densities. Consider a density f on the unit interval = [0, 1], which is “ex-
tended” to the set Ω := {0 ≤ u < v} via the equality f(u, v) := f(u/v). The set Ωn formed with
the inputs of size n, already defined in (14), namely Ωn := {0 ≤ u < v, ℓ(v) = n} is endowed with
the restriction of f to Ωn: for any pair (u, v) ∈ Ωn,

(16) Pn,f (u, v) :=
1

|Ωn|f
f(
u

v
), where |Ωn|f :=

∑

(u,v)∈Ωn

f(
u

v
)

is the total f–weight of the set Ωn. Remark that, for f ≡ 1, we recover the uniform density on Ωn.

For reasons which will appear later, the subsets Ω̃, Ω̃n formed with coprime inputs

(17) Ω̃ := {(u, v) ∈ Ω, gcd(u, v) = 1},

(18) Ω̃n := {(u, v) ∈ Ω, gcd(u, v) = 1, ℓ(v) = n},
play an important (intermediate) rôle. We endow Ω̃n with the probability P̃n,f defined in the same
vein as in (16).

The evolution of the density during the execution of the Euclid Algorithm is of crucial interest.
For (u, v) ∈ Ω, the Euclid Algorithm creates a sequence of successive remainders uk, with u0 :=
v, u1 := u, . . . up := gcd(u, v). The corresponding integer pairs are denoted by Uk := (uk+1, uk),
and the corresponding rationals are denoted by xk := uk+1/uk. We recall that Pδ(u, v) is the
smallest integer k for which lg uk < (1− δ)ℓ(u0). We are interested in describing the density of the
pair U〈δ〉 defined as

U〈δ〉 := Uk when Pδ(u, v) = k.

This integer pair is the input for all interrupted algorithms with a beginning parameter δ. Since
the density on Ωn is defined via the associated rationals, the position of rational

x〈δ〉 := xk when Pδ(u, v) = k

inside the interval [0, 1] will be essential.

We are interested in the study of the random variable Pδ: Since the rational x loses ℓ(x) bits during
P (x) iterations, it can be expected that it loses δℓ(x) bits during δP (x) iterations, which would
imply that Pδ(x) is sufficiently close to δP (x). This is what we call the regularity of the algorithm.

We do not succeed to directly study these two variables Pδ, x〈δ〉, and we replace them by some of
their probabilistic variants, as we now explain. Consider, for some ρ > 0 with ρ ≤ (1 − δ), the
interval [2(1−δ)n(1 − 2−ρn), 2(1−δ)n], and draw an integer W uniformly in this interval. Denote by
P δ the first integer k for which uk is less than W , and by x〈δ〉 the rational xk. The two underlined
variables define probabilistic variants of the plain variables. Since they depend on parameter ρ, we
call them the ρ–probabilistic variants. Moreover, as soon as n is sufficiently large (n > 1/ρ), the
interval is contained in an interval ]A/2, A] and contains at most two possible rationals xk (this is
due to the fact that uk+2 ≤ (1/2)uk). This proves, that in the case when n > 1/ρ, the probabilistic
variable x〈δ〉 equals x〈δ〉, x〈δ〉+1, or x〈δ〉+2, while the variables Pδ and P δ satisfy |Pδ − P δ| ≤ 2.

With techniques close to the renewal methods, we prove a quasi-powers expression for the moment
generating function of P δ, from which we deduce an asymptotic gaussian law for P δ on Ω, then
an asymptotic gaussian law for the deterministic variable Pδ on Ω. We then obtain an extension
of the result of Baladi-Vallée [2] (which exhibits an asymptotic gaussian law for P := P1), even if
our proof cannot directly apply to δ = 1.

Theorem 1. Consider the set Ωn endowed with a probability Pn,f relative to a strictly
positive function f of class C1. Then, for any δ ∈]0, 1], the random variable Pδ is asymptot-
ically gaussian on Ωn [with a speed of convergence of order O(n−1/3)]. Moreover, if ρ(δ) :=
(1/2) min(σ, 1/2) min(δ, 1 − δ) where σ is a strictly positive lower bound for the width of the US
Strip, the ρ(δ)–probabilistic variant P δ of Pδ satisfies

En,f [P δ] = 2 log 2
1

|Λ′(1)| δn+D1 +O(2−nρ(δ)),

Vn,f [P δ] = 2 log 2

∣∣∣∣
Λ′′(1)

Λ′(1)3

∣∣∣∣ δn+D2 +O(2−nρ(δ)).
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Here, D1, D2 are some constants. The constants D1, D2 and the constant in the O-term only
depend on the function f .

Our second result is related to the distribution of the probabilistic variant x〈δ〉, and, here, it does
not seem possible to derive some information for the deterministic variable x〈δ〉.

Theorem 2. Denote by σ a strictly positive lower bound on the width of the US strip and let
σ := min(σ, 1/2). Denote by ψ the density defined in (2). Consider a strictly positive density f of
class C1, a real δ with 0 < δ < 1, an interval J ⊂ I whose length |J | satisfies | lg(|J |)| < (1/2)σ(1−δ),
and denote by ρ(δ) the real defined as ρ(δ) := (1/2)σmin(1 − δ, δ). Then, the probability that
the ρ(δ)–probabilistic rational x〈δ〉 computed by the Euclid Algorithm belongs to the interval J
satisfies

Pn,f [x〈δ〉 ∈ J ] =

(∫

J

ψ(t)dt

)
·
[
1 +O

(
2−nρ(δ)

)]
.

The constant in the O-term only depends on the function f via its norm ||f ||1 := sup |f |+sup |f ′|.

3.2. Probabilistic truncations. Finally, we are also interested by the distribution of the trun-
cated pairs. We recall that the truncated pairs classically used are obtained with truncations of
“numerator” A and “denominator” B of pair (A,B). It is not clear how to reach the distribution of
such truncated pairs. This is why we define a probabilistic truncation, which leads to more regular
distributions, and also allows us to apply Jebelean’s Property (Lemma 1).

For x = (A,B) ∈ Ωn, and m ≤ n, we define πm(A,B) as follows:

(1) Choose a denominator b in the set {v, ℓ(v) = m} of integers of binary size m, with a
probability proportional to b. More precisely, we choose a denominator b according to the
law

Pr[b = b0] =
1

θm
· b0 with θm =

∑

b;ℓ(b)=m

b.

(2) Compute the integer a which is the integer part of x · b. This computation involves the
product A · b then the division of the integer A · b by B. This can be done in O(µ(n)) with
a O–constant larger than the constant of the multiplication(see Equation (4). Of course,
this does not give rise to a very efficient algorithm. However, we will see that using this
probabilistic truncation does not change the order of the average complexity of the HG
algorithm. We return to this remark in Theorem 5.

(3) Define πm(A,B) as the pair (a, b), and remark that the set π−1
m (a, b) is the pairs (C,D) of

Ωn for which the associated rational C/D belongs to the interval

J
(a
b

)
:=
[a
b
,
a

b
+

1

b

[
, with

∣∣∣J(
a

b
)
∣∣∣ =

1

b
= Θ(2−m).

This is sufficient for applying Jebelean’s criterion (Lemma 1).

We start with a strictly positive density f of class C1 on [0, 1], and for any integer m, the function
gm = gm[f ] defined on Ωm as

gm[f ](u, v) =
1

|J(y)|

∫

J(y)

f(t)dt, with y :=
u

v

only depends on the rational u/v and satisfies Pn,f [(A,B);πm(A,B) = (a, b)] = Pm,gm[f ](a, b).
Furthermore, for any (u, v) ∈ Ωm, the relation

gm[f ](u, v) = f(
u

v
) +O(|J(

u

v
)| · ‖f‖1)

proves that the function gm[f ] (viewed as a function defined on Q) is a smoothed version of the
initial function f . Furthermore,

Pm,gm[f ]

Pm,f
= 1 +O(2−m).

Since f is a density on [0, 1], the cumulative sum of gm[f ](x) on Ωm satisfies

∑

(u,v)∈Ωm

gm[f ](u, v) =
∑

ℓ(v)=m

v

[
∑

u<v

(∫

J( u
v )

f(t)

)]
= θm

(∫

I

f(t)dt

)
= θm.
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This allows a comparison between two probabilities:

Lemma 2. Consider a strictly positive density f of class C1 on I. For any n, for any m ≤ n, for
any (a, b) ∈ Ωm, one has

Pn,f [(A,B);πm(A,B) = (a, b)] = Pm,f (a, b) · [1 +O(2−m)],

where the constant in the O-term only depends on f via its norm ||f ||1 := sup |f | + sup |f ′|.

3.3. Truncations and evolution of densities. In our framework, the truncation length m is
linear with respect to the input size n, of the form m = 2γn, and, in this case, we denote πm by
π〈2γ〉. With Theorem 2 and the previous comparison of densities done in Lemma 2, we obtain the
following result which will be a central tool in our analysis. When

Theorem 3. Denote by σ a strictly positive lower bound on the width of the US strip and
let σ := min(σ, 1/2). Denote by ψ the density defined in (2). Consider a real δ ∈ [0, 1[, and a
parameter γ strictly less than (1/2)(1 − δ)σ, and denote by ρ(δ, γ) the real defined by

ρ(0, γ) = 2γ, ρ(δ, γ) := min{σ(1 − δ) − 2γ, (1/2)σδ, 2γ} for δ > 0, 2γ < σ(1 − δ) .

Then, the distribution of the 〈2γ〉–truncation of the ρ(δ, γ)–probabilistic rational x〈δ〉 computed
by the Euclid Algorithm satisfies

Pn,ψ[x; π〈2γ〉(x〈δ〉) = y0] = Pm,ψ[y0] ·
[
1 +O(2−nρ(δ,γ))

]
.

3.4. Mean bit–complexity of the interrupted algorithm E [δ,δ+γ]. We return now to the
algorithm E[δ,δ+γ] defined in Figure 3 and we use the notations of Section 2.4. We will study a
probabilistic version of the algorithm E[δ,δ+γ] which will be denoted by E [δ,δ+γ]. We now describe
the main differences between E[δ,δ+γ] and its probabilistic version. In the probabilistic version
E [δ,δ+γ]:

(a) the input pair of the algorithm is the pair U 〈δ〉 relative to the parameter ρ(δ, γ)

(b) the output pair of the algorithm is the pair U 〈δ+γ〉 relative to the parameter ρ(δ + γ, γ)

(c) Step (i) uses the probabilistic truncature π〈2γ〉 defined In Section 3.2 and 3.3.

As in the initial E[δ,δ+γ], Step (iii) uses any fast multiplication of type (3).

We first analyse the mean cost R of the Adjust function performed in Step (iv), which deals with
the probabilistic version Q of parameter Q defined in (11). In fact, we study a more general
parameter Q

δ
which involves the size of quotients, when the pair (u, v) has already lost a fraction

δ of its bits,

Q
δ
(u, v) :=

P δ(u,v)∑

i=P δ(u,v)−2

ℓ(qi),

and the (initial) parameter Q is obtained for δ = 1/2. A central result is :

Theorem 4. Consider the set Ωn endowed with a probability Pn,f relative to a strictly positive
function f of class C1. Then, for any δ ∈]0, 1], the mean value of the cost Q

δ
is asymptotic to a

constant η, which does not depend on δ and density f , and involves the Gauss density ϕ defined
in (1), together with the operators Hs,[ℓ] and H′

s defined in (30) and (31), under the form

(19) En,f [Qδ] = η
[
1 +O(2−nρ(δ))

]
with η :=

−6 log 2

π2

∫

I

H′
1 ◦ H3

1,[ℓ][ϕ](t)dt,

where ρ(δ) := (1/2)σmin(1 − δ, δ) is the constant of Theorem 2.

This following result studies the bit-complexity of the Interrupted Algorithm E [δ,δ+γ] and proves

two facts: First, the cost of the multiplications performed in Step (iii) is exactly of the same order
as this expected. Second, the cost of the Adjust function performed in Step (iv) is negligible with
respect to costs of Step (iii).

Theorem 5. Consider two parameters γ, δ satisfying γ < (1/2)σ(1− δ), with the constant ρ(δ, γ)
from Theorem 3. Then, the probabilistic version E [δ,δ+γ] of the E[δ,δ+γ] algorithm described in the
beginning of this Section 3.4. satisfies the following:
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(i) In the case when the ratio (1 − δ)/γ is integer, the mean bit–complexity cost En,ψ[S] of
Step (iii) satisfies :

En,ψ[S] = Θ(1)
1 − δ

γ
µ(γn)[1 +O(2−nρ(δ,γ))],

where the hidden constants in the Θ–term are independent on the pair (γ, δ) and can be
chosen as 4A1, 4A2 for constants A1, A2 relative to the fast multiplication defined in (3).

(ii) The mean bit–complexity cost En,ψ[R] of Step (iv) satisfies :

En,ψ[R] = (1 − δ)nη
[
1 +O(2−nρ(δ,γ))

]

and involves the constant L defined in (19).
(iii) The mean bit–complexity cost En,ψ[T ] of Step (i) satisfies

En,ψ[T ] = Θ(1)
1 − δ

γ
µ(γn)[1 +O(2−nρ(δ,γ))],

where the hidden constants in the Θ–term are independent on the pair (γ, δ) and can be
chosen as 2 max(A1, A3), 2 max(A2, A4) for constants A1, A2 relative to the fast multipli-
cation defined in (3), and constants A3, A4 relative to the fast division defined in (4).

(iv) The total bit-complexity of Steps (i), (iii) and (iv) is

En,ψ[S +R+ T ] = Θ(1)
1 − δ

γ
µ(γn)

[
1 +O

(
1

log(γn)a(γn)

)]

and involves the functions µ(n) and a(n) associated to the fast multiplication. As previ-
ously, the hidden constants in the Θ–term are independent on the pair (γ, δ) and can be
chosen as 4A′

1, 4A
′
2,

(20) A′
1 := max

(
A1,

A3

2

)
, A′

2 := max

(
A2,

A4

2

)

and involve constants Ai, A
′
i defined in (3,4). The hidden constants in the O–term is

independent on the pair (γ, δ) too.

4. The algorithms to be analyzed.

There are three main differences between the usual HG and G Algorithm and our versions to be
analyzed which are denoted as HG and G. See Figure 5.

(i) Our algorithms are randomized, since we will use the probabilistic variants E [δ,δ+γ] of the
interrupted algorithms E[δ,δ+γ].

(ii) For the HG algorithm, the number L of recursive calls and the degree 2γ of truncatures
(i.e., the ratio m/n) are not the same as in the HG Algorithm. The algorithm HG is
also built as a Divide and Conquer Algorithm; however, the relation which relates the
two parameters γ, δ with σ, crucial for applying Theorems 3 and 5, leads to a recursive
algorithm HG with L recursive calls, where L depends on parameter σ of the US strip and
satisfies (L+ 1) > 2/σ.

(iii) The study is done when the initial density equals ψ, since it is quasi-invariant under the
recursive calls. This choice makes easier the study of various recursions. The constants
which appear in Theorems 6 and 7 are relative to this particular case. Since any other
strictly positive density f satisfies

min f

maxψ
≤ En,f [C]

En,ψ[C]
≤ max f

minψ
,

Theorems 6 and 7 hold with any strictly positive density, with other constants, which
depend on f .

As before, the recursive calls in the HG Algorithm are stopped when the naive Ê1/2 Algorithm
becomes competitive. The calls of the G Algorithm to the HG algorithm are stopped when the
naive gcd algorithm becomes competitive.
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Algorithm G(A,B)
1 n := ℓ(B)
2 T :=

√
n log n

3 While n ≥ T do

4 (A,B,M) := HG(A,B)
5 Return gcd(A,B)

Algorithm HG(A,B)
1 n := ℓ(B)
2 S := log2 n
3 Return HG(A,B, S)

Algorithm HG(A,B, S)
1 n := ℓ(B)

2 If n ≤ S then return bE1/2(A,B)
3 M := I
4 m := ⌊n/L⌋;
5 For i := 1 to L do

6 (a, b) := πm(A,B)
7 (ci, di,Mi) := HG(a, b, S)

8

“
Ci
Di

”
:= M−1

i ( A
B )

9 Adjusti (Ci, Di,Mi)
10 (A,B) := (Ci, Di)
11 M := M ·Mi

12 Return (A,B,M)

Figure 5. General structure of the algorithms HG and G to be analyzed. The
number of recursive calls L satisfies L > (2/σ) − 1.

4.1. The first recursive call. Inside the first recursive call of G to HG, the parameter δ belongs
to [0, 1/2]. We suppose that there are L ≥ 2 recursive calls of HG to himself. We denote by BL
the bit–complexity of the HG Algorithm when it performs L recursive calls, and we analyse the
asymptotic behaviour of the mean value En,ψ[BL] (for n→ ∞).

Suppose indeed L ≥ 2. Then, the possible values for pairs (δ, γ) of the first recursive call satisfy

(21) δ ∈ ∆1 :=

{
i

2L
, with 0 ≤ i ≤ L− 1

}
, γ1 :=

1

2L
,

and the pairs relative to the h-th recursive call are

δ ∈ ∆h :=

{
i

2Lh
, with 0 ≤ i ≤ Lh − 1

}
γh :=

1

2Lh
.

We stop the recursion at a level H for which the total bit–cost P (n) of the naive gcd computations
is negligible with respect to the total cost of the algorithm. More precisely, if a(n) is the function
which intervenes in the multiplication cost, we ask

(22) P (n) = Θ

(
LH ·

( n

LH

)2
)

= n log2 n =
µ(n) log n

a(n)
, H ∼

(
log n

logL

)
,

n

LH
= Θ(log2 n).

The parameter ρ(δ, γ) must be strictly positive, first for δ ∈ ∆1. This is only possible if

L >
2

σ
− 1,

and, in this case, the minimum value of ρ(δ, γ) at the h-th recursion level satisfies

(23) ∃K > 0, ∀h ≥ 1, min {ρ(δ, γh), δ ∈ ∆h} ≥ K

Lh
.

With (23), Theorem 3 entails the following Divide and Conquer probabilistic equation,

En,ψ[BL] =

(
∑

δ∈∆1

Eδn,ψ[BL]

)
·
[
1 +O

(
2−nK/L

)]
+ Cn,1,

where Cn,1 is the total bit–complexity of steps Steps (i), (iii) and (iv) performed during the execu-
tions of the E [δ,δ+γ] Algorithm, together with the matrix product performed in Line 11, for δ ∈ ∆1

easily estimated with Theorem 5. Expanding the recursion (always with Theorem 3) leads to the
estimate

En,ψ[BL] =

(
P (n) +

H∑

h=1

Cn,h

)[
H∏

h=1

1 +O
(
2−nK/L

h
)]
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where Cn,h is the total mean cost of all the Steps (i), (iii) and (iv) of the interrupted algorithms
at the h–th level, corresponding to δ ∈ ∆h, γ := γh. The error term comes from the comparison of
the distributions made with Theorem 3, and is of the form, with (22) and (23)

1 +O(ε(n)), with ε(n) =
H∑

h=1

2−nK/L
h ≤ H2−nK/L

H

= Θ(logn) 2−K log2 n = O(n−K1 logn).

The cost Cn,h at the h–th recursion level is easily evaluated with Theorem 5. We let b(n) :=
a(n) log n. For h = 1, Theorem 5 entails the estimate

Cn,1 = Θ(1)

[
L∑

i=1

2L(1 − i

2L
)

]
µ(

n

2L
)

[
1 +O

(
1

b(n/L)

)]
+Θ(1)

[
L∑

I=1

i

]
µ(

n

2L
)

[
1 +O

(
1

b(n/L)

)]

where the first term is due to the cost of the interrupted algorithms and the second term to matrix
products of Line 11. One has

Cn,1 = Θ(L2)µ(
n

2L
)

[
1 +O

(
1

b(n/L)

)]

where the hidden constants are now respectively 6A′
1 + 8A1, 6A

′
2 + 8A2, with (A′

1, A
′
2) defined in

(20) and A1, A2 defined in (3). In the same vein,

Cn,h = Θ(Lh+1)µ(
n

2Lh
)

[
1 +O

(
1

b(n/Lh)

)]
,

and finally
H∑

h=1

Cn,h = Θ(1)
L

2 logL
µ(n) log n ·

[
1 +O

(
1

b(log2 n)

)]
=

where the constants in the Θ–term are always respectively 6A′
1 + 8A1, 6A

′
2 + 8A2. Now, with (22),

the error term due to the leaves is of the form 1/a(n), and the function b(log2 n) is larger than
a(n). Finally,

En,ψ[BL] = Θ(1)
L

2 logL
µ(n) log n ·

[
1 +O

(
1

a(n)

)]

where the constants in the Θ–term are always respectively 6A′
1 + 8A1, 6A

′
2 + 8A2.

Theorem 6. Consider the HG algorithm defined in Figure 3, relative to a parameter L which
satisfies L > (2/σ) − 1, and involves σ := max(σ, 1/2), where σ is a strictly positive lower bound
for the US strip. Suppose that the algorithm uses a fast multiplication of type (3). Then, the mean
bit–complexity BL of this HG algorithm on the set Ωn endowed with the density ψ defined in (2)
satisfies

En,ψ[BL] = Θ

(
L

logL

)
n (logn)2 a(n) ·

[
1 +O

(
1

a(n)

)]
.

Here, the constants in the Θ–term can be chosen as 3A′
1 + 4A1, 3A

′
2 + 4A2, where A′

1, A
′
2 defined

in (20) are the constants related to the fast multiplication and the fast division .
The mean bit–complexity BL of this HG algorithm on the set Ωn endowed with any density f of
class C1 satisfies

En,f [BL] = Θ(1)n (logn)2 a(n) ·
[
1 +O

(
1

a(n)

)]
.

Here, the constants in the Θ–term can be chosen as

min f

maxψ
max(7A1, 4A1 +

3

2
A3), and

max f

minψ
max(7A2, 4A2 +

3

2
A4),

where A1, A2 are the constants related to the fast multiplication and A3, A4 are the constants
related to the fast division.
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4.2. The k-th recursive call. The k-th recursive call of G to HG is made on integers with size

nk = n(1/2)k−1. It deals with values δ(k) which belong to the interval [1 − (1/2)k−1, 1 − (1/2)k],
so that the values (1 − δ(k))n belong to the interval [nk, nk/2]. If we wish to perform at the k-th
level an algorithm HG homothethic to the algorithm of the first level [with a ratio (1/2)k−1], we

deal with a truncation mk of the form mk = 2γ(1)nk = 2γ(k)n with γ(k) = 1/(2k−1L). Now the
parameter ρ(δ(k), γ(k)) relative to values δ(k), γ(k) used in the kth recursive call of G to HG is

related to the parameter ρ(δ(1), γ(1)) relative to values δ(1), γ(1) used in the first recursive call of G
to HG, via the inequality

nρ(δ(k), γ(k)) ≥ nk ρ(δ
(1), γ(1)).

Then, all the previous study performed for the first recursive call can be applied to the k-th
recursive call, as soon as n is replaced by nk.

We then choose L equal to 2, as previously, and the bit-complexity Bk,L of the k-th recursive call
is, with Theorem 6,

(24) En,ψ[Bk,L] = Θ

(
L

logL

)
nk(lognk)

2 a(nk) ·
[
1 +O

(
1

a(nk)

)]
.

with the same constants involved as in Theorem 6.

4.3. End of the recursion. We stop calling the algorithms HG inside the G algorithm when the

naive gcd algorithm becomes competitive, with a complexity P1(n) = Θ(n log2 n). Then, the level
of recursion M is defined by

n2
M = n log2 n so that nM =

√
n log n, M = (1/2)(log n).

Then the total cost G of the G Algorithm satisfies

En,ψ[G] =
M∑

k=1

En,ψ[Bk,L] = Θ

(
L

logL

)
n (logn)2 a(n) ·

[
1 +O

(
1

a(
√
n log n)

)]

where the constants in the Θ–term are equal to two times the constants of Theorem 6. Finally, we
have proven the following:

Theorem 7. Consider the HG algorithm defined in Figure 3, relative to a parameter L which
satisfies L > (2/σ) − 1, and involves σ := max(σ, 1/2), where σ is a strictly positive lower bound
for the US strip. Suppose that the algorithm uses a fast multiplication of type (3). Then, the mean
bit–complexity GL of this G algorithm on the set Ωn endowed with the density ψ defined in (2)
satisfies

En,ψ[GL] = Θ

(
L

logL

)
n (logn)2 a(n) ·

[
1 +O

(
1

a(
√
n log n)

)]
.

Here, the constants in the Θ–term can be chosen as max(14A1, 8A1 +3A3),max(14A2, 8A2 +3A4),
where A1, A2 are the constants related to the fast multiplication and A3, A4 are the constants
related to the fast division.
The mean bit–complexity GL of this G algorithm on the set Ωn endowed with any density f of
class C1 satisfies

En,f [GL] = Θ

(
L

logL

)
n (logn)2 a(n) ·

[
1 +O

(
1

a(
√
n log n)

)]
.

Here, the constants in the Θ–term can be chosen as

min f

maxψ
max(14A1, 8A1 + 3A3), and

max f

minψ
max(14A2, 8A2 + 3A4),

where A1, A2 are the constants related to the fast multiplication and A3, A4 are the constants
related to the fast division.
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5. Description of the Dynamical Analysis method.

Here, we present the main tools which will be used in the proof of Theorems 1 and 2. These
tools come from analysis of algorithms (generating functions, here of Dirichlet types, described in
5.1) or dynamical systems theory (mainly transfer operators Hs, described in 5.3 and 5.4). We
introduce the main costs C of interest (in 5.2), and their related Dirichlet series, for which we
provide an alternative expression with the transfer operator (in 5.5). For obtaining the asymptotic
estimates of Theorems 1, 2, we extract coefficients from these Dirichlet series, in a “uniform way”.
Then, Property US (already described in 1.3) is crucial here for applying with success the Perron
Formula, as in previous results of Baladi and Vallée [2].

5.1. Dirichlet series. For analysing a cost C, we deal with the generating Dirichlet series of this

cost C. We recall that we deal with the sets Ω, Ω̃ of all possible inputs, and their subsets Ω̃n,Ωn
which gather the inputs (u, v) with ℓ(v) = n defined in (17). We will explain later why it is easier

and also sufficient to deal with inputs of Ω̃ (which is, from the algorithmic point of view, the set

of trivial inputs...). We consider these sets endowed with probability Pn,f or P̃n,f defined from a
positive function f of the interval I as

Pn,f (u, v) :=
1

|Ωn|f
f(
u

v
), P̃n,f (u, v) :=

1

|Ω̃n|f
f(
u

v
), for any (u, v) ∈ Ωn,

where

|Ωn|f :=
∑

(u,v)∈Ωn

f(
u

v
), |Ω̃n|f :=

∑

(u,v)∈eΩn

f(
u

v
)

are the total f -weights of the sets Ωn, Ω̃n.

To any cost C, defined on Ω (or Ω̃), we associate Dirichlet series

FC(s) =
∑

(u,v)∈Ω

1

v2s
C(u, v) f(

u

v
), F̃C(s) =

∑

(u,v)∈eΩ

1

v2s
C(u, v) f(

u

v
),

whose alternative expressions are

FC(s) =
∑

v≥1

cv
v2s

, F̃C(s) =
∑

v≥1

c̃v
v2s

,

where cv, c̃v denote the cumulative costs of C on ωv := {(u, v) ∈ Ω}, ω̃v := {(u, v) ∈ Ω̃}, namely,

cv =
∑

(u,v)∈ωv

C(u, v) f(
u

v
), c̃v =

∑

(u,v)∈eωv

C(u, v) f(
u

v
).

For the trivial cost (C ≡ 1), the corresponding cumulative costs av or ãv are just the f -weights of
subsets ωv, ω̃v, namely

av =
∑

(u,v)∈ωv

f(
u

v
), ãv =

∑

(u,v)∈eωv

f(
u

v
).

The mean values of the cost C on Ωn, Ω̃n are then given by the ratio of partial sums,

(25) En,f [C] =

∑
ℓ(v)=n cv∑
ℓ(v)=n av

, Ẽn,f [C] =

∑
ℓ(v)=n c̃v∑
ℓ(v)=n ãv

.

We are mainly interested by some particular costs C.

5.2. Costs of interest. We now describe the main costs that intervene in this paper, defined on
the set Ω of all the possible inputs. For each Theorem, we consider two costs, the deterministic
cost that we wish to study and the probabilstic cost (underlined) that we succeed to study. For
Theorem 1, we consider the costs C1 := Pδ, C1 = P δ for δ ∈ [0, 1], defined by the relation (10).
This means that

Pδ(u, v) = k iff lg uk ≤ (1 − δ)ℓ(u0) < lg uk−1.

For Theorem 2, we consider the cost C2 (which depends on the interval J),

C2 = [[x〈δ〉 ∈ J ]] with x〈δ〉 :=
uk+1

uk
for k = Pδ, and C2 := [[x〈δ〉 ∈ J ]]
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Finally, for Theorem 4, we consider the cost C4 (which depends on the interval J),

C4(u, v) = Qδ(u, v) =

Pδ(u,v)∑

i=Pδ(u,v)−2

ℓ(qi), and C4(u, v) :=

P δ(u,v)∑

i=P δ(u,v)−2

ℓ(qi)

and, for Theorem 5, the costs C5 = ℓ(u〈δ〉, C5 := ℓ(u〈δ〉).

We first provide alternative expressions for Dirichlet series F̃C(s), as a function of the transfer
operator Hs relative to the Euclidean dynamical system. We first recall some basic facts about
dynamical systems and transfer operators.

5.3. The Euclidean Dynamical system. When computing the gcd of the integer-pair (u, v),
Euclid’s algorithm performs a sequence of divisions. A division v = uq + r replaces the pair (u, v)
with the new pair (r, u). If we consider now rationals instead of integer pairs, there exists a map
T which replaces the (old) rational u/v by the (new) rational r/u, defined as

T (x) =
1

x
−
⌊

1

x

⌋
, T (0) = 0.

When extended to the real interval I = [0, 1], the pair (I, T ) defines the dynamical system relative
to Euclid algorithm. We denote by H the set of the inverse branches of T ,

H = {h[q] : x→ 1

q + x
; q ≥ 1},

and by Hp the set of inverse branches of depth p (i.e., the set of inverse branches of T p), namely
Hp = {h = h1 ◦ · · · ◦ hp;hi ∈ H,∀i}. The set H⋆ := ∪pHp is the set of all the possible inverse
branches of any depth. Then, the sequence (5) builds a continued fraction

(26)
u

v
= h(0) with h = h1 ◦ h2 ◦ . . . ◦ hp ∈ Hp.

One then associates to each execution of the algorithm a unique LFT h ∈ H⋆ whose depth is
exactly the number p of divisions performed. Remark that the i-th LFT hi used by the algorithm
is exactly the LFT relative to matrix Qi of Section 2.1, so that the LFT h1 ◦h2 ◦ . . . ◦hi is relative
to matrix M(i) of Section 2.1. Then, the CF–expansion (26) of u/v, when splitted at depth i,
creates two LFT’s bi := h1 ◦ h2 ◦ . . . ◦ hi−1 and ei := hi ◦ . . . ◦ hp, defining each a rational number:
the “beginning” rational bi(0), and the “ending” rational ei(0). The “ending” rational ei(0) can
be expressed with the remainder sequence (ui)

ei(0) := hi+1 ◦ hi+2 ◦ · · · ◦ hp(0) =
ui+1

ui
,

while the “beginning” rational bi(0) can be expressed with the twosequences (pi), (ri) related to
coefficients of matrix M(i) defined in (6),

bi(0) := h1 ◦ h2 ◦ · · · ◦ hi−1(0) =
|pi|
|ri|

.

The main parameters of interest of the Euclid Algorithm involve the denominators sequences ui, ri,
which are called the continuants. The continuants are closely related to derivatives of LFT’s, as we
now explain. For any LFT h, the derivative h′(x) can be expressed with the denominator function
D: If the function D is defined by

D[g](x) = cx+ d, for g(x) =
ax+ b

cx+ d
with gcd(a, b, c, d) = 1,

then

(27) h′(x) =
deth

D[h](x)2
.

Finally, since any LFT h ∈ H⋆ has a determinant of absolute value equal to 1, one has:

(28) ui = |b′i(0)|−1/2, ri = |e′i(0)|−1/2.
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5.4. Transfer operators. One of the main tool in dynamical systems theory is the transfer oper-
ator [23], denoted by Hs. It generalizes the density transformer H that describes the evolution of
the density: if f = f0 denotes the initial density on I, and f1 the density on I after one iteration
of T , then f1 can be written as f1 = H[f0], where H is defined by

(29) H[f ](x) =
∑

h∈H

|h′(x)| f ◦ h(x).

It is useful to introduce a more general operator that depends on a complex parameter s,

Hs[f ](x) =
∑

h∈H

|h′(x)|s f ◦ h(x) =
∑

m≥1

1

(m+ x)2s
f

(
1

m+ x

)
,

and multiplicative properties of derivatives entail that

Hp
s [f ](x) =

∑

h∈Hp

|h′(x)|s f ◦ h(x), (I − Hs)
−1[f ](x) =

∑

h∈H⋆

|h′(x)|s f ◦ h(x).

Now, relation (27) between the denominator and the derivative of a LFT, and the fact that any
element of H⋆ has a determinant equal to ±1, entail an alternative expression for the transfer
operator,

Hp
s [f ](x) =

∑

h∈Hp

1

D[h](x)2s
f ◦ h(x), (I − Hs)

−1[f ](x) =
∑

h∈Hn

1

D[h](x)2s
f ◦ h(x),

which will show, with (28) that the transfer operator can be viewed as a generating operator for
denominator sequences ui, ri. This is the main idea on which is based the dynamical analyses. We
now explain the relation between Dirichlet series and transfer operators.

5.5. The Dirichlet series FC(s). We describe alternative expression of the Dirichlet series F̃C(s), F̃C(s),
as a function of operator Hs. Let us begin with the trivial cost:

Cost C0 ≡ 1. The Euclid algorithm writes each rational u/v ∈ Ω̃ in a unique way as u/v = h(0)
with h ∈ H⋆. Then,

F̃0(2s) :=
∑

(u,v)∈eΩ

1

v2s
f(
u

v
) =

∑

k≥0

∑

h∈Hk

|h′(0)|s · f ◦ h(0) = (I − Hs)
−1[f ](0),

from which we deduce an alternative expression of F0(2s), with the help of the Riemann ζ function:

F0(2s) =
∑

d≥1

∑

(u,v)∈eΩ

1

(dv)2s
f

(
du

dv

)
= ζ(2s) F̃0(2s) = ζ(2s) (I − Hs)

−1[f ](0).

All the studies of the paper are based on refinements of the (simple) equality.

Cost C1, C1 for Theorem 1. We will show in Section 6.4 that a main tool for studying the second
cost Pδ on Ω, via its moment generating function En,f [exp(wPδ)], is the Dirichlet series G(2s, 2t, w)
which depends on three parameters s, t, w and is equal to

G(2s, 2t, w) = ewζ(2s+ 2t) (I − Hs+t)
−1 ◦ (Hs − Hs+t) ◦ (I − ewHs)

−1[f ](0).

Cost C2, C2 for Theorem 2. We will show in Section 6.1 that a main tool for studying the distri-
bution of x〈δ〉 on Ω (via the estimate of Pn,f [x〈δ〉 ∈ J ]) is the Dirichlet series which depends on
two parameters s, t, together with the interval J ,

F (2s, 2t, J) = ζ(2s+ 2t) (I − Hs+t)
−1
[
1J · (Hs − Hs+t) ◦ (I − Hs)

−1[f ]
]
(0).

Cost C4, C4 for Theorem 4. We will show in Section 6.7 that a main tool for studying the mean
value of Qδ is the Dirichlet series which depends on two parameters s, t,

ζ(2s+ 2t)(I − Hs+t)
−1(Hs − Hs+t) ◦ H3

s,[ℓ] ◦ (I − Hs)
−1[f ](0),

and involves the weighted transfer operator Hs,[ℓ] relative to the binary size ℓ and defined as

(30) Hs,[ℓ][f ](x) :=
∑

m≥1

ℓ(m)

(m+ x)2s
f

(
1

m+ x

)
.
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Cost C5, C5 for Theorem 5. We will show in Section 6.8 that a main tool for studying the mean
value of ℓ(u〈δ〉) is the Dirichlet series which depends on three parameters s, t,

ζ(2s+ 2t)(I − Hs+t)
−1 ◦ H′

s+t ◦ (I − Hs+t)
−1 ◦ H′

s+t ◦ (I − Hs)
−1[f ](0),

and involves the operator H′
s := d/(ds)Hs defined as

(31) H′
s[f ](x) := −2

∑

m≥1

log(m+ x)

(m+ x)2s
f

(
1

m+ x

)
.

With alternative expressions of these Dirichlet series at hand, we now perform the second step:
we find the dominant singularities of these Dirichlet series and their nature, and then transfer this
information for obtaining asymptotic expressions of their coefficients. The expressions obtained in
prove that the singularities of the Dirichlet series will be related to the dominant spectral objects
of the transfer operator Hs. A precise study of these spectral properties will lead to the asymptotic
study of the coefficients of these Dirichlet series.

5.6. Spectral properties of the transfer operator Hs. We now recall the main properties
of the transfer operator Hs and its quasi-inverse (I − Hs)

−1. These properties depend on the
Banach space where the operator acts. Here, the Banach space is C1(I), and we recall now the
main properties of the operator Hs, when acting on this functional space.

For ℜ(s) > 1/2, the operator Hs acts on C1(I) and the map s → Hs is analytic. For s = 1, the
operator is quasi–compact: there exists a spectral gap between the unique dominant eigenvalue
(that equals 1, since the operator is a density transformer) and the remainder of the spectrum. By
perturbation theory, these facts —existence of a dominant eigenvalue λ(s) and of a spectral gap—
remain true in a complex neighborhood V of s = 1. There, the operator splits into two parts: the
part relative to the dominant eigensubspace, denoted Ps, and the part relative to the remainder
of the spectrum, denoted Ns, whose spectral radius is strictly less than η|λ(s)|(with η < 1). This
leads to the following spectral decomposition

Hs[f ](x) = λ(s)Ps[f ](x) + Ns[f ](x),

which extends to the powers Hn
s of the operator

(32) Hn
s [f ](x) = λn(s)Ps[f ](x) + Nn

s [f ](x),

and finally to the quasi-inverse (I − Hs)
−1

(33) (I − Hs)
−1[f ](x) =

λ(s)

1 − λ(s)
Ps[f ](x) + (I − Ns)

−1[f ](x).

The first term on the right admits a pole (of order 1) at s = 1, while the second term is analytic on
the half–plane {ℜ(s) > 1}. The dominant eigenvalue λ(s) is analytic in a neighborhood of s = 1,
and the pressure function Λ(s) := log λ(s) plays an important rôle. In particular, near s = 1, one
has

(34) (I − Hs)
−1[f ](x) ∼ −1

λ′(1)
ϕ(x)

∫

I

f(t)dt,

where −λ′(1) is the entropy of the system, equal to π2/(6 log 2) and ϕ is the Gauss density, already
mentioned in (1).

For Theorem 2, the Dirichlet series (1/t)F (2s, 2t, J) defined in Section 5.5 can be viewed as a
perturbation of

F1(2s, J) := −(I − Hs)
−1[1J · H′

s ◦ (I − Hs)
−1[f ]](0),

for small t. This Dirichlet series F1(2s, J) involves the operator H′
s := (d/ds)Hs, has a pôle of

order 2 at s = 1, and satisfies for s close to 1, with (34)

F1(2s, J) ∼ −1

(s− 1)2

(
1

λ′(1)

)2

ϕ(0)

(∫

J

H′[ϕ](t)dt

)
,

where H′ := H′
1 and ϕ is the Gauss density defined in (1). This explains why ψ = H′[ϕ] introduced

in (2) plays a central rôle in our analyses.
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5.7. US Property for the Dirichlet series FC(s). We have obtained a first information about

the singularities of the quasi-inverse (I−Hs)
−1 and an alternative expression of F̃C(s) as a function

of this quasi-inverse. We now wish to perform the second step and transfer this information for
obtaining asymptotic expressions of the coefficients of the Dirichlet series. As a main tool, we
rely on convenient “extractors” which express coefficients of series as a function of the series itself.
There exist an easy “extractor” for Dirichlet series: the (plain) Tauberian Theorems. However,
they do not provide remainder terms, and they are not adapted for our study, since we wish to
obtain uniform estimates with respect to auxiliary parameters δ, w, t, J . We then adopt the Perron

Formula, which may provide remainder terms, as soon as we have a precise knowledge of F̃C(s) on
vertical strips.

The Perron Formula of order two (see [10]) is valid for a Dirichlet series F (s) =
∑
n≥1 ann

−2s and
a vertical line ℜs = D > 0 inside the convergence domain of F ,

(35) Ψ(T ) :=
∑

n≤T

an(T − n) =
1

2iπ

∫ D+i∞

D−i∞

F (s)
T 2s+1

s(2s+ 1)
ds .

It is next natural to modify the integration contour ℜs = D into a contour which contains a unique
pole of F (s), and it is thus useful to know that the Property US [Uniform Estimates on Strips]
holds. We have already described this Property in an informal way in Section 1.3. It is now
necessary to describe it more precisely.

Theorem A. [US Property for the Euclidean Dynamical System] [Dolgopyat, Baladi, Vallée] [9, 2]
When the transfer operator Hs relative to the Euclidean dynamical system acts on the functional
space C1(I) of functions with a continuous derivative on the unit interval I := [0, 1], there exists
α > 0 for which the following holds on the strip S := {s, 1 − α ≤ ℜs ≤ 1}.

(i) The quasi-inverse (I−Hs)
−1 has a unique pôle in the vertical strip S := {s, |ℜs− 1| ≤ α},

located at s = 1.
(ii) There exist t0 > 0, ξ < 1/5, C > 0, such that, on the truncated strip {s, |ℜs−1| ≤ α, |ℑs| ≥

t0}, letting t := ℑs,
||(I − Hs)

−1||1,t = O
(
|ℑs|ξ

)
with ||f ||1,t := sup |f | + (1/t) sup |f ′|.

From works of Dolgopyat [9] and Baladi-Vallée [2], we know that (I − Hs)
−1 satisfies the US

Property, with a strip of width α > 0. With this US–Property, we can shift the integration
contour in (35). If, for instance

F (s) = (1 − Hs+t)
−1[g](0) :=

∑

n≥1

an(t)

n2s
,

we obtain

Ψ(T ) :=
∑

n≤T

an(T − n) = Ress=1−t

(
T 2s+1

s(2s+ 1)
F (s)

)
+

1

2iπ

∫

ℜs=1−t−α

F (s)
T 2s+1

s(2s+ 1)
ds .

Finally, if the pole is simple, the residue is not zero, and the following estimate shows the importance
of the parameter σ, defined as a lower bound for this width α, since it intervenes in the remainder
term, as

(36) Ψ(T ) =
T 3−2t

(1 − t)(3 − 2t)
Ress=1−tF (s)

[
1 +O(T−2σ)

]
.

The real σ mentioned in all our Theorems 1–7 is a lower bound for this width α.

6. Proofs of Theorems 1 and 2

Here, we provide the complete proofs of Theorems 1 and 2. We first recall some notations.
On an input (u, v), the Euclid algorithm builds a sequence of remainders (uk) and a sequence of
rationals xk = uk+1/uk.

We recall that Pδ(u, v) is the smallest integer k for which lg uk is less than (1 − δ)ℓ(u0). We are
interested in describing the position of the rational

x〈δ〉 := xk when Pδ(u, v) = k.
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6.1. Proof of Theorem 2 – Step 1. The Dirichlet series of interest. We here provide an
estimate of the distribution of the rational x〈δ〉, which is a probabilistic version of the rational x〈δ〉,
as we shall now explain.

We first deal with intermediate sets V(k)
N,M (J), U (k)

N,M (J), defined as

V(k)
N,M (J) := {(u, v) ∈ Ω; v = N, uk+1 = M, xk+1 ∈ J},

U (k)
N,M (J) := {(u, v) ∈ Ω, v = N, uk = M, xk+1 ∈ J},

and the set

(37) AN (W,J) :=
∑

k≥0





∑

M≤W

V(k)
N,M (J)


 \



∑

M≤W

U (k)
N,M (J)




 .

gathers the pairs (u, v) of Ω with v = N for which the following is true: “if k denotes the smallest
index for which the remainder uk has a denominator less than W , the rational xk belongs to J ”.
This shows that these intermediate sets will be closely related to our problem.

We now observe two facts: The f -weights ũ
(k)
N,M (J), ṽ

(k)
N,M (J) of the tilded version of the interme-

diate sets

Ṽ(k)
N,M (J) := V(k)

N,M (J) ∩ Ω̃, Ũ (k)
N,M (J) := U (k)

N,M (J) ∩ Ω̃

are easily generated by the transfer operator, since the two following equalities hold

(38) Ũ(2s, 2t, J, k) :=
∑

N≥1

∑

M≥1

ũ
(k)
N,M (J)

N2sM2t
= (I − Hs+t)

−1
[
1J · Hs+t ◦ Hk

s [f ]
]
(0),

(39) Ṽ (2s, 2t, J, k) :=
∑

N≥1

∑

M≥1

ṽ
(k)
N,M (J)

N2sM2t
= (I − Hs+t)

−1
[
1J · Hk+1

s [f ]
]
(0).

On the other hand, there are nice relations between V(k)
N,M (J), U (k)

N,M (J) and their tilded versions,

as we now explain. Each of these two sets V(k)
N,M (J), U (k)

N,M (J) decomposes as a disjoint union

V(k)
N,M (J) =

⋃

d≥1

(
V(k)
N,M (J) ∩ Ω[d]

)
, U (k)

N,M (J) =
⋃

d≥1

(
U (k)
N,M (J) ∩ Ω[d]

)
,

which involves the set Ω[d] of pairs (u, v) of Ω for which gcd(u, v) = d; the map (u, v) 7→ (du, dv)
defines two bijections which preserve the f -weights,

first from Ṽ(k)
N,M (J) onto

(
V(k)
dN,dM (J) ∩ Ω[d]

)
, second from Ũ (k)

N,M (J) onto
(
U (k)
dN,dM (J) ∩ Ω[d]

)
.

Then, the Dirichlet series U, V and their tilded versions Ũ , Ṽ are related via the Riemann ζ function,
as follows:

(40) U(s, t, J, k) :=
∑

N≥1

∑

M≥1

u
(k)
N,M (J)

NsM t
= ζ(s+ t) Ũ(s, t, J, k),

(41) V (s, t, J, k) :=
∑

N≥1

∑

M≥1

v
(k)
N,M (J)

NsM t
= ζ(s+ t) Ṽ (s, t, J, k).

Finally, the series F (s, t, J) defined as

(42) F (s, t, J) :=
∑

k≥0

[V (s, t, J, k) − U(s, t, J, k)]

admits with (40, 41, 38, 39) the alternative expression which involves the ζ function and the transfer
operator Hs

(43) F (s, t, J) := ζ(2s+ 2t)(I − Hs+t)
−1
[
1J · (Hs − Hs+t) ◦ (I − Hs)

−1[f ]
]
(0).
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On the other hand, F (s, t, J) is a Dirichlet series of the form

F (s, t, J) =
∑

N≥1

∑

M≥1

aN,M (J)

NsM t

whose coefficient aN,M (J) satisfies the following, with the definition of F given in (42),

∑

M≤W

aN,M (J) =
∑

M≤W

∑

k≥0

(
v
(k)
N,M (J) − u

(k)
N,M (J)

)
=
∑

k≥0





∑

M≤W

v
(k)
N,M (J)


−



∑

M≤W

u
(k)
N,M (J)




 ,

and the last expression is exactly the f -weight of the set AN (W,J) defined in (37). Finally, the
equality

2n∑

N=2n−1

AN (2(1−δ)n, J) = {(u, v) ∈ Ωn; x〈δ〉 ∈ J}

holds and entails the equality

Pn,f [x〈δ〉 ∈ J ] =
1

|Ωn|f

2n−1∑

N=2n−1

∑

M≤2(1−δ)n

aN,M (J)

where |Ωn|f is just the f -weight of Ωn. Comparing the Riemann sum to the integral entails

|Ωn|f :=
∑

(u,v)∈Ωn

f(
u

v
) =

2n−1∑

v=2n−1

∑

u<v

f(u/v) = |Ωn|
[
1 + 2−nO(||f ||1)

]
.

We have finally to evaluate

1

|Ωn|

2n−1∑

N=2n−1

∑

M≤2(1−δ)n

aN,M (J)

It is then sufficient to extract coefficients from the Dirichlet series F (s, t, J) given in (43). However,
it is not possible to directly deal with the characteristic function of the interval J , since it does
not belong to the “convenient” functional space C1(I) where the Property US holds. Then, for a
function ε positive which satisfies ε(x) ≤ x, we replace the function 1J by two functions ψ+

(J,ε) and

ψ−
(J,ε) of C1(I) which are good approximations of 1J , and satisfy

(44) ψ−
(J,ε) ≤ 1J ≤ ψ+

(J,ε), ||ψ+
(J,ε) − ψ−

(J,ε)||1,1 ≤ 1

ε(|J ])
,

∫

I

|ψ+
(J,ε) − ψ−

(J,ε)|(u)du ≤ ε(|J ]).

We replace the Dirichlet series F (s, t, J) by the series F+(s, t, J, ε), F−(s, t, J, ε) defined as

(45) F±(2s, 2t, J, ε) = ζ(2s+ 2t)(I − Hs+t)
−1
[
ψ±

(J,ε) · (Hs − Hs+t) ◦ (I − Hs)
−1[f ]

]
(0).

The coefficients of these series, denoted by a±N,M (J, ε), have the following combinatorial sense :
The sum of these coefficients

(46)
∑

M≤W

a±N,M (J, ε)

equals the sum, taken over all pairs (u, v) with v = N , of the quantities f(xk) ·ψ±
(J,ε)(xk), where xk

is the rational relative to the smallest index k for which uk is less than W . Then, the inequalities

(47)
∑

M≤W

a−N,M (J, ε) ≤
∑

M≤W

aN,M (J) ≤
∑

M≤W

a+
N,M (J, ε)

hold, and show that it is sufficient to deal with the series F±(s, t, J, ε), denoted in the following by
F (s, t, J, ε).
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6.2. Proof of Theorem 2 – Step 2. Extraction via the Perron Formula. The series F
defined in (45) depends of two complex variables s and t (with J and ε as parameters). We will
use the Perron Formula, two times.

First suppose that the complex s is fixed, satisfies ℜs > 1 and consider the Dirichlet series F as a
function of t, which has an only pôle at t = 1− s in the strip 1−α < ℜ(s+ t) < 1 +α. Then, with
the Perron formula,

∑

W1≤W

∑

M≤W1

∑

N≤1

a±N,M (J, ε)

N2s
=

= ζ(2)
W 2(1−s)+1

(3 − 2s)

ϕ(0)

λ′(1)

∫

I

ψ(J,ε)(u) ·
[(

Hs − H1

s− 1

)
◦ (1 − Hs)

−1[f ]

]
(u)du

+
1

2iπ

∫

ℜ(s+t)=1−α

ζ(2s+ 2t)
W 2t+1

t(2t+ 1)
F (2s, 2t, J, ε)dt.

This is now a Dirichlet series with respect to s, which has an only pôle at s = 1 in the strip
1 − β < ℜs < 1 + β, and using again the Perron Formula for extracting coefficients, we obtain
finally four terms for the sum of coefficients

E±
1 (T,W, ε) :=

∑

T1≤T

∑

N≤T1

∑

W1≤W

∑

M≤W1

a±N,M (J, ε),

namely

−ζ(2)
ϕ(0)

λ′(1)2
T 3

3
W

∫

I

ψ±
(J,ε)(u)H

′[ϕ](u)du

+
1

2iπ

T 3

3

∫

ℜt=−α

ζ(2 + 2t)
W 2t+1

t(2t+ 1)
(I − H1+t)

−1

[
ψ±

(J,ε) · (H1 − H1+t)

[
ϕ

−λ′(1)

]]
(0)

−ζ(2)ϕ(0)

2iπλ′(1)

∫

ℜs=1−β

T 2s+1

s(2s+ 1)

W 2(1−s)+1

(3 − 2s)

(∫

I

ψ±
(J,ε)(u)

(
Hs − H1

1 − s

)
◦ (I − Hs)

−1[f ](u)du

)
ds

−
∫

ℜt=β−α
ℜs=1−β

ζ(2s+ 2t)

4π2

T 2s+1

s(2s+ 1)

W 2t+1

t(2t+ 1)
(I−Hs+t)

−1
[
ψ±

(J,ε) · (Hs − Hs+t) ◦ (I − Hs)
−1[f ]

]
(0)dsdt.

If we choose α = β, it seems that the fourth term has a pôle at t = 0, but this is not a “true” pôle,
since there is an occurrence of a secant operator, of the form (1/t)(Hs+t − Hs) which tends to the
operator H′

s when t → 0. We then choose α = β, and, for reasons which will appear later, due in
particular to possible applications of Proposition A, we choose α = β = σ := min(σ, 1/2)

The first term will provide the main term, which is Θ(T 3W ), more precisely

(48) E±
1 (T,W ) = a(J)

T 3

3
W + F±

1 (T,W ) with a(J) =
1

λ′(1)

∫

J

H′[ϕ](t)dt =

∫

J

ψ(t)dt.

(For the computation of the constant a(J), we used the equality ζ(2) = −λ′(1) log 2 which comes
from spectral properties at s = 1 described in Section 5.6). Then Theorem A entails estimates for
the four terms of F+

1 (T,W, ε) − F−
1 (T,W, ε), respectively

O(1) O(T 3W 1−2σ) O(T 3−2σW 2σ+1) O(T 3−2σW ).

Here, the constants involved in the O-terms depend only on J and ε, but not in the same way
for all the terms: In the first and the third term, the interval J intervenes via the integral of the
function ψ+

(J,ε) − ψ−
(J,ε), and, with (44), the constants are O (ε(|J |)). In the second and fourth

terms, the interval J intervenes via the norm || · ||1,1 of the function ψ+
(J,ε) −ψ−

(J,ε), and, with (44),

the constants in the second and the fourth term are O(1/ε(|J |). Finally

(49) F+
1 (T,W ) − F−

1 (T,W ) =

[
a(J)

T 3

3
W

]
C(J,W, ε)

[
1 +O

(
T

W

)−2σ
]

(50) with C(J,W, ε) := O

(
ε(|J |)
|J | +

1

|J |ε(|J |)W
−2σ

)
.
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We now return to our object of interest, the quadruple sum

(51) E1(T,W ) :=
∑

T1≤T

∑

N≤T1

∑

W1≤W

∑

M≤W1

aN,M (J),

for which equations (47,48) and (49) entail the estimate

(52) E1(T,W ) = a(J)
T 3

3
W [1 + C(J,W, ε)]

[
1 +O

(
T

W

)−2σ
]

where the function C(J,W, ε) is defined in (50).

6.3. Proof of Theorem 2 – Step 3. Final estimates for variable x〈δ〉 on Ω. The sum of
coefficients

∑
M≤W aN,M (J) is positive, so that

T 7→ B(T,W1) :=
∑

N≤T

∑

M≤W1

aN,M (J)

is increasing. We first consider the corresponding estimates (52) with respect to variable T , each
value of the triple (W,J, ε) being fixed. Then, it is possible to transform in E1(T,W ) the double
sum over indices N into a simple sum with Proposition B of the Appendix (Section 7) and deduce
from the estimate of E1(T,W ) an estimate for the sum

E2(T,W ) :=
∑

W1≤W

B(T,W1) = a(J)T 2W [1 + C(J,W, ε)]

[
1 +O

(
T

W

)−σ
]
.

We will be interested in the following by E(T,W ) := E2(T,W )−E2(T/2,W ) for which we get the
estimate

(53) E(T,W ) =
3

4
a(J)T 2W [1 + C(J,W, ε)]

[
1 +O

(
T

W

)−σ
]
.

Applying now Proposition A of Section 7, with the choice (T − T−)/T = Θ((T/W )σ/2) (always,
for each value of the triple (W,J, ε) fixed) provides the estimate

(54)
E(T,W ) − E(T−,W )

T − T−
=

3

2
a(J)TW [1 + C(J,W, ε)]

[
1 +O

(
T

W

)−σ/2
]
.

We now consider that T and W are polynomially related, (but J and ε fixed) and we let T = W ν ,
with ν ≥ 1, and we wish to obtain an estimate of

E(W ν ,W ) − E(W ν ,W−)

W −W−

First, observe the following decomposition

(55) E(W ν ,W ) − E1(W
ν ,W−) =

[
E(W ν ,W ) − E(W ν

−,W−)
]
−
[
E(W ν ,W−) − E(W ν

−,W−)
]
.

Applying Proposition A to the first term, remarking that

E(W ν ,W ) =
3

4
a(J)W 2ν+1 [1 + C(J,W, ε)]

[
1 +O

(
W−δνσ

)]

and choosing (W −W−)/W := Θ(W−τ/2) with τ := min(δνσ, 1), gives

(56)
E(W ν ,W ) − E(W ν

−,W−)

W −W−
=

3

4
(2ν + 1) a(J)W 2ν

[
1 +O

(
C(J, ε,W ) +W−τ/2)

)]
.

For the second term, we take the same choice for (W −W−)/W , and we remark that, in this case

T − T−
T−

=
W ν −W ν

−

W ν
−

= ν
W −W−

W
[1 +O(W−τ/2)] = Θ

(
W −W−

W

)
.

Using now (54), we obtain

(57)
E(W ν ,W−) − E(W ν

−,W−)

W −W−
=

3

2
a(J)W ν+1

[
νW ν−1

] [
1 +O

(
C(J,W, ε) +W−τ/2

)]
.
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Finally, using (55, 56, 57) leads to

(58)
E(W ν ,W ) − E(W ν ,W−)

W −W−
=

3

4
a(J)W 2ν [1 +O (R(W ))]

with

(59) R(W ) := max

(
ε(|J |)
|J | ,

1

|J |ε(|J |)W
−2σ,W−τ/2

)
.

We now consider the case when the function ε (which quantifies the approximation of the charac-
teristic function 1J) is a power function, of the form x 7→ x1+θ, We suppose that all our parameters
X ∈ {|J |, ε(|J |), T,W} have an exponential dependence on n (now J and ε vary), and we fix their
exponents e(X) := n−1 lgX as

e(T ) = 1, e(W ) = (1 − δ) =
1

ν
, e(|J |) = −2γ, e(ε(|J |)) = −2γ(1 + θ).

Then, the exponents of the terms in R(W ) are all at least equal to

ρ := min{2γθ, 2σ(1 − δ) − 2γ(θ + 2), δσ/2, (1 − δ)/2}.
We first choose the best exponent of the function ε : x 7→ x1+θ in order to equalize the first two
terms in the expression of ρ. Since the exponent θ must be strictly positive, this leads to choose
γ < (1/2)σ(1 − δ), and finally

ρ ≥ ρ0 := min{σ(1 − δ) − 2γ, σδ/2}.
[remark that the fourth term in ρ has now “disappeared” due to the inequality σ < 1/2]. Suppose
now that the interval J is large enough (with respect to σ, and the fraction (1− δ)), with e(|J |) =
2γ < (1/2)σ(1− δ). Then, there is a lower bound ρ(δ) for ρ, which depends only on σ and δ, with

ρ(δ) := (1/2)σ min(1 − δ, δ).

Observe that ρ(δ) is always less than (1/4)(1 − δ).

Finally, we return to our initial problem, and with (58, 59), together with the definition of ρ(δ)
and the expression of a(J) in (48), we obtain an estimate for

2n−1∑

N=2n−1

1

2(1−δ−ρ(δ))n

2(1−δ)n∑

W=2(1−δ)n[1−2−ρ(δ)n]

∑

M≤W

aN,M (J)

=

(
3

4
22n

)(∫

J

ψ(t)dt

)[
1 +O(2−nρ(δ)

]
.

The first term equals the cardinal of Ωn, and “disappears” when we return to probabilities.

This not exactly the expression (46) for M ≤ 2(1−δ)n, but a smoothed version of it. Then, we do
not exactly study the variable x〈δ〉 but a probabilistic variant of this variable that we now recall.

Consider the interval [2(1−δ)n(1−2−ρ(δ)n), 2(1−δ)n]. Choose an integer W uniformly in this interval.
Denote by x〈δ〉 the rational xk associated to the first index k for which lg uk is less than W . We

have studied this (probabilistic) variable x〈δ〉 and evaluate

Pn,f [x〈δ〉 ∈ J ].

Remark that in any interval ]A/2, A], there are at most two elements of the sequence xk, so that,
for n large enough, x〈δ〉 equals x〈δ〉+i with 0 ≤ i ≤ 2.

6.4. Proof of Theorem 1– Step 1. The Dirichlet series of interest. We study, in the same
vein as before, a probabilistic version P δ of Pδ. We prove that it follows an asymptotic gaussian
law on Ω, from which it will be easy to deduce an asymptotic gaussian law for the deterministic
version Pδ on Ω.

We wish to use the Quasi-Powers Theorem which provides sufficient conditions, which entail an
asymptotic gaussian behaviour.

Theorem B. [Quasi-Powers Theorem.] (Hwang) [15] Assume that the moment generating func-
tions En,f [exp(wR)] for a cost R are analytic in a complex neighborhood W of w = 0, and satisfy

(60) En,f [exp(wR] = exp[βnC(w) +D(w)]
(
1 +O(κ−1

n )
)
,
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with βn, κn → ∞ as n → ∞, C(w), D(w) analytic on W and the O–term uniform in W. Then,
the mean and the variance satisfy

En,f [R] = C ′′(0) · βn +D′(0) +O(κ−1
n ) , V[Rn] = C ′′(0) · βn +D′′(0) +O(κ−1

n ) .

Furthermore, if C ′′(0) 6= 0, the distribution of R is asymptotically Gaussian on Ωn with speed of

convergence O(κ−1
n + β

−1/2
n ),

Pn,f

[
x
∣∣ R(x) − C ′(0)n√

C ′′(0)n
≤ Y

]
=

1√
2π

∫ Y

−∞

e−y
2/2 dy +O(κ−1

n + β−1/2
n ) .

We shall show that Theorem B can be applied to our framework, with

βn = n, κn = 2−nρ(δ), C(w) = 2δ lg(τ(w) − 1),

where τ(w) is the solution of the equation Λ(s) = −w which involves the pressure function Λ(s) :=
log λ(s). This will entail Theorem 1.

We first wish to estimate the generating function En,f (exp[wP δ]), as a quasi-powers. We deal with

the function G(s, t, w) := ζ(s+ t) G̃(s, t, w) with

G̃(2s, 2t, w) = ew (I − Hs+t)
−1(Hs − Hs+t) ◦ (I − ewHs)

−1[f ](0).

The series G can be written as a Dirichlet series which depends on two variables s, t, together with
a parameter w

(61) G(s, t, w) =
∑

k≥0

ew(k+1)
∑

N≥1

∑

M≥1

b
(k)
N,M

NsM t
=
∑

k≥0

ewk[V (s, t, I, k) − U(s, t, I, k)],

where the functions U and V are defined in (40, 41). Here, the coefficient
∑
M≤W b

(k)
N,M equals

the f -weight of pairs (u, v) with v = N for which uk+1 is at most W , while uk is greater than W .
Then, the quantity

2n∑

N=2n−1

∑

M≤2(1−δ)n

b
(k)
N,M

equals the f -weight of the subset of pairs (u, v) of size n for which Pδ equals k + 1, and the
expression

2n∑

N=2n−1

∑

M≤2(1−δ)n

∑

k≥0

ew(k+1)b
(k)
N,M

is the cumulative generating function of parameter Pδ on Ωn. As previously, it is then sufficient to
extract coefficients from the Dirichlet series G(s, t, w).

6.5. Proof of Theorem 1 – Step 2. Extraction with the Perron Formula. This series G
defined in (61) depends of two complex variables s and t (with w as a parameter). We will use the
Perron Formula, two times.
We proceed in two steps, as previously. We first consider the Dirichlet series as a function of t,
which has an only pôle at t = 1− s in the vertical strip in the strip 1−α < ℜ(s+ t) < 1+α. Then

∑

W1≤W

∑

M≤W1

∑

N≤1

∑

k≥0

etk
b
(k)
N,M

N2s
=

= ζ(2)
W 2(1−s)+1

(3 − 2s)

ϕ(0)

λ′(1)

∫

I

(
H1 − Hs

1 − s

)
◦ (1 − ewHs)

−1[f ](u)du

+
1

2iπ

∫

ℜ(s+t)=1−α

ζ(2s+ 2t)
W 2t+1

t(2t+ 1)
G(2s, 2t, w)dt.
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This is now a Dirichlet series with respect to s, which has an only pôle at s = τ(w) in the vertical
strip 1 − β < ℜs < 1 + β, where w is defined by the relation w = −Λ(s). Using again the Perron
Formula for extracting coefficients, we obtain finally four terms for this sum of coefficients

(62) e−wD(T,W,w) :=
∑

T1≤T

∑

N≤T1

∑

W1≤W

∑

M≤W1

∑

k≥0

ewkb
(k)
N,M ,

namely

ζ(2)
ντ(w)[f ]

λ′(1)λ′(τ(w))

W 3−2τ(w)

(3 − 2τ(w))

T 2τ(w)+1

τ(w)(2τ(w) + 1)

∫

I

(
Hτ(w) − Hs

1 − τ(w)

)
[ϕτ(w)](u)du

+Cw[f ]T 2τ(w)+1

∫

ℜ[τ(w)+t]=1−α

W 2t+1

t(2t+ 1)
(I − Hτ(w)+t)

−1 ◦
(
Hτ(w) − Hτ(w)+t

) [ ϕw
−λ′(τ(w))

]
(0)

+
ζ(2)ϕ(0)

2iπ λ′(1)

∫

ℜs=τ(w)−β

T 2s+1

s(2s+ 1)

W 2(1−s)+1

(3 − 2s)

(∫

I

(
Hs − H1

1 − s

)
◦ (I − ewHs)

−1[f ](u)du

)
ds

−
∫

ℜt=1−τ(w)+β−α
ℜs=τ(w)−β

ζ(2s+ 2t)

4π2

T 2s+1

s(2s+ 1)

W 2t+1

t(2t+ 1)
(I−Hs+t)

−1◦(Hs − Hs+t)◦(I−ewHs)
−1[f ](0)dsdt.

Here, the first term involves the dominant eigenfunction ϕs of Hs and the dominant eigenmeasure
νs of the dual H⋆

s at s = τ(w) and the second term involves

Cw[f ] :=
ντ(w)[f ] ζ(2τ(w) + 2)

2iπτ(w)(2τ(w) + 1)
.

We first choose, as in Theorem 2, α = β = σ. The first term will provide the main term, which is
of the form A(w)W 3−2τ(w)T 2τ(w)+1 while Theorem A entails the following estimates for the other
three terms : [here, t(w) denotes the real part of τ(w)]

O(W 3−2ρ(w)−2σT 1+2t(w)) O(T 1+2t(w)−2σW 3−2t(w)−2σ) O(T 1+2t(w)−2σW 3−2t(w))

Here, the constants involved in the O-terms are uniform when w is near 0. Finally

D(T,W,w) = R(w)W 3−2τ(w)T 2τ(w)+1
[
1 +O(W−2σ)

]
[
1 +O

(
T

W

)−2σ
]
,

where R(w) is analytic and not zero when w ∈ W.

6.6. Proof of Theorem 1– Step 3. Final estimates for variable Pδ on Ω. We now follow
the same lines as in the proof of Theorem 2. We first consider W as fixed. For transforming the
double sum over indices N into a simple sum, it is more involved than above, since the positivity
argument cannot be used here, because w is a complex parameter. However, it is possible to apply
the Proposition C’ of Appendix, and transform the double sum over indices N into a simple sum.
We then deduce from the estimate of D(T,W,w) in (62) an estimate for the sum

D1(T,W,w) :=
T∑

N=T/2

∑

W1≤W

∑

M≤W1

∑

k≥0

ewkb
(k)
N,M

= R1(w)T 2(τ(w)−1)W 2(1−τ(w))
[
1 +O(W−2σ)

]
[
1 +O

(
T

W

)−σ
]
.

Then, as in Section 6.3, we consider that T and W are polynomially related, and use two times
Proposition A as in Section 6.3. We obtain an estimate for

1

|Ωn|

2n−1∑

N=2n−1

1

2(1−δ−ρ(δ))n

2(1−δ)n∑

W=2(1−δ)n[1−2−ρ(δ)n]

∑

M≤W

∑

k≥0

ewkb
(k)
N,M

= R2(w)22nδ(τ(w)−1)
[
1 +O(2−nρ(δ)

]
with d(0) = 1, ρ(δ) = (1/2)σmin(1 − δ, δ).

Finally, we obtain an estimate for the moment generating function of the ρ(δ)–probabilistic variant
P δ on Ωn, namely

En,f [exp(wP δ)] = R3(w)22nδ(τ(w)−1)
[
1 +O(2−ρ(δ)n)

]
.
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Then, the Quasi-Powers theorem, applied with

C(w) := 2δ lg(τ(w) − 1), D(w) := lgR3(w)

entails an asymptotic gaussian law for the probabilistic variant P δ on Ωn. Furthermore, we have
already remarked that, in any interval ]A/2, A], there are at most two elements of the sequence xk.
Then, for n large enough, the two variables – the probabilistic variable P δ and its deterministic
version Pδ– are closely related since they satisfy |P δ − Pδ| ≤ 2.

Finally, Proposition 1 of the paper of Lhote–Vallée [21], together with the inequality |P δ −Pδ| ≤ 2
proves that the asymptotic gaussian law also holds for Pδ on Ω, with a speed of convergence of
order O(n−1/3).

6.7. Proof of Theorem 4. Sketch. We study here the parameter Qδ. We introduce here the
Dirichlet series which depends on two parameters s, t,

H(2s, 2t) := ζ(2s+ 2t)(I − Hs+t)
−1(Hs+t − Hs) ◦ H3

s,[ℓ] ◦ (I − Hs)
−1[f ](0),

It involves the weighted transfer operator Hs,[ℓ] relative to the binary size ℓ and already defined in
(30)

Hs,[ℓ][f ](x) :=
∑

m≥1

ℓ(m)

(m+ x)2s
f

(
1

m+ x

)
.

Applying the same principles as in Section 6.1 and 6.4 proves that it is well adapted to the study
of cost Q

δ
.

6.8. Proof of Theorem 5. Sketch. We study here the parameter ℓ(u〈δ〉). We introduce here
the Dirichlet series which depends on two parameters s, t,

L(2s, 2t) := ζ(2s+ 2t)(I − Hs+t)
−1 ◦ H′

s+t ◦ (I − Hs+t)
−1 ◦ H′

s+t ◦ (I − Hs)
−1[f ](0),

It involves the derivative of the operator Hs. Applying the same principles as in Section 6.1 and
6.4 proves that it is well adapted to the study of cost ℓ(u〈δ〉).

7. Appendix : Propositions A, B, C.

We are interested in finding estimates for partial sums of coefficients, of the form

Φw(N) :=
∑

k≤N

ck(w).

However, Perron’s formula of order two provide estimates only for double sums,

Ψw(T ) :=
∑

N≤T

Φw(N) =
∑

N≤T

∑

k≤N

ck(w)

of the form

(63) Ψw(T ) =
R(w)

2τ(w) + 1
T 2τ(w)+1

[
1 +O

(
A2(w)T−2σ

)]
,

where the two conditions are fullfilled:
(i) the real σ belongs to ]0, 1/2[ and the O-term is uniform with respect to w ∈ W, as T → ∞.
(ii) ℜτ(w) > 1/2 and ∃R0 > 0 for which |R(w)| > R0 when w ∈ W.

In this case, we say that Ψw satisfies (P ) on W with the quadruple (τ,R, σ,A).

The main question is as follows:
From estimates on Ψw(N), is it possible to deduce estimates for Φw(N)?

It proves useful to introduce intermediate objects: for two indices N− and N+ which satisfy
N− < N < N+, consider the two averages

Φ+
w(N) :=

1

N+ −N

N+∑

k=N+1

Φw(k), Φ−
w(N) :=

1

N −N−

N∑

k=N−+1

Φw(k).

The following of the appendix is devoted to the three main steps:



30 E. CESARATTO, J. CLÉMENT, B. DAIREAUX, L. LHOTE, V. MAUME, AND B. VALLÉE

(i) It is always possible to deduce from (63) estimates for Φ±
w(N), as soon as

N− := N − ⌊A(w)N1−σ⌋, N+ = N + ⌊A(w)N1−σ⌋.

This is the aim of Proposition A.
(ii) Then, if the coefficients cn(w) are positive, these estimates can be tranferred into estimates

for Φw(N). This is the aim of Proposition B.
(iii) Finally, if the coefficients cn(w) are dominated by ĉn(w) (i.e. |cn(w)| ≤ ĉn(w), and if

estimates for Ψ̂w(T ) of the same vein as Ψw(T ) hold, then it is possible to obtain estimates
for Φw(N). This is the aim of Proposition C. Furthermore, this proposition naturally
applies to a “moment generating function” setting.

7.1. Statements of the propositions. We now describe the three results in a more formal way.

Proposition A. [Basic Version] Consider a sequence of functions cn : W → C for which Ψw

satisfies (P ) on W with the quadruple (τ,R, σ,A). Then, for N− = N − ⌊A(w)N1−σ⌋, the sum
Φ−
w(N) satisfies

Φ−
w(N) :=

1

N −N−

∑

N−<k≤N

φw(k) = R(w)N2τ(w) · [1 +O(A(w)N−σ)],

where the constant in the O–term is uniform on W. The same estimate holds for Φ+
w(N).

Proposition B. [Positive coefficients] Consider a sequence of functions ĉn : W → R+ for which

Ψ̂w satisfies (P ) on W with the quadruple (τ̂ , R̂, σ̂, Â). Then the sum Φ̂w(N) satisfies

Φ̂w(N) :=
∑

n≤N

ĉn(w) = R̂(w)N2bτ(w) · [1 +O(Â(w)N−bσ)],

where the constant in the O–term is uniform on W.

Proposition C. [Domination] Consider two sequences of functions cn : W → C, ĉn : W → R+, for

which the sums Ψw, Ψ̂w satisfy (P ) on W with the respective quadruples (τ,R, σ,A) and (τ̂ , R̂, σ̂, Â).
Suppose furthermore that the following holds:

(i) ĉn dominates cn, i.e., |cn(w)| ≤ ĉn(w), ∀w ∈ W.
(ii) The two functions τ(w), τ̂(w) satisfy : ∃α < σ̂/2, ∀w ∈ W, |ℜτ(w) −ℜτ̂(w)| ≤ α,.

Then, the sum Φw(T ) satisfies, for any w ∈ W,

Φw(T ) :=
∑

n≤T

cn(w) = R(w)T 2τ(w) · [1 +O(B(w)T−β)],

with β := min(σ, σ̂ − 2α), B := max{A, Â} and where the constant in the O–term is uniform on
W.

Proposition C’ [Particular case of Proposition C.] Consider the case when W is a neighborhood
of 0, cn : W ∩ R → R, and |cn(w)| ≤ cn(ℜw). We let in this case ĉn(w) := cn(ℜw). Then, if Ψ

satisfies (P ) with the quadruple (τ,R, σ,A), the function τ(w) is real as soon as w is real, and Ψ̂w

satisfies (P ) with the triple (τ(ℜw), R(ℜw), σ, A). If, moreover the function τ is continuous, then
the difference ℜτ(w)− τ̂(w) = ℜτ(w)− τ(ℜw) is less than σ/4 on a small enough neighborhood of
w = 0. And, it is possible to apply Proposition C, with β = σ/2.

This framework arises in a natural way when we study moment generating functions, since, in this
case, the coefficient cn(w) is a sum of terms of the form aj,nexp[wbj,n], with reals aj,n, bj,n.

7.2. Proof of Proposition A. We suppose that the following estimate holds:

Ψw(T ) = Fw(T )
[
1 +O

(
A(w)T−2σ

)]
, T → ∞ , with Fw(T ) = b(w)T a(w),
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where b(w), a(w) satisfy ℜa(w) > 0, b(w) 6= 0 on W, and the O-error term is uniform for w ∈ W.
Denote by T− := T − ⌊T 1−σ⌋. The estimate of Ψw(T ) entails

1

T − T−
[Ψw(T ) − Ψw(T−)]

=
1

T − T−
(Fw(T ) − Fw(T−)) +

A2(w)

T − T−
O
(
Fw(T )T−2σ

)

= F ′
w(T )

[
1 +O

(
(T − T−)

F ′′
w(T )

F ′
w(T )

,
A2(w)

T − T−

Fw(T )T−2σ

F ′
w(T )

)]
.

Then, if a(w) 6= 1, our assumptions on Fw(T ) and a(w) imply

F ′
w(T ) = Θ

(
T−1Fw(T )

)
, F ′′

w(T ) = Θ
(
T−2Fw(T )

)
,

with a uniform Θ. Therefore, we choose

T − T− :=

(
A2(w)

Fw(T )T−2σ

F ′′
w(T )

)1/2

= Θ
(
A(w)T 1−σ

)
,

and we take the same choice when a(w) = 1. If we wish to transfer theses estimates on integer
parts, we need the condition σ < 1/2.

We now apply this result to our framework. We denote

N− := N − ⌊A(w)N1−σ⌋, N+ = N + ⌊A(w)N1−σ⌋,
and we consider

Φ+
w(N) :=

1

N+ −N

N+∑

k=N+1

Φw(k), Φ−
w(N) :=

1

N −N−

N∑

k=N−+1

Φw(k).

From (63), we have obtained estimates for Φ±
w(N) of the form

Φ±
w(N) = R(w)N2τ(w)

[
1 +O

(
A(w)N−σ

)]
,

7.3. Proof of Theorems B and C. We compare now Φ±
w(N) and Φw(N). We have

Φw(N) = Φ−
w(N) +

1

N −N−

N∑

k=N−+1

(Φw(N) − Φw(k))

Φw(N) = Φ+
w(N) +

1

N+ −N

N+∑

k=N+1

(Φw(N) − Φw(k))

If the coefficients cn(w) are real positive, the sequence k 7→ Φw(k) is increasing, so that

Φ−
w(N) ≤ Φw(N) ≤ Φ+

w(N)

and Φw(N) has the same estimate as Φ±
w(N). This is true in particular for Φ̂w(N) which has the

same estimate as Φ̂±(N), namely

Φ̂w(N) = R̂(w)N2bτ(w)
[
1 +O

(
N−bσ

)]
, |Φ̂w(N) − Φ̂−

w(N)| = O(Â(w)N2bτ(w)−bσ)

This provides the proof of Proposition B.

We now prove Theorem C. If the series has no longer positive coefficients, but is dominated, we
observe that, for k ≤ N ,

|Φw(N) − Φw(k)| =

∣∣∣∣∣

N∑

n=k+1

cn(w)

∣∣∣∣∣ ≤
N∑

n=k+1

ĉn(w) = Φ̂w(N) − Φ̂w(k),

which entails the inequality

|Φw(N) − Φ−
w(N)| ≤ |Φ̂w(N) − Φ̂−

w(N)|.
We apply the arguments of Proposition B which prove that

|Φ̂w(N) − Φ̂−
w(N)| = O(Â(w)N2bτ(w)−bσ),



32 E. CESARATTO, J. CLÉMENT, B. DAIREAUX, L. LHOTE, V. MAUME, AND B. VALLÉE

together with the estimate for Φ−
w(N) obtained in Proposition A, and finally

Φw(N) = R(w)N2τ(w)
[
1 +O

(
A(w)N−σ

)
+O(Â(w)N2bτ(w)−2τ(w)−bσ)

]

= R(w)N2τ(w)
[
1 +O

(
B(w)N−β

)]
,

with β := min(σ, σ̂ − 2α), B := max{A, Â}. This proves Proposition C.

8. Conclusion

This paper provides the first average-case analysis of a subquadratic gcd algorithm. We therefore
extend the domain of applicability of dynamical analysis techniques, and show that such methods
are also efficient for studying more complex Euclidean algorithms. The type of analysis performed
here requires a precise study of the interrupted algorithms, and a precise description of the evolution
of the distribution during the execution of the algorithm. This heavily uses the powerful tools of
distributional analysis provided by [2, 21].
It would be also interesting to adapt the methodology developed here to other subquadratic gcd
algorithms. We have in mind the algorithm recently designed by Stehlé and Zimmermann [25],
based on a division using the least significant bits of the integers. The analysis of the plain gcd
algorithm using this division is done in [8]. This is clearly a first step in that direction; however,
a complete analysis of the SZ Algorithm would use Property US, and this Property is not known
to hold in the context of the dynamical system related to this gcd using the least significant bits.
Anyway, comparing the average–case behaviour of the SZ algorithm to other HG algorithms would
be interesting since it would point out the influence of the division used, and explain experimental
results observed in [25, 22].
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