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Hamilton-Jacobi equations on networks

Yves Achdou ∗, Fabio Camilli †, Alessandra Cutr̀ı ‡, Nicoletta Tchou §

July 19, 2010

Abstract

We consider continuous-state and continuous-time control problem where the admissible
trajectories of the system are constrained to remain on a network. Under suitable assumptions,
we prove that the value function is continuous. We define a notion of viscosity solution of
Hamilton-Jacobi equations on the network for which we prove a comparison principle. The
value function is thus the unique viscosity solution of the Hamilton-Jacobi equation on the
network.

Keywords Optimal control, graphs, networks, Hamilton-Jacobi equations, viscosity solu-
tions

AMS 34H05, 49J15

1 Introduction

A network (or a graph) is a set of items, refered to as vertices or nodes, with connections
between them refered to as edges. The main tools for the study of networks come from
combinatorics and graph theory. But in the recent years there is an increasing interest in
the investigation of dynamical systems and differential equation on networks, in particular
in connection with problem of data transmission and traffic management (see for example
Garavello-Piccoli [10], Engel et al [5]). In this perspective, the study of control problem on
networks have interesting applications in various fields.

A typical optimal control problem is the minimum time problem, which consists in finding
the shortest path between an initial position and a given target set. If the running cost is a
fixed constant for each edge and the dynamics can go from one vertex to an adjacent one in
each time step, the corresponding discrete-state discrete-time control problem can be studied
via graph theory and matrix analysis. If instead the cost changes in a continuous way along
the edges and the dynamics is continuous in time, the minimum time problem can be seen as
a continuous-state continuous-time control problem where the admissible trajectories of the
system are constrained to remain on the network. While state constraint control problems in
closures of open sets are well studied ([15, 16], [3], [11]) there is to our knowledge much fewer
literature on problems in closed sets. The results of Frankowska and Plaskacz [9, 8] do apply
to some closed sets with empty interior, but not to networks with crosspoints (except in very
particular cases).

The aim of this paper is therefore to study optimal control problems with dynamic con-
strained to a network and the related Hamilton-Jacobi-Bellman equation. Note that other
types of optimal control problems could be considered as well, leading to other boundary
conditions at the endpoints of the network. In most of the paper, we will consider for sim-
plicity the toy model given by a star-shaped network, i.e. straight edges intersecting at the
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origin. Moreover we will often assume that the running cost is independent of the control.
This simple model problem already contains many of the difficulties that we have to face in
more general situations.

Since the dynamic is constrained to the network, the velocities tangent to the network vary
from one edge to the other, hence the set of the admissible controls depends on the state of the
system. If the set of admissible controls varies in a continuous way, the corresponding control
problem can be studied via standard viscosity solution techniques (see Koike[12]). But for a
network, the set of admissible controls drastically changes from a point in the interior of an
edge, where only one direction is admissible (with positive and negative velocities), to a vertex
where the admissible directions are given by all the edges connected to the node. Therefore,
even if the data of the problem are regular, the corresponding Hamiltonian when restricted
to the network has a discontinuous structure. Problem with discontinuous Hamiltonians
have been recently studied by various authors (Tourin[20], Soravia[17], Deckelnick-Elliott[4],
Bressan-Hong[2]), but the approaches and the results considered in these papers do not seem
to be applicable because of the particular structure of the considered domain.

Assuming that the set of the admissible control laws - i.e. the control laws for which
the corresponding trajectory remain on the graph - is not empty, the control problem is well
posed and the corresponding value function satisfies a dynamic programming principle. We
introduce a first set of assumptions which guarantees that the value function is a continuous
function on the network (with respect to the intrinsic geodetic distance).

The next step is to introduce a definition of weak solution which ensures the uniqueness
of the continuous solution via a comparison theorem. While in the interior of an edge we
can test the equation with a smooth test function, the main difficulties arise at the vertices
where the network does not have a regular differential structure. At a vertex, we consider a
concept of derivative similar to the one of Dini’s derivative, see for example[1], hence regular
test functions are the ones which admit derivatives in each directions of the edges entering in
the node. We give a definition of viscosity solution on the network using the previous class
of test functions. It is worthwhile to observe that this definition reduces to the classical one
of viscosity solution if the graph is composed of two parallel segments entering in a node, see
[1].

With this definition, the intrinsic geodetic distance, fixed one argument, is a regular func-
tion w.r.t. the other argument and it can be used in the comparison theorem as a penalization
term in the classical doubling argument of viscosity solution theory.

We conclude observing that this paper is a first attempt to study Hamilton-Jacobi-Bellman
equations and viscosity solutions on a network. Several points remain open such as more
general control problems, problem with boundary conditions, stochastic control problem,
etc...

2 Setting of the problem

We consider a planar network with a finite number of edges and vertices. A network in R
2 is

a pair (V, E) where

i) V is a finite subset of R
2 whose elements are said vertices

ii) E is a finite set of regular arcs of R
2, said edges, whose extrema are elements of V.

We say that two vertices are adjacent if they are connected by an edge. We say that a vertex
belongs to ∂V (resp., int(V)) if there is only one (resp., more than one) edge connected to it.
We assume that the edges cross each other transversally. We denote by G the union of all the
edges in E and all the vertices in V. We denote by G the set G\∂V.
Unless explicitely mentioned, we focus for simplicity on the model case of a star-shaped
network with N straight edges, N > 1, i.e.

G = {O} ∪
N[

j=1

Jj ⊂ R
2, O = (0, 0), Jj = (0, 1)ej , (2.1)

where (ej)j=1,...,N is a set of unit vectors in R
2 s.t. ej 6= ek if j 6= k. Note that ej = −ek is

possible. Then, ∂V = {ej , j = 1, . . . , N} and int(V) = {O}. Except in § 4.2, we assume that
there is at least a pair (j, k), j 6= k s.t. ej is not aligned with ek.
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The general case will be dealt with in a forthcoming paper, where we will also consider
structures made of several manifolds of different dimensions crossing each other transversally.
For any x ∈ G, we denote by Tx(G) ⊂ R

2 the set of the tangent directions to the network, i.e.

p ∈ Tx(G) ⇐⇒ there exists ξ ∈ C1([0, T ]; R2) such that ξ(t) ∈ G, ξ(0) = x and ξ̇(0) = p.
(2.2)

It is easy to prove that p ∈ Tx(G) if and only if there exist sequences (tn)n∈N, tn > 0 and
(xn)n∈N, xn ∈ G, such that tn → 0+ and (xn − x)/tn → p.
We now introduce the optimal control problem on G. We start by making some assumptions
on the structure of the problem.
Call B the unit ball of R

2 centered at O. Take for A a compact set of R
2 containing 0, and a

continuous function f : B ×A→ R
2 such that

|f(x, a) − f(y, a)| ≤ L|x− y|, ∀x, y ∈ B, a ∈ A. (2.3)

The assumption (2.3) implies that there exists M > 0 such that

|f(x, a)| ≤M, ∀x ∈ B, a ∈ A. (2.4)

Additional assumptions will be made below. For x ∈ G, we consider the dynamical system


ẏ(t;x, α) = f(y(t;x, α), α(t)), t > 0,
y(0) = x.

(2.5)

Remark 2.1. We have chosen to parametrize the dynamics by a function f defined on B×A,
i.e. on a much larger set than G × A. We could have also defined f on G × A only. This
would have been equivalent since by Whitney extension theorem one can extend any Lipschitz
function defined on G to a Lipschitz function defined on B. In fact, all the assumptions made
below on f involve f |G×A only. Yet, it seemed to us that defining f on B × A led to simpler
notations.

Denoting by A the class of the control laws, i.e. the set of measurable functions from
[0,+∞) to A, we introduce the subset Ax ⊂ A of the admissible control laws, i.e. the control
laws for which the dynamics (2.5) is constrained on the network G:

Ax = {α ∈ A : y(t;x, α) ∈ G, ∀t > 0}. (2.6)

Assumption 2.1.

Ax is not empty for any x ∈ G. (2.7)

We will always consider α ∈ Ax in (2.5).
We also define for x ∈ G,

Ax = {a ∈ A s.t. ∃θ > 0 : y(t;x, a) ∈ G, ∀t, 0 < t < θ}. (2.8)

From (2.3), we see that for all a ∈ Ax, f(x, a) ∈ Tx(G).

Assumption 2.2.

Ax = A ∩ Rej , if x ∈ Jj , j = 1, . . . , N, (2.9)

AO = ∪N
j=1{a ∈ A ∩ Rej : f(O, a) ∈ R

+ej}, (2.10)

Aej ⊂ A ∩ Rej , and inf
a∈Aej

f(ej , a) · ej < 0, j = 1, . . . , N. (2.11)

Remark 2.2. The set A ∩ Rej is not empty since it contains 0.

Remark 2.3. The continuity of f and (2.9) imply that f(O, 0) = 0. Indeed, assuming that
e1 and e2 are not aligned, take xn → O, xn ∈ J1 and yn → O, yn ∈ J2, we know that
|e1 ∧ (f(xn, 0) − f(O, 0))| → 0 and that |e2 ∧ (f(yn, 0) − f(O, 0))| → 0, where we denote by
· ∧ · the exterior product. This implies the claim.

Remark 2.4. Assumption 2.2 says that the set of admissible controls laws contains locally
constant function (for t small) with nonzero value. The assumption in (2.11) at the vertices
in ∂V tells us that there exist controls which make the trajectory enter G; this assumption is
classical in the context of state constrained problems.
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Assumption 2.3. For all x ∈ G\{O}, there exists τ > 0 such that for all α ∈ Ax, α(t) ∈ Ax

for almost all t ∈ [0, τ ].

Assumption 2.3 says that for small times, an admissible control at x cannot take values
outside Ax (except maybe on a negligeable set of times).

Assumption 2.4. We assume that there exist positive constants ζj and ζj, j = 1, . . . , N , s.t.

co(f(O,A ∩ Rej)) = [−ζj , ζj ]ej , with ζj ≥ ζj > 0, ∀j = 1, . . . , N. (2.12)

Remark 2.5. Assumption 2.4 will be mostly used for proving a comparison principle. It also
implies the continuity of the value function, for which weaker assumptions can be made, see
Remarks 2.8 and 2.9.

Remark 2.6. Assumption 2.4 implies controllability near O.

Remark 2.7. Note that if ej = −ek then ζj = ζj = ζk = ζk. Indeed, from (2.12) and the

continuity of f we get that ζj = ζk and ζk = ζj. The last part of (2.12) implies ζj ≥ ζj = ζk

and ζk ≥ ζk = ζj, which yields the claim.
In particular, if G = −G and A = −A, then (2.12) and the continuity of f imply that for
all j, ζj = ζj. For example, take the cross-shaped network as follows: N = 4, J1 = (0, e1),

J2 = (0, e2), J3 = (0,−e1), J4 = (0,−e2). We have ζ1 = ζ3 = ζ3 = ζ1 and ζ2 = ζ4 = ζ4 = ζ2.

Example 2.1. Take for A the unit ball of R
2 and f(x, a) = g(x)a where g : B → R is a

Lipschitz continuous positive function: we can see that all the assumptions above are satisfied.
In particular, let us show that Assumption 2.3 holds in the present case: take x ∈ G\{O}, for
example x ∈ J1 and α ∈ Ax. With M as in (2.4), take τx = |x|/(2M). It is easy to see that
y(t;x, α) ∈ J1 for t ∈ [0, τx]. This implies that

R t

0
e1 ∧ f(y(s;x, α), α(s))ds = 0 for t ∈ [0, τx],

and therefore e1 ∧ f(y(t;x, α), α(t)) = g(y(t;x, α))e1 ∧ α(t) = 0 for almost all t ∈ [0, τx].
Therefore, since g is positive, α(t) ∈ A ∩ Re1 = Ax for almost all t ∈ [0, τx].

Example 2.2. Take N unit vectors (ej)j=1,...,N , with ej = (cos θj , sin θj), θj ∈ [0, 2π).
Choose ζj, ζj 2N positive numbers satisfying the last condition in (2.12), and such that ζj =

ζk = ζj = ζk if ej = −ek. Take for A the unit ball of R
2; let ζ : R → R+ be a 2π-

periodic and continuous function such that ζ(θj) = ζj and ζ(−θj) = ζj, j = 1, . . . , N ; Choose
f(x, a) = g(x)ζ(θ)a where a = |a|(cos θ, sin θ) and g : B → R is a Lipschitz continuous positive
function. We can see that all the assumptions above are satisfied.

Example 2.3. Choose N unit vectors (ej)j=1,...,N and 2N positive numbers ζj, ζj as in

Example 2.2. Take A = ∪N
j=1Kej, K = {−1, 0, 1}. Choose

f(x, a) = g(x)

NX

j=1

“
−ζj1a=−ej + ζj1a=ej

”
ej

where g : B → R is a Lipschitz continuous positive function. we can see that all the assump-
tions above are satisfied.

Example 2.4. Take the cross shaped network as in Remark 2.7 and A = Ke1 ×Ke2, K =
{−1, 0, 1}, f(x, a) = g(x)a where g : B → R is a Lipschitz continuous positive function: we
can see that all the assumptions above are satisfied.

Finally, we consider a continuous functions ℓ : G ×A→ R such that

|ℓ(x, a)| ≤M, ∀x ∈ G, a ∈ A, (2.13)

|ℓ(x, a) − ℓ(y, a)| ≤ L|x− y|, ∀x, y ∈ G, a ∈ A. (2.14)

For λ > 0, we consider the cost functional

J(x, α) =

Z ∞

0

ℓ(y(t;x, α), α(t))e−λtdt. (2.15)

The value function of the constrained control problem on the network is

v(x) = inf
α∈Ax

J(x, α), x ∈ G. (2.16)
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Proposition 2.1. Under the assumptions above, the value function is continuous on G.

Proof. For the continuity at x ∈ ∂V, we refer to [1], proof of Theorem 5.2, page 274. We are
going to study the continuity of the value function at x ∈ G.
From (2.12) and (2.3), there exists a positive number r0 and a constant C such that for all
x, z ∈ BO(r0), there exists αx,z ∈ Ax and τx,z ≤ C|x− z| with y(τx,z;x, αx,z) = z.
For all ε > 0 small enough, we define

Tε = − 1

λ
log(ε/M), Cε = L

Z Tε

0

e(L−λ)tdt, ρε = r0e
−LTε/4. (2.17)

Consider now x ∈ G. We want to prove that lim supz→x v(z) ≤ v(x). The inequality
lim infz→x v(z) ≥ v(x) is obtained in a similar way.
For all ε > 0 there exists a control α ∈ Ax such that J(x, ᾱ) < v(x) + ε. We distinguish two
cases: a) x ∈ BO(r0/2); b)x /∈ BO(r0/2).
a) If x ∈ BO(r0/2), then if z ∈ BO(r0), we construct α̃ ∈ Az as follows:

α̃(t) = αz,x(t) if t < τz,x,
α̃(t) = α(t− τz,x) if t > τz,x.

Since τz,x ≤ C|z− x|, it is easy to prove that v(z) ≤ J(z, α̃) ≤ v(x) + ε+C|x− z|. Sending ε
to 0, we obtain that lim supz→x v(z) ≤ v(x) for x ∈ BO(r0/2).
b) If x /∈ BO(r0/2), we can assume that x ∈ J1 and that |x| > r0/2. Then for z close enough
to x, z belongs to J1. We take z ∈ J1 such that |x− z| ≤ ρε.
Therefore, the control α is also admissible for z at least for a finite duration, (the first time
T when y(t;x, α) or y(t; z, α) hits O, if it exists).
b1) If T > Tε or T does not exist, then both y(t; z, α) and y(t;x, α) remain in J1 ∪ {e1} for
t < Tε. For any α̃ ∈ Az s.t. α̃(t) = α(t) for t < Tε, we have that |J(z, α̃) − J(x, α̃)| ≤
Cε|x− z| + 2ε, where Cε is defined in (2.17). Thus v(z) ≤ J(z, α̃) ≤ v(x) + Cε|x− z| + 3ε.
b2) If y(T ;x, α) = O, then we construct the control α̃ ∈ Az as follows

α̃(t) = α(t) if t < T,
α̃(t) = αy(T ;x,α),O(t− T ) if T < t < T + τy(T ;z,α),O,
α̃(t) = α(t− τy(T ;z,α),O) if t > T + τy(T ;z,α),O.

Note that this is possible since |x − z| ≤ ρε which implies |y(T ; z, α)| ≤ eLTε |x − z| < r0/4.
Here again, we get that

v(z) ≤ J(z, α̃) ≤ v(x) + C̃ε|x− z| + ε,

for another constant C̃ε.
b3) If y(T ; z, α) = O, then we construct the control α̃ ∈ Az as follows

α̃(t) = α(t) if t < T,
α̃(t) = αO,y(T ;x,α)(t− T ) if T < t < T + τO,y(T ;x,α),
α̃(t) = α(t− τO,y(T ;x,α)) if t > T + τO,y(T ;x,α).

Note that this is possible since |x − z| ≤ ρε which implies |y(T ;x, α)| ≤ eLTε |x − z| < r0/4.
Here again, we get that

v(z) ≤ J(z, α̃) ≤ v(x) + C̃ε|x− z| + ε.

⊓⊔

Remark 2.8. Note that the assumption ζj ≥ ζ
j
, ∀j, has not been used.

Remark 2.9. It can be shown that Proposition 2.1 holds if for some indices j, ζj = ζ
j

= 0.

We now give an example in which the value function is discontinuous: let (e1, e2) be an
orthonormal basis of R

2, G = (0, 1)e1 ∪ {O} ∪ (0, 1)e2, A = {0, e1, e2}, f(x, a) = a(1 − 2|x|).
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Take ℓ(x, a) = 1 if x2 = 0 and ℓ(x, a) = 1 − |x| if x1 = 0. Assumption 2.4 is not satisfied. It
is easy to compute the value function u: we have

u(x1, 0) =
1

λ
, 0 < x1 ≤ 1,

u(0, x2) =
1

2λ
+

1 − 2x2

4 + 2λ
, 0 ≤ x2 <

1

2
,

u(0, x2) =
1 − x2

λ
,

1

2
≤ x2 ≤ 1.

(2.18)

The value function is discontinuous at O.

3 Preliminary notions

Hereafter, we make all the assumptions stated in § 2: except in § 4.2 and 5, all the theorems
below will be stated without repeating the assumptions.

3.1 Test functions

We introduce the class of the admissible test functions for the PDE on the network

Definition 3.1. We say that a function ϕ : G → R is an admissible test function and we
write ϕ ∈ R(G) if

• ϕ is continuous in G and C1 in G \ {O}
• for any j, j = 1, . . . , N , ϕ|Jj

∈ C1(Jj).

Therefore, for any ζ ∈ R
2 such that there exists a continuous function z : [0, 1] → G and a

sequence (tn)n∈N, 0 < tn ≤ 1 with tn → 0 and

lim
n→∞

z(tn)

tn
= ζ,

the limit limn→∞
ϕ(z(tn))−ϕ(O)

tn
exists and does not depend on z and (tn)n∈N. We define

Dϕ(O, ζ) = lim
n→∞

ϕ(z(tn)) − ϕ(O)

tn
. (3.1)

If x ∈ G\{O} and ζ ∈ Tx(G), we agree to write Dϕ(x, ζ) = Dϕ(x) · ζ.
Property 3.1. Let us observe that Dϕ(O, ρζ) = ρDϕ(O, ζ) for any ρ > 0. Indeed, denoting
by τn = tn/ρ, limn→∞ z(tn)/τn = ρζ. Hence,

ρDϕ(x, ζ) = lim
n→∞

ϕ(z(tn)) − ϕ(O)

τn

= Dϕ(O, ρζ).

As shown below, this property is not true if ρ < 0.

If ϕ ∈ C1(R2), then ϕ|G ∈ R(G) and Dϕ(O, ζ) = Dϕ(O) ·ζ for any ζ ∈ R
+ej , j = 1, . . . , N .

If ej = −ek for some j 6= k ∈ {1, . . . , N}, Dϕ(O, ej) = −Dϕ(O,−ej).
If ϕ is continuous and ϕ|Ḡ∩Rej

is C1 for j = 1, . . . , N , then ϕ ∈ R(G) but the converse may
not true if two edges are aligned: for example, if ej = −ek for some j 6= k ∈ {1, . . . , N}, the
function x 7→ b|x| belongs to R(G) and Dϕ(O, ej) = Dϕ(O,−ej) = b.

In the general case of curved edges, the following property holds for test functions: for any
ζ ∈ R

2 such that there exists sequences (tn)n∈N and (ζn)n∈N, tn ≥ 0, ζn ∈ R
2 with tnζn ∈ G

and ζn → ζ, tn → 0+, limn→∞
ϕ(tnζn)−ϕ(O)

tn
exists and it is independent of (ζn) and (tn).

Property 3.2. If ϕ = g ◦ ψ with g ∈ C1 and ψ ∈ R(G), then ϕ ∈ R(G) and

Dϕ(O, ζ) = g′(ψ(O))Dψ(O, ζ). (3.2)
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3.2 A set of relaxed vector fields

Definition 3.2. For x ∈ G, we introduce the set

f̃(x) =

8
<
:η ∈ Tx(G) :

∃(αn)n∈N, αn ∈ Ax,
∃(tn)n∈N

s.t.
tn → 0+ and

lim
n→∞

1

tn

Z tn

0

f(y(t;x, αn), αn(t))dt = η

9
=
; .

Note that the assumptions (2.9)- (2.11) and the continuity of f imply that

co (f(O, a) : a ∈ A ∩ Rej) ⊂ Rej .

Indeed, take xn → O, xn ∈ Jj , we know that F (xn) = co (f(xn, a) : a ∈ Axn) ⊂ Txn(G). The
claim is obtained by having xn tend to O.

Proposition 3.1.

f̃(x) = F (x) ≡ co (f(x, a) : a ∈ Ax) , if x ∈ G\{O}, (3.3)

f̃(O) = F (O) ≡ N
∪

j=1

`
co (f(O, a) : a ∈ A ∩ Rej) ∩ R

+ej

´
=

N
∪

j=1
[0, ζj ]ej , (3.4)

f̃(ej) = F (ej) ≡ co (f(ej , a) : a ∈ A ∩ Rej) ∩ R
−ej , j = 1, . . . , N. (3.5)

Proof. Take first x ∈ G\{O}.
We can asssume that x ∈ J1. The inclusion F (x) ⊂ f̃(x) is obtained as follows: take
ζ =

PJ

j=1 µjf(x, aj) with aj ∈ Ax and
P

j µj = 1, 0 ≤ µj . For tn small enough, it is possible
to construct a control αn ∈ Ax such that αn(t) = aj for (

P
k<j µk)tn < t ≤ (

P
k≤j µk)tn:

we have 1
tn

R tn

0
f(y(t;x, αn), αn(t))dt = 1

tn

R tn

0
f(x, αn(t))dt + o(1) =

P
j µjf(x, aj) + o(1),

so limn→∞
1

tn

R tn

0
f(y(t;x, αn), αn(t))dt = ζ. Finally, for ζ ∈ F (x), we approximate ζ by

(ζm)m∈N, where ζm is a convex combination of f(x, a), a ∈ Ax, and we conclude by a diago-
nal process.
For the opposite inclusion, since x ∈ G\{O}, we know from Assumption 2.3 that there exists
τ > 0, such that for all α ∈ Ax, α(t) ∈ Ax for 0 ≤ t < τ . Therefore, 1

s

R s

0
f(x, α(t))dt ∈ F (x)

for s small enough. This and the Lipschitz continuity of f w.r.t. its first argument imply that
f̃(x) ⊂ F (x). We have proved (3.3).
We now consider x = O. We first discuss the inclusion F (O) ⊂ f̃(O): we take ζ =PJ

j=1 µjf(O, aj) with aj ∈ A∩Re1 and we assume that ζ ∈ R
+e1. Up to a permutation of the

indices, it is possible to assume that there exists J ′, 1 < J ′ ≤ J such that f(O, aj) ∈ R
+e1 for

j ≤ J ′ and that f(O, aj) ∈ R
−e1 for j > J ′. Then by a similar argument as above, ζ ∈ f̃(O).

By a diagonal process, this implies that

co (f(O, a) : a ∈ A ∩ Re1) ∩ R
+e1 ⊂ f̃(O).

Similarly co (f(O, a) : a ∈ A ∩ Rej) ∩ R
+ej ⊂ f̃(O), so we have proved that F (O) ⊂ f̃(O).

For the opposite inclusion, consider sequences αn ∈ AO and tn > 0 such that tn → 0+ and
limn→∞

1
tn

R tn

0
f(y(t;O,αn), αn(t))dt exists. We have two cases,

a) if limn→∞
1

tn

R tn

0
f(y(t;O,αn), αn(t))dt = 0 then it belongs to F (O).

b) limn→∞
1

tn

R tn

0
f(y(t;O,αn), αn(t))dt = η 6= 0. Since αn ∈ AO, we know that 0 6= η ∈

∪N
j=1R

+ej . Assume for example that 0 6= η ∈ R
+e1. This implies that there exists sn,

0 ≤ sn < tn such that y(sn;O,αn) = O and y(t;O,αn) ∈ J1 for all t, sn < t ≤ tn. From
Assumption 2.3, this implies that αn(t) ∈ A ∩ Re1 for all t, sn < t < tn. Hence,

1

tn − sn

Z tn

sn

f(O,αn(t))dt ∈ co (f(O, a) : a ∈ A ∩ Re1) ∩ R
+e1.

Therefore, since 0 ∈ co (f(O, a) : a ∈ A ∩ Re1), we get that

1

tn

Z tn

sn

f(O,αn(t))dt ∈ co (f(O, a) : a ∈ A ∩ Re1) ∩ R
+e1.

This implies that

1

tn

Z tn

sn

f(y(t;O,αn), αn(t))dt+ o(1) ∈ co (f(O, a) : a ∈ A ∩ Re1) ∩ R
+e1.
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But
R tn

sn
f(y(t;O,αn), αn(t))dt =

R tn

0
f(y(t;O,αn), αn(t))dt. Hence

1

tn

Z tn

0

f(y(t;O,αn), αn(t))dt+ o(1) ∈ co (f(O, a) : a ∈ A ∩ Re1) ∩ R
+e1,

and by passing to the limit η ∈ co (f(O, a) : a ∈ A ∩ Re1) ∩ R
+e1.

The proof of (3.5) is similar. ⊓⊔

4 Viscosity solutions: the case when the running

cost does not depend on a

4.1 Definition

We assume that ℓ(x, a) = ℓ(x), for all x ∈ G and a ∈ A. We now introduce the definition of
viscosity solution for the equation

λu(x) + sup
ζ∈f̃(x)

{−Du(x, ζ)} − ℓ(x) = 0, x ∈ G (4.1)

with state constraint boundary conditions.

Definition 4.1. • A bounded and upper semicontinuous function u : G → R is a subsolu-
tion of (4.1) in G if for any x ∈ G, any ϕ ∈ R(G) s.t. u−ϕ has a local maximum point
at x, then

λu(x) + sup
ζ∈f̃(x)

{−Dϕ(x, ζ)} − ℓ(x) ≤ 0;

• A bounded and lower semicontinuous function u : G → R is a supersolution of (4.1) if
for any x ∈ G, any ϕ ∈ R(G) s.t. u− ϕ has a local minimum point at x, then

λu(x) + sup
ζ∈f̃(x)

{−Dϕ(x, ζ)} − ℓ(x) ≥ 0;

• A continuous function u : G → R is a viscosity solution of (4.1) with state constraint
boundary condition if it is a viscosity subsolution of (4.1) in G and supersolution of (4.1)
in G.

Remark 4.1. At x ∈ G\{O}, the notion of sub, respectively super-solution in the definition
4.1 is equivalent to the standard definition of viscosity sub, respectively super-solution of the
equation

λu(x) + sup
a∈Ax

{−f(x, a) ·Du} − ℓ(x) = 0.

This is true because from Definition 3.1,

sup
ζ∈f̃(x)

{−Dϕ(x, ζ)} = sup
ζ∈f̃(x)

{−Dϕ(x) · ζ} = max
ζ∈F (x)

{−Dϕ(x) · ζ},

and because the maximum above is equal to supa∈Ax
{−Dϕ(x) ·f(x, a)} (supremum of a linear

functional). Similarly, at x ∈ ∂V, the notion of supersolution in G is equivalent to the standard
definition.

4.2 Link with the classical definition of viscosity solutions

Let us compare our definition with the classical notion of viscosity solution in the particular
network G = J1 ∪ {0} ∪ J2 = (−1, 1) ⊂ R where J1 = (−1, 0) and J2 = (0, 1). We denote by I
the interval [−1, 1]. We make the assumption that A is some compact subset of R containing
0, and that

|f(x, a) − f(y, a)| ≤ L|x− y|, for all x, y ∈ I. (4.2)

Note that Assumption 2.2 implies that for x ∈ G, Ax = A and that f̃(0) = co(f(0, a), a ∈ A).
It is useful to recall the notion of viscosity solutions in the sense of Dini, or minimax viscosity
solutions, in the special context considered here:
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Definition 4.2. Let u be a continuous function defined on I. The lower Dini derivative at
x ∈ G in the direction q = ηe1, η ∈ R, is

∂−u(x, q) = lim inf
t→0+

u(x+ tq) − u(x)

t
.

The upper Dini derivative at x ∈ G in the direction q is

∂+u(x, q) = lim sup
t→0+

u(x+ tq) − u(x)

t
.

Remark 4.2. Similarly, at x = 1, it is possible to define Dini lower and upper derivatives
in the direction q = ηe1 with η < 0. At x = −1, it is possible to define Dini lower and upper
derivatives in the direction q = ηe1 with η > 0.

Definition 4.3. Let u ∈ C(I). The function u is a Dini subsolution of (4.1) in G if

λu(x) + sup
ζ∈f̃(x)

˘
−∂+u(x, ζ)

¯
− ℓ(x) ≤ 0, ∀x ∈ G. (4.3)

The function u is a Dini supersolution of (4.1) in I if

λu(x) + sup
ζ∈f̃(x)

˘
−∂−u(x, ζ)

¯
− ℓ(x) ≥ 0, ∀x ∈ I. (4.4)

The function u is a constrained Dini solution of (4.1) if it is a Dini subsolution of (4.1) in G
and a Dini supersolution of (4.1) in I.

Lemma 4.1. If u ∈ C(I) is a Dini subsolution of (4.1) in G, then it is a subsolution of (4.1)
in G in the sense given by Definition 4.1. If u ∈ C(I) is a Dini supersolution of (4.1) in I,
then it is a supersolution of (4.1) in I in the sense given by Definition 4.1.

Proof. Assume that u is a Dini subsolution of (4.1) in G. Let us focus on x = 0. Let ϕ ∈ R(G)
be such that u(0) = ϕ(0) and u ≤ ϕ in Bδ(0). This implies that Dϕ(0, ζ) ≥ ∂+u(0, ζ), forall
ζ ∈ Re1. Therefore,

λu(0) + sup
ζ∈f̃(0)

{−Dϕ(0, ζ)} − ℓ(0) ≤ λu(0) + sup
ζ∈f̃(0)

{−∂+u(0, ζ)} − ℓ(0) ≤ 0.

A similar argument can be used at x 6= 0. We have proved that u is subsolution of (4.1) in G
in the sense given by Definition 4.1.
The second assertion of Lemma 4.1 is proved similarly. ⊓⊔

Lemma 4.2. If u is a constrained viscosity solution of (4.1) on I in the sense of Definition
4.1, then u is a standard constrained viscosity solution of

λu(x) + sup
ζ∈A

{−Du(x) · ζ} − ℓ(x) = 0 (4.5)

on the interval I.

Proof. In view of Remark 4.1, it is enough to compare the two notions at the point x0 = 0.
Let ϕ ∈ C1(I) be supertangent w.r.t. u at 0. For any control a ∈ A, there exists ta > 0 such
that a is admissible up to time ta. Given a control α ∈ Ay(ta;0,a), define

ᾱ(t) =


a, t ≤ ta;
α, t > ta.

We have that limtn→0 y(tn; 0, ᾱ)/tn = f(0, a). Hence, since ϕ is smooth,

Dϕ(0) · f(0, a) = lim
n

ϕ(y(tn; 0, ᾱ)) − ϕ(0)

tn
= Dϕ(0, f(0, a)).

By Definition 4.1,

λu(0) + sup
a∈A

{−Dϕ(0) · f(0, a)} − ℓ(0) ≤ λu(0) + sup
ζ∈f̃(0)

{−Dϕ(0, ζ)} − ℓ(0) ≤ 0.
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Now, let ϕ ∈ C1(I) be subtangent w.r.t. u at 0 and let ζ ∈ f̃(0). Since f̃(0) = co(f(0, a), a ∈
A),

λu(0) + sup
a∈A

{−Dϕ(0) · f(0, a)} − ℓ(0) = λu(0) + sup
ζ∈f̃(0)

{−Dϕ(0, ζ)} − ℓ(0) ≥ 0.

⊓⊔

Proposition 4.1. A function u ∈ C(I) is a constrained viscosity solution of (4.1) in the sense
of Definition 4.1 if and only if it is a standard constrained viscosity solution of (4.5) on I.

Proof. From Lemma 4.2, we know that a constrained viscosity solution of (4.1) in the sense
of Definition 4.1 is a standard constrained viscosity solution of (4.5).
We have to prove the converse implication. In view of Remark 4.1, the two notions may differ
only at the point x0 = 0, so we need not consider the endpoints ±1 of I.
From [1], Theorem 2.40 page 128, a function u ∈ C(I) is a viscosity subsolution (supersolu-
tion) of (4.5) in G if and only if it is a Dini subsolution (supersolution).
From this result and Lemma 4.1, we see that if u ∈ C(I) is a viscosity subsolution (supersolu-
tion) of (4.5) in G, then it is a subsolution (supersolution) in the sense given by Definition 4.1.
⊓⊔

Remark 4.3. The equivalence between viscosity and Dini solutions was first proved by P-
L. Lions and P. Souganidis in [13, 14] for Lipschitz continuous functions. The use of Dini
derivative for Hamilton Jacobi equations goes back to Subbotin [18, 19] for Lipschitz functions,
see the works of H. Frankowska [6, 7] for generalized versions.

4.3 Existence and uniqueness

The proof of the following result is standard and it is based on the dynamic programming
principle.

Theorem 4.1. The value function v is a viscosity solution of (4.1) with state constraint
boundary conditions.

Proof. We first claim that v satisfies the following dynamic programming principle

v(x) = inf
α∈Ax

Z t

0

ℓ(y(s;x, α))e−λsds+ e−λtv(y(t;x, α))

ff
. (4.6)

The proof is standard along the argument in Propositions III.2.5 or IV.5.5 in [1].

The value function v is a subsolution: it is enough to check that v is a subsolution
at x = O. Let ϕ ∈ R(G) be such that v − ϕ has a maximum point at O, i.e.

v(O) − v(z) ≥ ϕ(O) − ϕ(z) ∀z ∈ B(O, r) ∩ G.
Let d ∈ f̃(O), then there exists αn ∈ AO and tn → 0+ such that

d = lim
n→∞

y(tn;O,αn)

tn
= lim

n→∞

1

tn

Z tn

0

f(y(t;O,αn), αn(t))dt.

Let T > 0 such that y(t) = y(t;O,α) ∈ B(O, r)∩G for any t ≤ T and all α ∈ AO. From (4.6)

ϕ(O) − ϕ(y(t;O,αn))

≤v(O) − v(y(t;O,αn)) ≤
Z t

0

ℓ(y(s;O,αn))e−λsds+ v(y(t;O,αn))(e−λt − 1),

and therefore by (3.1),

−Dϕ(O, d) = lim
n→∞

ϕ(O) − ϕ(y(tn;O,αn))

tn

≤ lim
n→∞

1

tn

„Z tn

0

ℓ(y(s;O,αn))e−λsds+ v(y(tn;O,αn))(e−λtn − 1)

«

= ℓ(O) − λv(O).

Since the previous inequality holds for any d ∈ f̃(O), we conclude that v is a subsolution at
x = O.
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The value function v is a supersolution Let ϕ ∈ R(G) be such that v − ϕ has a
minimum point at O, i.e.

v(O) − v(z) ≤ ϕ(O) − ϕ(z) ∀z ∈ B(O, r) ∩ G.

For ε > 0, let α ∈ AO be an ε-optimal control. For brevity, we use the notation y(t) =
y(t;O,α). Hence by (4.6) and the continuity of ℓ and f we have

v(O) + tε ≥
Z t

0

ℓ(y(s))e−λsds+ e−λtv(y(t))

≥
Z t

0

ℓ(O)e−λsds+ e−λtv(y(t)) + o(t).

For t sufficiently small, we get

ϕ(O) − ϕ(y(t)) −
Z t

0

ℓ(O)e−λsds+ (1 − e−λt)v(y(t)) ≥ −tε+ o(t).

Since α ∈ AO, there exists a tn → 0 and ζ such that ζ = limn→∞
y(tn)

tn
, hence ζ ∈ f̃(O) ⊂

TO(G). From

ϕ(O) − ϕ(y(tn))

tn
− 1

tn

Z tn

0

ℓ(O)e−λsds+
(1 − e−λtn)

tn
v(y(tn)) ≥ −ε+ o(1),

and the arbitrariness of ε, we get for tn → 0+

λv(O) + sup
d∈f̃(O)

{−Dϕ(O, d)} − ℓ(O) ≥ λv(O) −Dϕ(O, ζ) − ℓ(O) ≥ 0.

We conclude that v is a supersolution at x = O. ⊓⊔

We define the geodetic distance on G by

d(x, y) =


|x− y| if x, y ∈ Jj ∪ {O}, j = 1, . . . , N,
|x| + |y| if x ∈ Ji, y ∈ Jj , i 6= j,

and the modified geodetic distance ed(x, y):

ed(x, y) = |x− y|/ζi, if x, y ∈ G ∩ Rei,
ed(x, y) = |x|/ζi + |y|/ζj , if x ∈ Ji and y ∈ Jj .

(4.7)

For the comparison theorem we need an easy preliminary lemma

Lemma 4.3. For any y ∈ G, the functions x 7→ d(x, y) and x 7→ ed(x, y) are admissible test

functions. For any x ∈ G, the functions y 7→ d(x, y) and y 7→ ed(x, y) are admissible test
functions.

Theorem 4.2 (Comparison principle). If u and v are respectively a subsolution of (4.1) in
G and a supersolution of (4.1) in G such that

u ≤ v on ∂G, (4.8)

then u ≤ v in G.

Proof. We use the standard argument consisting of doubling the variables, see [1] page 292.
Note that u − v is bounded and upper semi-continuous on G. We assume by contradiction
that there exist x0 ∈ G, χ > 0 such that

u(x0) − v(x0) = max
G

(u− v) = χ, (4.9)

and we consider

Φε(x, y) = u(x) − v(y) −
ed2(x, y)

2ε
, x, y ∈ G.
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Let (xε, yε) be a maximum point of Φε; we have

χ = Φε(x0, x0) ≤ Φε(xε, yε). (4.10)

From Φε(xε, xε) ≤ Φε(xε, yε), we get
ed2(xε,yε)

2ε
≤ v(xε) − v(yε) and since v is bounded,

ed(xε, yε) ≤ C
√
ε. (4.11)

Hence xε, yε converge for ε → 0 to a point x and, by (4.8), x ∈ G. Therefore we can assume
that for ε sufficiently small, xε, yε ∈ G and, by standard arguments, we can prove that

lim
ε→0

ed2(xε, yε)

2ε
= 0.

Moreover, x 7→ u(x) − (v(yε) +
ed2(x,yε)

2ε
) has a maximum point at xε and by Lemma 4.3,

λu(xε) + sup
ζ∈f̃(xε)

(
D

 
x 7→

ed2(x, yε)

2ε

!
(xε, ζ)

)
− ℓ(xε) ≤ 0. (4.12)

Similarly, y 7→ v(y) − (u(xε) −
ed2(xε,y)

2ε
) has a minimum at yε and by Lemma 4.3,

λv(yε) + sup
ζ∈f̃(yε)

(
D

 
y 7→ −

ed2(xε, y)

2ε

!
(yε, ζ)

)
− ℓ(yε) ≥ 0. (4.13)

If xε = yε, subtracting (4.13) from (4.12) we get

λ(u(xε) − v(xε)) ≤ 0,

and letting ε→ 0, we obtain the contradiction χ ≤ 0. Hence we can assume xε 6= yε.

1
st case: xε 6= O, yε 6= O: From (4.12) and (4.13), taking into account Remark 4.1, we

get

λ(u(xε) − v(yε)) ≤− sup
a∈Axε

(
D

 
x 7→

ed2(x, yε)

2ε

!
(xε, f(xε, a))

)

+ sup
a∈Ayε

(
D

 
y 7→ −

ed2(xε, y)

2ε

!
(yε, f(yε, a))

)
+ ℓ(xε) − ℓ(yε).

(4.14)

• If xε, yε are on the same edge, for example, xε ∈ J̄1 and yε ∈ J̄1, then ed2(xε, yε) =

|xε − yε|2/ζ12
, hence by (4.14), (2.3), (2.9) and (2.14),

λ(u(xε) − v(yε))

≤
ed(xε, yε)

ζ1ε

 
− sup

a∈Axε


xε − yε

|xε − yε|
· f(xε, a)

ff
+ sup

a∈Ayε


xε − yε

|xε − yε|
· f(yε, a)

ff!

+ ℓ(xε) − ℓ(yε)

≤L
ed2(xε, yε)

ε
+ L|xε − yε|,

(4.15)

(note that (xε −yε)/|xε −yε| ∈ Txε(G) = Tyε(G)), which yields the desired contradiction
by having ε tend to 0.

• If xε, yε are not on the same edge, for example xε ∈ J1\{O} and yε ∈ J2\{O} then
ed2(xε, yε) = (|xε|/ζ1 + |yε|/ζ2)2, hence by (4.14)

λ(u(xε) − v(yε)) ≤
ed(xε, yε)

ε

 
− 1

ζ1
sup

a∈Axε


xε

|xε|
· f(xε, a)

ff
+

1

ζ2
sup

a∈Ayε


− yε

|yε|
· f(yε, a)

ff!

+ ℓ(xε) − ℓ(yε),

(4.16)
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(note that xε/|xε| ∈ Txε(G) and yε/|yε| ∈ Tyε(G)). From (2.3), we get

λ(u(xε) − v(yε)) ≤
ed(xε, yε)

ε

 
− 1

ζ1
sup

a∈Axε


xε

|xε|
· f(O, a)

ff
+

1

ζ2
sup

a∈Ayε


− yε

|yε|
· f(O, a)

ff!

+ ℓ(xε) − ℓ(yε) + L
ed2(xε, yε)

ε
.

(4.17)

From (2.9) and (2.12),

− 1

ζ1
sup

a∈Axε


xε

|xε|
· f(O, a)

ff
+

1

ζ2
sup

a∈Ayε


− yε

|yε|
· f(O, a)

ff
= −1 + ζ2/ζ2 ≤ 0,

and we obtain the desired contradiction from (4.17) and (2.14).

2
nd case: either xε = O and yε 6= O or xε 6= O and yε = O: Assume xε = O and
yε 6= O for example yε ∈ J2\{O} (we proceed similarly in the other cases). Take ζ ∈ f̃(O)
where f̃(O) is given by (3.4). We know that co (f(O, a) : a ∈ A ∩ Rej) is contained in Rej ;

therefore, δ(ζ) ≡ D{x 7→ ed(x, yε)}(O, ζ) = − yε

ζ2|yε|
· ζ if ζ is aligned with e2 or δ(ζ) = |ζ|/ζj if

ζ ∈ f̃(O) ∩ Rej is not aligned with e2.
From (4.12) and (4.13), we get

λ(u(O) − v(yε)) ≤
ed(O, yε)

ε

 
− sup

ζ∈f̃(O)

{δ(ζ)} + sup
a∈Ayε


− yε

ζ2|yε|
· f(yε, a)

ff!

+ ℓ(O) − ℓ(yε).

(4.18)

From (2.3), we get that

λ(u(O) − v(yε)) ≤
ed(O, yε)

ε

 
− sup

ζ∈f̃(O)

{δ(ζ)} + sup
a∈Ayε


− yε

ζ2|yε|
· f(O, a)

ff!

+ ℓ(O) − ℓ(yε) + L
ed2(O, yε)

ε
.

(4.19)

Thus, from (3.4), we get that

− sup
ζ∈f̃(O)

{δ(ζ)} + sup
a∈Ayε


− yε

ζ2|yε|
· f(O, a)

ff
= − max

j=1,...,N
max

ζ∈[0,ζj ]ej

δ(ζ) + sup
a∈A∩Re2


−e2 · f(O, a)

ζ2

ff

= − max
j=1,...,N

max
ζ∈[0,ζj ]ej

δ(ζ) + ζ
2
/ζ2

= −1 + ζ
2
/ζ2 ≤ 0,

which, with (2.14), yields the desired contradiction. ⊓⊔

Theorem 4.3. If u and v are respectively a subsolution of (4.1) in G and a supersolution of
(4.1) in G then u ≤ v in G.

Proof. The proof resembles that of Theorem 4.2, with more technicalities near ∂V, see [1],
page 278. We skip it for brevity. ⊓⊔

Let us go back to the example above in which the value function is discontinuous: let
(e1, e2) be an orthogonal basis of R

2, G = (0, 1)e1 ∪ {O} ∪ (0, 1)e2, A = {0, e1, e2}, f(x, a) =
(1−2|x|)a, hence Assumption 2.4 is not satisfied. Take ℓ(x, a) = 1 if x2 = 0 and ℓ(x, a) = 1−|x|
if x1 = 0. The value function u is given by (2.18). We see that u is only lower semi-continuous
at the origin and continuous in G\{O}.
Moreover it is easy to see that u is a supersolution and its upper semi-continuous envelope u∗

is a subsolution. From this we conclude that in this case, the comparison theorem fails since
otherwise we should have u ≥ u∗ in G and therefore u would be continuous in G.
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5 Viscosity solutions: a case when the running cost

depends on a

We consider a particular case when the running cost depends on a; a more general setting
will be studied in a forthcoming paper.
Here we further assume that A is the unit ball of R

2 and that for all a ∈ A ∩ ∪N
j=1Rej

f(O, a) =
NX

j=1

µj

cj
1a∈Rej

a,

with

• µj > 0, j = 1, . . . , N ,

• µj = µk and cj = ck = 2 if ej = −ek, j 6= k ∈ {1, . . . , N},
• cj = 1 if ej 6= −ek ∀k 6= j.

We easily obtain that
f̃(O) = ∪N

j=1µj [0, 1]ej = f(O,AO), (5.1)

and that Assumption 2.4 is satisfied with ζj = ζj = µj , j = 1, . . . , N . We also assume that

ℓ(O, a) =

NX

j=1

ℓj(a · ej)1a∈Rej
, for a ∈ A, (5.2)

where ℓj are convex functions defined on [−1, 1] and vanishing at 0. Therefore,

ℓ(O, a) =

NX

j=1

ℓj(1a∈Rej
a · ej), for a ∈ A. (5.3)

We now introduce the definition of viscosity solution for the equation

λu(x) + sup
a∈Ax

{−Du(x, f(x, a)) − ℓ(x, a)} = 0 (5.4)

with state constraint boundary conditions.

Definition 5.1. • An upper semicontinuous function u : G → R is a subsolution of (5.4)
in G if for any x ∈ G, any ϕ ∈ R(G) s.t. u− ϕ has a local maximum point at x, then

λu(x) + sup
a∈Ax

{−Dϕ(x, f(x, a)) − ℓ(x, a)} ≤ 0;

• A lower semicontinuous function u : G → R is a supersolution of (5.4) if for any x ∈ G,
any ϕ ∈ R(G) s.t. u− ϕ has a local minimum point at x, then

λu(x) + sup
a∈Ax

{−Dϕ(x, f(x, a)) − ℓ(x, a)} ≥ 0;

• A continuous function u : G → R is a viscosity solution of (5.4) with state constraint
boundary conditions if it is a viscosity subsolution of (5.4) in G and supersolution of
(5.4) in G.

Theorem 5.1. With the assumptions made at the beginning of § 5, the value function v is a
viscosity solution of (5.4) with state constraint boundary conditions.

Proof. From Remark 4.1, it is enough to test the definition at the origin.
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The value function v is a subsolution Let ϕ ∈ R(G) be such that v − ϕ has a
maximum point at x0 = O, i.e.

v(O) − v(z) ≥ ϕ(O) − ϕ(z) ∀z ∈ B(O, r) ∩ G.
Take a ∈ AO, for example a = a1e1. Then there exists α ∈ AO and ta > 0 such that α(s) = a
for all s ∈ [0, ta]. Let 0 < T < ta be such that y(t) = y(t;O,α) ∈ B(O, r) ∩ G for any t ≤ T .
From (4.6)

ϕ(O) − ϕ(y(t)) ≤ v(O) − v(y(t)) ≤
Z t

0

ℓ(y(s), α(s))e−λsds+ v(y(t))(e−λt − 1).

Moreover, since α(s) = a in [0, T ], and f is continuous, for all tn → 0+,

lim
n→∞

y(tn;O, a)

tn
= lim

n→∞

1

tn

Z tn

0

f(y(t;O, a), a)dt = f(O, a).

From (3.1), we get

−Dϕ(O, f(O, a)) = lim
n→∞

ϕ(O) − ϕ(y(tn))

tn

≤ lim
n→∞

1

tn

„Z tn

0

ℓ(y(s), a)e−λsds+ v(y(tn))(e−λtn − 1)

«
= ℓ(O, a) − λv(x).

Since the latter inequality holds for any a ∈ A0, we conclude that v satisfies

λv(O) + sup
a∈AO

[−Dϕ(O, f(O, a)) − ℓ(O, a)] ≤ 0.

Hence v is a subsolution.

The value function v is a supersolution Let ϕ ∈ R(G) be such that v − ϕ has a
minimum point at x0 = O, i.e.

v(O) − v(z) ≤ ϕ(O) − ϕ(z) ∀z ∈ B(O, r) ∩ G.
For ε > 0, let α ∈ A0 be an ε-optimal control. Hence by (4.6) and the continuity of ℓ and f
we have

v(O) + tε ≥
Z t

0

ℓ(y(s;O,α), α(s))e−λsds+ e−λtv(y(t;O,α))

≥
Z t

0

ℓ(O,α(s))e−λsds+ e−λtv(y(t;O,α)) + o(t).

For t sufficiently small, we get

ϕ(O) − ϕ(y(t)) −
Z t

0

ℓ(O,α(s))e−λsds+ (1 − e−λt)v(y(t;O,α)) ≥ −tε+ o(t).

Since α ∈ A0, there exists a tn → 0+ such that

lim
n→∞

y(tn;O,α)

tn
= lim

n→∞

1

tn

Z tn

0

f(y(s;O,α), α(s))ds = f(O, a).

where a ∈ AO (the existence of a comes from (5.1) ). On the other hand,

ϕ(O) − ϕ(y(tn))

tn
− 1

tn

Z tn

0

ℓ(O,α(s))e−λsds+
(1 − e−λtn)

tn
v(y(tn)) ≥ −ε+ o(1).

Moreover, by (5.2), the Jensen’s inequality and the continuity of ℓi

lim inf
n→∞

1

tn

Z tn

0

ℓ(O,α(s))e−λsds = lim inf
n→∞

1

tn

Z tn

0

ℓ(O,α(s))ds

= lim inf
n→∞

NX

j=1

1

tn

Z tn

0

ℓj(1α(s)∈Rej
α(s) · ej)ds

≥
NX

j=1

ℓj

„
lim

n→∞

1

tn

Z tn

0

1α(s)∈Rej
α(s) · ejds

«
,

15



where limn→∞
1

tn

R tn

0
1α(s)∈Rej

α(s) · ejds = 1a∈Rej
a · ej , from the fact that α ∈ AO, (2.3) and

the special structure of f(O, ·). Hence, letting n→ ∞ and using the arbitrariness of ε, we get
the existence of a ∈ AO such that

Dϕ(O, f(O, a)) + ℓ(O, a) − λv(O) ≤ 0,

which yields
λv(O) + sup

a∈AO

{−Dϕ(O, f(O, a)) − ℓ(O, a)} ≥ 0.

⊓⊔

We conclude by stating a comparison principle in a simple case. More general results will
be given in a forthcoming paper. We suppose that ℓ satisfies (5.2) and that there exists a
convex and regular function L : [−1, 1] → R such that L(0) = 0 with

• ℓj = L if ek 6= −ej , ∀k 6= j,

• ℓj(x) + ℓk(−x) = L(x) ∀x ∈ [−1, 1] if ek = −ej .

Therefore, for all a ∈ A ∩ Rej , ℓ(O, a) = L(a · ej).
Note that L must be even if there exists j, k such that ek = −ej .
We also assume that the Legendre transform of L defined by

L∗(δ) = max
α∈[−1,1]

{δα− L(α)} (5.5)

satisfies
L∗(δ) ≥ L∗(−δ), ∀δ ≥ 0, (5.6)

and that
if δ ≥ 0, then the maximum in (5.5) is reached in [0, 1]. (5.7)

Example 5.1. Assume for simplicity that ej 6= −ek if j 6= k and that for any j = 1, . . . , N ,
ℓj(t) = αt2 + βt with α > 0 and β < 0. Then it can be checked that all the assumptions above
hold.

Theorem 5.2 (Comparison principle). With the assumptions made at the beginning of § 5
and ℓ satisfying the set of assumptions stated immediately above, if u and v are respectively a
subsolution of (5.4) in G and a supersolution of (5.4) in G such that (4.8) holds, then u ≤ v
in G.

Proof. We assume by contradiction that there exist x0 ∈ G, χ > 0 such that u(x0) − v(x0) =
maxG(u− v) = χ, and we consider

Φε(x, y) = u(x) − v(y) −
ed2(x, y)

2ε
, x, y ∈ G,

where ed is defined by (4.7) with ζj = µj . Let (xε, yε) be a maximum point of Φε; we have

χ = Φε(x0, x0) ≤ Φε(xε, yε). From Φε(xε, xε) ≤ Φε(xε, yε), we get
ed2(xε,yε)

2ε
≤ v(xε) − v(yε)

and since v is bounded, ed(xε, yε) ≤ C
√
ε. Hence xε, yε converge for ε→ 0 to a point x and, by

(4.8), x ∈ G. Therefore we can assume that for ε sufficiently small, xε, yε ∈ G and, by standard

arguments, we can prove that limε→0
ed2(xε,yε)

2ε
= 0. Moreover, x 7→ u(x) − (v(yε) +

ed2(x,yε)
2ε

)
has a maximum point at xε and by Lemma 4.3,

λu(xε) + sup
a∈Axε

(
D

 
x 7→

ed2(x, yε)

2ε

!
(xε, f(xε, a)) − ℓ(xε, a)

)
≤ 0. (5.8)

Similarly, y 7→ v(y) − (u(xε) −
ed2(xε,y)

2ε
) has a minimum at yε and by Lemma 4.3,

λv(yε) + sup
a∈Ayε

(
D

 
y 7→ −

ed2(xε, y)

2ε

!
(yε, f(yε, a)) − ℓ(yε, a)

)
≥ 0. (5.9)

If xε = yε, subtracting (5.9) from (5.8) we get

λ(u(xε) − v(xε)) ≤ 0,

and letting ε→ 0, we obtain the contradiction χ ≤ 0. Hence we can assume xε 6= yε.
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1
st case: xε 6= O, yε 6= O: From (5.8) and (5.9), we get

λ(u(xε) − v(yε)) ≤− sup
a∈Axε

(
D

 
x 7→

ed2(x, yε)

2ε

!
(xε, f(xε, a)) − ℓ(xε, a)

)

+ sup
a∈Ayε

(
D

 
y 7→ −

ed2(xε, y)

2ε

!
(yε, f(yε, a)) − ℓ(yε, a)

)
.

(5.10)

• If xε, yε are on the same edge, for example, xε ∈ J̄1 and yε ∈ J̄1, then ed2(xε, yε) =
|xε − yε|2/µ2

1, hence by (5.10), (2.3), (2.9) and (2.14),

λ(u(xε) − v(yε))

≤

0
BBBB@

− sup
a∈Axε

(
ed(xε, yε)

εµ1

xε − yε

|xε − yε|
· f(xε, a) − ℓ(xε, a)

)

+ sup
a∈Ayε

(
ed(xε, yε)

εµ1

xε − yε

|xε − yε|
· f(yε, a) − ℓ(yε, a)

)

1
CCCCA

≤L
ed2(xε, yε)

ε
+ L|xε − yε|,

(note that (xε −yε)/|xε −yε| ∈ Txε(G) = Tyε(G)), which yields the desired contradiction
by having ε tend to 0.

• If xε, yε are not on the same edge, for example xε ∈ J1\{O} and yε ∈ J2\{O} then
ed2(xε, yε) = (|xε|/µ1 + |yε|/µ2)

2, hence by (5.10)

λ(u(xε) − v(yε)) ≤

0
BBBB@

− sup
a∈Axε

(
ed(xε, yε)

εµ1

xε

|xε|
· f(xε, a) − ℓ(xε, a)

)

+ sup
a∈Ayε

(
−
ed(xε, yε)

εµ2

yε

|yε|
· f(yε, a) − ℓ(yε, a)

)

1
CCCCA
,

(note that xε/|xε| ∈ Txε(G) and yε/|yε| ∈ Tyε(G). From (2.3), we get

λ(u(xε) − v(yε)) ≤

0
BBBB@

− sup
a∈Axε

(
ed(xε, yε)

εµ1

xε

|xε|
· f(O, a) − ℓ(O, a)

)

+ sup
a∈Ayε

(
−
ed(xε, yε)

εµ2

yε

|yε|
· f(O, a) − ℓ(O, a)

)

1
CCCCA

+ L
ed2(xε, yε)

ε

=

0
BBBB@

− sup
a∈[−1,1]e1

(
ed(xε, yε)

ε
e1 · a− ℓ(O, a)

)

+ sup
a∈[−1,1]e2

(
−
ed(xε, yε)

ε
e2 · a− ℓ(O, a)

)

1
CCCCA

+ L
ed2(xε, yε)

ε

= −L∗

 
ed(xε, yε)

ε

!
+ L∗

 
−
ed(xε, yε)

ε

!
+ L

ed2(xε, yε)

ε
,

and we obtain the desired contradiction from (5.6).

2
nd case: either xε = O and yε 6= O or xε 6= O and yε = O: Assume xε = O and
yε 6= O for example yε ∈ J2\{O} (we proceed similarly in the other cases). For any a ∈ AO,

δ(a) ≡ D{x 7→ ed(x, yε)}(O, f(O, a)) = −e2 · a if a is aligned with e2 or δ(a) = |a| if a ∈ AO is
not aligned with e2.
From (5.8) and (5.9), we get

λ(u(O) − v(yε)) ≤ − sup
a∈AO

(
ed(O, yε)

ε
δ(a) − ℓ(O, a)

)
+ L∗

 
−
ed(O, yε)

ε

!
+ L

ed2(O, yε)

ε
,
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and the desired contradiction follows, because

sup
a∈AO

(
ed(O, yε)

ε
δ(a) − ℓ(O, a)

)
= L∗

 
ed(O, yε)

ε

!

from (5.7). ⊓⊔

Similarly, we have the following theorem:

Theorem 5.3. With the same assumptions as in Theorem 5.2, if u and v are respectively a
subsolution of (5.4) in G and a supersolution of (5.4) in G then u ≤ v in G.
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