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Archimedes to Eratosthenes greeting. . . I. . . explain. . . the peculiarity of a certain
method with which furnished you will be able to make a beginning in the inves-
tigations by mechanics of some of the problems in mathematics. I am persuaded
that this method is no less useful even for the proof of the theorems themselves.
For some things first became clear to me by mechanics, though they had later to
be proven geometrically. . . ; but it is, of course, easier to provide the proof when
some knowledge of the things sought has been acquired by this method rather than
to seek it with no prior knowledge.†

We use the mixture model of soil saturated by a fluid, as developed by dell’Isola &
Hutter and applied to an isothermal steady simple shear flow pressed and drained
by a steady flow of water from above. The governing equations are reduced to a
single second-order ordinary differential equation (ODE) for the solid-volume frac-
tion; its coefficients depend on the fluid viscosity and the thermodynamic pressure.
The coefficients of this ODE give rise to the application of perturbation techniques;
the solutions constructed in this way demonstrate that when the thermodynamic
pressure is ignored, the solid-volume profile varies unrealistically largely over the
layer thickness. Furthermore, when the vertical fluid convective acceleration terms
are incorporated, they give rise to a ‘destabilizing’ mechanism in the sense that a
boundary layer over which large changes of the solid-volume fraction arise and which
is located where the draining fluid enters may flip to the exit boundary, and so make
effective fluidities against shear deformations large. So, depending on the amount
of water flow through the layer, the horizontal shearing to prescribed shear trac-
tions may be small or large. For ice-sheet flow situations on soft beds, the flow rates
achieving this flip are of the order of a few tens of centimetres per year and are, thus,
fairly realistic.

Keywords: drainage–shear-flow interaction; destabilization by drainage water;
porosity dependence of viscosities; till behaviour below ice sheets;

sliding on soft beds

† Archimedes, The method, Preface Archim.ed. Heiberg ii.426.3-430.22 (translated by Thomas (1941,
pp. 220–221)).
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1. Introduction

In dell’Isola & Hutter (1998a), referred to, henceforth, as DH-I, we presented a binary
mixture model of a granular solid saturated with a fluid, both components of which
are true-density-preserving. In the following soil-mechanics application we mean by
fluid the ‘pore water’ and by solid the ‘till’. This model may serve for the description
of the dynamics of the thin sediment–water layer below temperate glaciers or ice
sheets. In a subsequent paper devoted to a qualitative analysis of the dynamics of
a sheared and pressurized layer of saturated soil, we showed how the across-layer-
density distribution could be computed, if (i) the flow was steady and occurring in
vertical planes, (ii) all fields except the saturation pressure were assumed to depend
on the vertical across-layer coordinate alone, (iii) acceleration terms were ignored,
the fluid viscosity was assumed constant, and (iv) isothermal conditions prevailed
(see dell’Isola & Hutter (1998b), henceforth referred to as DH-II). The layer was
pressurized from above by an incumbent pressure pi and sheared by a shear traction
S; furthermore, a prescribed flow of water from above was assumed, which, together
with its equal discharge at the lower boundary, determined the solid-volume fraction
profile across the layer.

The model in DH-II is based on a thermodynamic mixture theory of Svendsen &
Hutter (1995). The main feature of this improved theory over common mechanical
models of saturated soils consists of the introduction of a ‘new’ constitutive quantity,
which was called thermodynamic or configurational pressure, and in the assumption
that the interstitial fluid is viscous. The thermodynamic pressure βs(ν, ϑ) is a function
of the solid-volume fraction ν and the temperature ϑ, and is obtained from the inner
free (Helmholtz) energy ψI(ν, ϑ) via

ρ
∂ψI(ν, ϑ)

∂ν
= βs(ν, ϑ), (1.1)

in which ρ denotes the mixture density. Equation (1.1) expresses the well-known
thermodynamic relation between the free energy and the stress. Its physical meaning
seems clear: the pressure βs results from the ‘strain’ induced by the redistribution
of the pores; a part of the stress arising in a solid–fluid mixture depends on this
kinematic variable ν in a way that is dictated by the corresponding dependence of
the free energy.

Another variable, called saturation pressure p, also enters this model. It repre-
sents the constraint force to the kinematic constraint that the fluid fills the entire
pore space. Clearly, if νf and νs are the volume fractions of the fluid and the solid,
respectively, then the condition of saturation means that νf + νs = 1; so the two
volume fractions are no longer independent and the loss of a field variable must be
compensated for by a constraint field, the saturation pressure p. Thus, two pressures
characterize this model. A special reduction can, however, be brought into coinci-
dence with some of the classical soil-mechanics literature; assume, for instance, that
the inner free energy does not depend on νf = ν. Then the thermodynamic pressure
vanishes and only p survives. Hutter et al . (1994) proved that gravity shear flow
down an inclined plane of a certain binary viscous mixture admits no solution in
this case. So, what is classical and used by some soil mechanicians appears to be
dubious in the till-layer context. Therefore, an extension of the model equations was
needed. The model equations in DH-I and DH-II achieve this via the thermodynamic
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pressure βs, which, by the Viennese experts of the early 20th century (Terzaghi and
Fillunger—see de Boer & Ehlers (1990)), was associated with effective stress, and βs
essentially plays that role, but we refrain from calling it such.

In more traditional approaches to soil mechanics, the two pressures are sometimes
not differentiated or βs is simply dropped, and the remaining pressure identified with
the effective pressure of Terzaghi. In the Boulton & Hindmarsh (1987) and Clarke
(1987) approaches, what is called effective pressure appears to agree with what we
call saturation pressure, p, but these authors do not recognize its constraint role and
use it as an independent constitutive variable for the viscosity. Such a constitutive
dependence is not possible for a constraint variable. We therefore introduce βs and
choose it via (1.1) to be functionally dependent on the solid-volume fraction, as we
do with the viscosity. In a way, we and Boulton & Hindmarsh (1987) are attempting
analogous things with inverse roles of some dependent and independent constitutive
variables.

It was made clear in DH-I that a mixture theory of the complexity of that of
Svendsen & Hutter (1995) is needed if the thermodynamic processes arising in till
layers below ice sheets are likely to be realistically modelled. The theory also has its
merits on the level of its restriction to purely mechanical processes, however. Indeed,
it was shown in DH-II that in a simple steady shear flow of a layer of sediment–
water, in which water is pressed through the layer and all variables vary only with the
across-layer coordinate, that the solid-volume fraction profile is governed by a second-
order ordinary differential equation (ODE) of which the coefficient functions depend
on the thermodynamic pressure and the fluid viscosity. Without these constitutive
quantities (which, incidentally, are missing in some classical theories), the variation
of the solid-volume fraction across the layer cannot even be determined.

In DH-II, it was further demonstrated that for Stokes flow, i.e. when the acceler-
ation terms for both the solid and the fluid are ignored, the constitutive relation for
βs is crucial in characterizing drainage phenomena in granular solids. In particular,
when the convective time rate of the fluid flow can be neglected, a thermodynamic
stability condition (derived in DH-I) implies very stringent restrictions on the con-
stitutive relation for βs: these restrictions have, as a consequence, the localization of
a sharp boundary layer for the solid-volume fraction profiles at the boundary of the
mixture at which the fluid is flowing in. Furthermore, if a constant fluid viscosity
was assumed, it could be shown that analytically determined solid-volume fraction
profiles turned out to be unphysical, because ν was negative or greater than unity in
some regions of the layer (dell’Isola & Hutter 1999, henceforth referred to as DH-III).

The above results are inherently connected with the thermodynamics of Svendsen
& Hutter (1995) and are as applied to this till-layer situation in DH-I, DH-II and DH-
III. The boundary layer, if at the top, has large porosity compared to the remaining
layer; if it is at the bottom then the reverse applies. Thus, supposing a dependence
of the solid (and fluid) viscosities upon porosity such that high porosity induces a
viscosity decrease, we anticipate a large resistance of the till layer against horizontal
shear when the boundary layer is at the top, and a small one when it is at the bottom.

In the present paper, developing the ideas introduced in DH-I, DH-II and DH-III
and limiting ourselves to the case in which all considered fields depend only on a
vertical coordinate z, we

1. study the vertical-stationary fluid drainage through porous pressurized solids
and its influence on the horizontal-stationary shear flow when the vertical fluid
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convective time rate of change and the dependence of the fluid viscosity on the
solid-volume fraction cannot be neglected ;

2. introduce a dimensionless form of the ODE for the solid-volume fraction ν
alone;

3. introduce, in terms of the relevant constitutive and kinematic quantities, the
dimensionless numbers that determine, quantitatively and qualitatively, the
properties of the reduced ODE (and, therefore, the behaviour of the considered
systems);

4. prove (using the arguments from Bush (1992) as adapted in DH-II) that there
exists a transcendental localizing functional controlling the localization of the
boundary layer of solid-volume fraction: when this function is negative (posi-
tive) for all values attained by the solid-volume fraction, the boundary layer is
located at that part of the boundary into (out of) which the fluid is flowing in
(out);

5. apply the model to the study of the drainage through till-pore water layers
and prove (using the estimates proposed in DH-I and DH-II) that ice-melting
rates of a few tens of centimetres per year can cause a flip from the top to the
bottom boundary.

We explicitly remark that we have proved that

(i) the model for the till-pore water layer below ice sheets may predict the existence
of destabilizing mechanisms under simple shear, thus theoretically substantiat-
ing the results and conjectures found in the literature (see, for example, Alley
et al . 1987a, b; MacAyeal 1992);

(ii) these mechanisms are controlled by the relative order of magnitude of the fluid
vertical convective time rate and the thermodynamic quantities F (ν)/ν defined
in formula (2.8) and the fluid viscosity µf(ν); and

(iii) the threshold for ice melting rate, predicted in the proposed model over which
the boundary-layer flip may be initiated, is sufficiently low that a collapse of
an ice sheet cannot be ruled out.

2. Equation for the solid-volume fraction profile in a drained
pressurized granular solid

Consider a layer of a saturated sediment–water mixture bounded above by ice (and
water) and below by a rock bed. The moving ice exerts a pressure and shear traction
at the upper boundary and drives a mass flow of water across the interface. For
the purposes of this paper, these quantities are assumed to be prescribed. The water
entering the layer is drained at the lower interface into the rock bed; it simultaneously
influences the distribution of the solid-volume fraction and, through the latter, also
affects the effective viscosity against shearing, making it smaller when the solid-
volume fraction decreases.

Let Oxz be a plane Cartesian coordinate system with origin O, horizontal axis x
and vertical axis z pointing upwards opposite to the direction of gravity. Consider
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plane flow, and let the layer of sediment–water mixture be confined to z ∈ [fb, h],
where z = h(x, t) and z = fb(x, t) denote the upper and lower interface surfaces,
respectively. In this section, our intention is to derive the ODE for the solid-volume
fraction for the simplified case that all considered fields, except the pressure, depend
only on the vertical coordinate z ∈ [fb, h], H = h− fb, while the pressure is a linear
function of x. Moreover, stationary flow conditions will be imposed so that both fb
and h are time independent and can be identified with z = 0 and z = H. Our starting
point will be the balance equations of mass and linear momentum for the water and
sediment constituents, as derived in DH-II.

(a) Balances of mass and momentum in one-dimensional flows

Let us introduce the set of fields and constants as follows.

ν solid-volume fraction
us, uf horizontal velocity components of the solid and fluid, respectively
ws, wf vertical velocity components of the solid and fluid, respectively
p saturation pressure
βs(ν) thermodynamic pressure
ρ̂f , ρ̂s true fluid and sediment mass densities
µf , µs (apparent) fluid and solid viscosities

α̃ =: ρ̂fg/K

a := ρ̂f/ρ̂s

ξs := ρs/ρ = [νρ̂s/(νρ̂s + (1− ν)ρ̂f)] = [ν/(ν + (1− ν)a)]

g gravity constant
K soil permeability
∂p/∂x driving horizontal pressure gradient

(independent of x, horizontal coordinate)

For stationary flows, the balance of the mass and the vertical and horizontal projec-
tions of the balance of linear momentum lead to

(νws)′ = 0,

((1− ν)wf)′ = 0,

(−νβs − νp + µsw
′
s)
′ + (p + (1− ξs)βs)ν′ − ν(1− ν)α̃(ws −wf) = ρ̂sνwsw

′
s,

(−(1− ν)p + 4
3µfw

′
f)
′ − (p + (1− ξs)βs)ν′ + ν(1− ν)α̃(ws −wf) = ρ̂f(1− ν)wfw

′
f ,

− ν(∂p/∂x) + (µsu
′
s)
′ − ν(1− ν)α̃(us − uf) = ρ̂sνwsu

′
s,

−(1− ν)(∂p/∂x) + (µfu
′
f)
′ + ν(1− ν)α̃(us − uf) = ρ̂f(1− ν)wfu

′
f ,


(2.1)

in z ∈ (fb, h), t > 0. The first two equations are mass balances for the solid and fluid,
the next two are vertical and the last two horizontal momentum balances. The prime
denotes differentiation with respect to z, and the thermodynamic pressure βs(ν) is
related to the inner free energy ψI (ν, ϑ = const.) via

βs(ν) = (νρ̂s + (1− ν)ρ̂f)(∂ψI/∂ν) (ν, ϑ = const.). (2.2)
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These equations correspond to equations (DH-II, (2.1)); as they stand in (2.1) they
are partly less general than (DH-II, (2.1)), since they are restricted to steady state,
but they are also more general, because they involve, on the right-hand side of
the momentum equations, the vertical and horizontal convective acceleration terms,
which are quadratic in the velocity components. These non-Stokesian terms, thought
insignificant in DH-II, turned out to be important, as will be demonstrated below.
The viscosities µf and µs and the free energy ψI and α̃ are thought to be functions
of the solid-volume fraction, and µs may also depend on the solid stretching tensor
invariants, but, for the purposes of this paper, such a dependence is not explicitly
used. We also employ isothermal conditions.

The above equations form six ODEs for the unknowns ν, ws, wf , p, us and uf .
They must be subjected to boundary conditions. For the general situation, these are
posed in DH-I and DH-II. In this paper, we restrict considerations to no abrasion of
till from the rock bed, ws(0) = 0, and to the prescription of the inflow of water from
above, |Vf0|. From the boundary conditions (2.6) and (2.9)–(2.13) in DH-II, we may
then deduce the relations

(mb
f /ρ̂f)[−(1− ν)(νβs − µsw

′
s − 4

3µfw
′
f − pi)− 4

3µfw
′
f ]

4 = −(1− ν)wf , at z = 0,
(2.3)

(ν − ανl)pi + ν(1− ν)βs − (1− ν)µsw
′
s + 4

3νµfw
′
f = 0, at z = H.

(2.4)

Here, α and l are a coefficient and an exponent determining how much of the incum-
bent pressure pi is distributed among the constituents (ανlpi is carried by the solid),
and mb

f is a coefficient of the drainage function, and the latter itself is assumed to
be proportional to the fourth power of the fluid pressure acting on the interface.

(b) The ODE for the solid-volume fraction

As we will assume that there is no addition of solids at the bottom and/or top
interface and that there is an inflow |Vf0| of fluid in the negative z-direction at the
top interface, then (2.1)1,2 imply

ws(z, t) = 0, wf(z, t) = −[|Vf0|/(1− ν(z, t))]. (2.5)

Adding (2.1)3 to (2.1)4, we obtain

p′ = (−νβs + 4
3µfw

′
f)
′ − ρ̂f(1− ν)wfw

′
f . (2.6)

Introducing this last expression into (2.1)3, we finally obtain(
4
3µf |Vf0|

(
1

1− ν

)′)′
+ ρ̂f |Vf0|2

(
1

1− ν

)′
+

F (ν)
ν

ν′ − |Vf0|α̃ = 0, (2.7)

in which

F (ν)
ν

:= −(1− ν)
(

βs
1

ν + b
+

d
dν

βs

)
. (2.8)

Equation (2.7) is an ordinary nonlinear differential equation in terms of the unknown
field ν alone. It reduces the system (2.1) to a single second-order ODE for the solid-
volume fraction profile of which the integration requires two boundary conditions.
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In order to find a more convenient form for (2.7), we introduce the following change
of variables

y =
1

1− ν
⇒ y′ =

(
1

1− ν

)2

ν′, (2.9)

so that (2.7) becomes

(4
3µf(ν)|Vf0|y′)′ + (ρ̂f |Vf0|2 + h(ν(y)))y′ − |Vf0|α̃ = 0, (2.10)

where

h(ν) := −(1− ν)3
(

βs
1

ν + b
+

dβs

dν

)
, b =

a

1− a
, (2.11)

and ν is understood to be expressed in terms of y through (2.9). Except for the terms
involving |Vf0|2, equation (2.10) agrees with equation (3.3) in DH-II. Thus it is this
quadratic term that is due to the convective fluid acceleration.

Introducing the scalings

z = [H]z̃, µf = [µf ]µ̃f , βs(ν) = [β1]β̃s(ν), (2.12)

in which the bracketed terms have fixed values of a typical order of magnitude for the
variable that they are scaling, and the variables ·̃ are dimensionless, equation (2.10)
can be transformed to the following dimensionless ODE

d
dz̃

(
h0µ̃f(ν)

dy

dz̃

)
+ d(ν(y))

dy

dz̃
− h0h2 = 0, (2.13)

where

d(ν) := −(1− ν)3
(

β̃s
1

ν + b
+

dβ̃s

dν

)
+ h1 = h(ν) + h1, (2.14)

and the dimensionless numbers

h0 := 4
3

[µf ]|Vf0|
[H][β1]

, h1 :=
ρ̂f |Vf0|2

[β1]
, h2 := 3

4
[H]2α̃
[µf ]

, (2.15)

have been introduced. Simple manipulations lead to the following expression for
(2.13),

h0µ̃f(ν)
d2y

dz̃2 + h(·, z̃)
dy

dz̃
− h0h2 = 0, (2.16)

in which the functional

h(·, z̃) := h0
dy

dz̃

dµ̃f

dy
− (1− ν)3

(
β̃s

1
ν + b

+
dβ̃s

dν

)
+ h1

= h0
dy

dz̃

dµ̃f

dy
+ h(ν) + h1 = h0

dy

dz̃

dµ̃f

dy
+ d(ν), (2.17)

was introduced. Notice that (2.13) remains invariant when the signs of h0 and z̃
change, implying that the profiles for inflow from above and below are mirror pictures
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of one another, as expected. Notice, moreover, that whenever there is no water inflow,
|Vf0| = 0, then h0 = 0, h1 = 0, and the second-order ODE (2.13) reduces to first order,

h(ν(y))(dy/dz̃) = 0, (2.18)

with the solutions h(ν(y)) = 0 or dy/dz̃ = 0. In both cases, ν must be constant,
a result that could also be obtained by integrating (2.1)2,3 directly. Similarly, when
|Vf0| 6= 0 but the fluid viscosity is ignored, then†

d(·, z̃)
dy

dz̃
= (h(ν(y)) + h1)

dy

dz̃
= h0h2; (2.19)

for h1 = 0 this equation was treated in detail in DH-II. The general case depends on
three dimensionless numbers, h0, h1 and h2, for which various asymptotic limits can
be considered.

The functional h(·, z̃) maps the solid-volume fraction profile into a function of the
variable z̃: it is well known (see, for example, Bush 1992; DH-II) that the sign of h
as a function of z̃ determines the location of the boundary layers (eventually) arising
in the solutions of (2.16).

For the ODE (2.13), a first integral can easily be obtained and, for example, can
be expressed in the following three equivalent forms:

h0µ̃f(ν(y))
dy

dz̃
= −

∫ y

y(0)
d(y1) dy1 + h0h2z̃ + h0µ̃f(y(0))

dy

dz̃
(0),

h0µ̃f(ν(y))
dy

dz̃
= −

∫ y

y(1)
d(y1) dy1 + h0h2(z̃ − 1) + h0µ̃f(y(1))

dy

dz̃
(y(1)),

2h0µ̃f(ν(y))
dy

dz̃
= −

∫ y

y(1)
d(y1) dy1 −

∫ y

y(0)
d(y1) dy1 + h0h2(2z̃ − 1)

+ h0µ̃f(y(1))
dy

dz̃
(y(1)) + h0µ̃f(y(0))

dy

dz̃
(0).


(2.20)

As a consequence, the functional (2.17) takes the form

h(·, z̃) := 1
2

d ln µ̃f

dy

(
−
∫ y

y(1)
d(y1) dy1 −

∫ y

y(0)
d(y1) dy1 + h0h2(2z̃ − 1)

+
(

h0µ̃f(y(1))
dy

dz̃
(y(1)) + h0µ̃f(y(0))

dy

dz̃
(y(0))

))
+d(ν(y)). (2.21)

The dimensionless quantities h0, h1 and h2 are exclusively determined by the scales
and by α̃. When applying the present model to the drainage phenomenon in the till
layer below large ice sheets, as suggested in DH-I and DH-II, the estimates,

h0 ∈ [2× 10−21, 2× 10−15], h1 ∈ [10−24, 10−14],

h2 ∈ [3.75× 1013, 3.75× 1015], h0h2 ∈ [7.5× 10−8, 7.5× 100],

}
(2.22)

can be obtained by using the values in table 1. Therefore, the coefficient of the
second-order derivative in (2.16) is small so that the differential equation defines a
singular perturbation problem.

† The constant h0h2 was called ηf in DH-II.
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Table 1. Characteristic values of physical quantities

variable value dimension

[µf ] 2× 10−3 kg m−1 s−1

[Vf0] 3× 10−3–3× 100 m a−1

[Vf0] 10−11–10−8 m s−1

[H] 1–10 m
[β1] 105–107 Pa
α̃ 109–1011 kg m−3 s−1

ρ̂f 103 kg m−3

νmax ' 0.85 —

A particular case of this singular perturbation problem was studied in DH-II, where
it was proven that if h1 and ∂µ̃f/∂ν are negligible, then the solid mass fraction is, in
the draining layer, nearly constant and equal to its maximum value.

The outer solution y0(z̃) for (2.16) is the solution of the following ODE

h(ν(y))
dy

dz̃
− h0h2 = 0, (2.23)

which implies that, when z̃ is outside the arising boundary layer,

y0(z̃) ' ye,
dy0

dz̃
(z̃) ' h0h2

h(·, z̃(ye))
, (2.24)

in which ye denotes the value of y at the boundary where the boundary layer does
not arise. This outer solution formally differs from the zero-fluid-viscosity solution
only by replacing d(ν(y)) by h(·, z̃).

In Appendix A we construct the inner solution for the two cases: that the boundary
layer arises at the top and bottom, respectively.

3. Localization of the boundary layers as determined by h0, h1 and
the boundary conditions

(a) Localization of boundary layers

It follows from the analysis in DH-II that the boundary layer is at the top (bottom)
interface, when h is negative (positive) in z̃ ∈ [0, 1], whereas when h may change sign
at z̃∗ ∈ (0, 1), such a boundary layer arises at z̃ = z̃∗ (and possibly at the interfaces).

The form of the h-functional in (2.17)1 thus lends itself interesting qualitative
considerations about the solid-volume fraction profiles as follows.

(i) Note that the second term on the right-hand side of (2.17) is always negative.
For sufficiently small h1, it then follows that the boundary layer is at the top.
Indeed, if it is assumed to be at the top, then, since dµ̃f/dy > 0, dy/dz̃ will
in this case be negative, so that the first term of the right-hand side of (2.17)
is also negative, making h negative for all z̃ ∈ [0, 1]. Note that to make this
argument valid, the third term in (2.17) need not necessarily be smaller than
the modulus of the second; it suffices if the sum of all three terms is negative.
As a consequence, for sufficiently small h1, i.e. small convective velocities wf ,
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the solid-volume fraction profile outside the boundary layer is almost uniform
with a value nearly equal to its (highest-possible) value assumed at the bottom
interface.

(ii) On the other hand, for sufficiently large and positive h1, the boundary layer
is located at the bottom interface: this means that the field ν assumes the
smallest possible value in the greatest part of the drainage layer.

(iii) Alternatively, as dµ̃f/dy > 0, the dimensionless number h0 may play a role
opposite to that of h1: when the fluid viscosity µ̃f depends strongly on ν and
the derivative dy/dz̃ is negative, then larger values of h0 balance the effect of
h1, and tend to place the boundary layer at the top interface.

(iv) The constitutive quantities µ̃f and β̃s and the dimensionless numbers h0 and
h1 could be such that the h-functional maps the solid-volume fraction profile
into a function vanishing at z̃∗ included in the interior of the interval or in
a finite subset V ⊂ [0, 1]. In this case, the boundary layer in which the high
variations of ν are concentrated can occur either in the neighbourhood of V ,
at both the upper and lower interfaces or in the neighbourhood of V as well as
at the upper and lower interfaces.

These considerations underscore the prominent role played by the functional h and
the reason one can call it the boundary-layer localizing functional.

(b) A criterion for the a priori determination of the localization of boundary layers

In order to find a criterion for the a priori determination of the localization of the
boundary layer, at least in those cases in which the boundary layers are located at
the top or at the bottom interface, recall the boundary conditions (2.3) and (2.4)
derived in detail in DH-II. In dimensionless form and subject to the steady-state
conditions (2.5), they read

−h0µ̃f(y(0))
dy

dz̃
(0) +

1
y(0)

β̃s(y(0))− 1
y(0)− 1

pi

[β1]
− y(0)

y(0)− 1
h3 = 0, at z̃ = 0,

−h0µ̃f(y(1))
dy

dz̃
(1) +

1
y(1)

β̃s(y(1)) +
(

1− α

(
y(1)− 1

y(1)

)l−1)
pi

[β1]
= 0, at z̃ = 1,


(3.1)

where

h3 :=
(

Vf0ρ̂f

mb
f

)1/4 1
[β1]

,

and the drainage coefficient mb
f together with the interaction coefficients α and l

were introduced in DH-I and DH-II. Conditions (3.1) are consequences of the jump
conditions of mass and linear momentum at the top and bottom interfaces of the
draining layer, respectively.
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Recalling the first integral of (2.13) given by (2.20)1, evaluating it at y = y(1),
replacing it in (3.1)2, and subtracting the resulting expression from (3.1)1, we obtain

−
∫ y(1)

y(0)
d(y1) dy1 + h0h2 −

(
1− α

(
y(1)− 1

y(1)

)l−1

+
1

y(0)− 1

)
pi

[β1]

=
1

y(1)
β̃s(y(1))− 1

y(0)
β̃s(y(0)) +

y(0)
y(0)− 1

h3, (3.2)

which is one relation between the values y(1) and y(0). Now, summing up the two
relations in (3.1), we obtain

h0µ̃f(y(0))
dy

dz̃
(0) + h0µ̃f(y(1))

dy

dz̃
(1)

=
1

y(0)
β̃s(y(0)) +

1
y(1)

β̃s(y(1))− y(0)
y(0)− 1

h3

+
(

1− α

(
y(1)− 1

y(1)

)l−1

− 1
y(0)− 1

)
pi

[β1]
. (3.3)

The terms on its left-hand side also arise in the form (2.21) of the h-functional and,
consequently, may be replaced there by the right-hand side of (3.3). This process
yields the expression

h(·, z̃) := d(ν(y)) + 1
2

d ln µ̃f

dy

(
−
∫ y

y(1)
d(y1) dy1 −

∫ y

y(0)
d(y1) dy1

− h0h2(2z̃ − 1) +
1

y(0)
β̃s(y(0)) +

1
y(1)

β̃s(y(1))

+
(

1− α

(
y(1)− 1

y(1)

)l−1

− 1
y(0)− 1

)
pi

[β1]
− y(0)

y(0)− 1
h3

)
. (3.4)

Therefore, once the constitutive equations for β̃s and µ̃f are assigned, the sign of the
image of the h-functional, when evaluated on the profile y(z̃) assuming the boundary
values y(0) and y(1), is, in principle, determinable once a further relation between
y(0) and y(1) is added to (3.2).

To find such a relation, recall that (2.24)2 provides an accurate estimate for the
derivative dy/dz̃ at the interface at which the boundary layer does not arise. This
value can be used in that relation (3.1) where the boundary does not occur. Therefore,
we have the following alternatives.

(i) If the boundary layer is tentatively assumed to be localized at z̃ = 1, then the
second equation to be added to (3.2) will be

1
y(0)

β̃s(y(0))− 1
y(0)− 1

pi

[β1]
− y(0)

y(0)− 1
h3 =

(
h2

0h2

h(·, 0)

)
µ̃f(y(0)). (3.5)

Note that h(·, 0) can be computed from (3.4) by setting z̃ = 0. Thus, by solving
the nonlinear system (3.2), (3.5), one finds values for y(0) and y(1), with the
aid of which the h-functional can be evaluated for all z̃ ∈ [0, 1]. If it is negative,
then the boundary layer will indeed be localized at z̃ = 1.
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(ii) If the boundary layer is tentatively assumed to be localized at z̃ = 0, then the
second equation to be added to (3.2) will be

1
y(1)

β̃s(y(1)) +
(

1− α

(
y(1)− 1

y(1)

)l−1)
pi

[β1]
=
(

h2
0h2

h(·, 1)

)
µ̃f(y(1)). (3.6)

Thus, by solving the system (3.2), (3.6), one finds different values for y(0) and
y(1). With these, the h-functional must be positive for all z̃ ∈ [0, 1] in order
that the boundary layer is indeed localized at z̃ = 0.

Appendix A shows how the volume fraction is constructed within the boundary layer
once its location has been determined.

A more complex analysis, which we postpone to further investigations, is necessary
if the h-functional does not show a definite sign in the interval [0, 1].

4. Viscosity in isolation

Consider the central differential equation (2.13) when the free energy is not a function
of the solid-volume fraction, i.e. for vanishing thermodynamic pressure. In that case,
(2.13) becomes

d
dz̃

(
µ̃f(ν)

dy

dz̃

)
+

1
εc

dy

dz̃
=

1
ε
,

ε :=
1
h2
∈ 1

3.75
[10−15, 10−13],

εc :=
h0

h1
=

4[µf ]
3ρ̂f |Vf0|[H]

∈ [2× 10−3, 10−1],


(4.1)

in which ε and εc are both small. If we rescale the equation by the stretching trans-
formation,

ζ =
1√
ε
z̃,

d
dz̃

=
1√
ε

d
dζ

, (4.2)

(4.1) transforms into

d
dζ

(
µ̃f(ν)

dy

dζ

)
+ η

dy

dζ
= 1, η :=

ε1/2

εc
, (4.3)

with typical values of η being very small, η ∈ [10−18, 10−16]. Equation (4.3) shows
that incorporating vertical convection boils down to solving a regular perturbation
problem. In addition, (4.3) also points at an important conclusion that applies when
the thermodynamic pressure is ignored: there is no true boundary layer; indeed,
with the stretching transformation (4.2), an ODE emerges that (for η = 0, i.e. when
vertical convection is ignored) does not give rise to the use of matched asymptotics.
In other words, if one wants to maintain the notion of boundary layer, this boundary
layer fills the entire region. This will be reflected in the solution (4.9) corresponding
to (4.3) when η = 0.

A first integral of (4.3) is

µ̃f(ν)
dy

dζ
+ ηy = ζ + (C1 + ηC2 + · · · ), (4.4)
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in which (C1 + ηC2 + · · · ) is a constant of integration that has been split into an
O(1) and O(η) term for convenience. Seeking a perturbation solution in the form

y =
0
y +η

1
y + · · · , (4.5)

substituting this expansion into (4.4) and collecting terms of equal order in η, we
arrive at the equations

µ̃f(
0
y)

d
0
y

dz̃
=

z̃

ε
+

C1√
ε
,

d
dz̃

(µ̃f(
0
y)

1
y) = −

0
y +C2√

ε
,

...


(4.6)

which must be subjected to the boundary conditions

ζ = 0,
0
y = y0,

1
y = 0,

ζ = 1/
√

ε,
0
y = yh,

1
y = 0.

 (4.7)

Solving the zeroth-order equation is physically equivalent to ignoring the vertical
fluid convection and yields the solution

M(
0
y, yh) = 1

2ζ2 + C1ζ + C3, M(y, yh) =
∫ y

yh

µ̃f(ξ) dξ, (4.8)

or, upon the imposition of the boundary conditions and transformation back to the
z̃ variable,

M(
0
y, yh) = (1/2ε)(z̃2 − z̃) + M(y0, yh)(1− z̃). (4.9)

Let
K(z̃) := M(

0
y (z̃), yh).

Then (4.9) may take the alternative form

K(z̃) = (z̃ − 1)((z̃/2ε)−M(y0, yh)). (4.10)

The zeros of this function lie at z̃1 = 1 and z̃2 = 2εM(y0, yh) > 0, and its minimum
at z̃min = 1

2 + εM(y0, yh) is given by

Kmin = K(z̃min) = −(1/2ε)(1
2 − εM(y0, yh))2 < 0. (4.11)

Two cases may, in principle, arise:

(i) the smaller of the two roots is at z̃ = z̃2, the larger at z̃ = z̃1 = 1, and, thus, the
negative Kmin is assumed within the interval [z̃2, z̃1], implying that µ̃f(y(ν))
must be negative for some ν ∈ [0, 1], which is obviously unphysical;

(ii) z̃2 > z̃1, or

1 < 2εM(y0, yh), (4.12)

in which case µ̃f(y(ν)) > 0, ∀ν ∈ [0, 1], as is physically expected.
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Consider as an example constant fluid viscosity µ̃f = 1. Then

2εM(y0, yh) = 2ε(y0 − yh) > 0.

This quantity is, for all physically admissible values of y0 and yh, certainly smaller
than unity, implying that selecting a constant viscosity cannot possibly be a physi-
cally acceptable choice (see also DH-III).

Thus, µ̃f(y) must be a ‘true’ function of its argument and such that (4.12) can
be fulfilled. With this in mind, it is reasonable to suppose that µ̃f becomes large as
ν approaches an upper bound, say νL < 1, but µ̃f & 1 whenever ν is distant from
this bound, ν � νL, where L stands for ‘limit’. Such a behaviour is qualitatively
described by

µ̃f = 1− a

ε

1
y − yL

, (4.13)

where a and yL = y(νL) are constants. With this choice, one may easily demonstrate
that (4.12) implies

2εM(y0, yh) = 2a ln
(

yL − yh
yL − y0

)
+ 2ε(y0 − yL) > 1, (4.14)

or, approximately,

yL − yh
yL − y0

> exp
(

1
2a

)
. (4.15)

This formula may be used to find estimates for yL and a.
The examples show that for the model to be physically realistic, the fluid viscosity

must be strongly dependent upon the solid-volume fraction; for most solid concen-
trations below a certain upper bound it is nearly constant, but as this upper limit
νL < 1 is reached, it becomes large, infinitely large as ν → νL, according to (4.13).

Consider next the first-order equation (4.6)2; its integral is given by

1
y= − 1

µ̃f(
0
y)

{∫ ζ

0

0
y (ξ) dξ − C2ζ

}
+ C4, (4.16)

and this becomes, when the boundary conditions (4.7) are imposed,

1
y= − 1

µ̃f(
0
y)

{∫ z̃/
√
ε

0

0
y (ξ) dξ − z̃

∫ 1/
√
ε

0

0
y (ξ) dξ

}
. (4.17)

5. Viscosity functions achieving the ‘boundary-layer flip’

There still remains to be answered the question of whether there exists, in principle, a
viscosity function µ̃f(y) for which the h-functional can change sign because convection
is taken into account. This is possible provided that

h0
dµ̃f

dy

dy

dz̃
+ h1 > 0, (5.1)
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or, with the estimate (A 10) of Appendix A, where the maximum of |dy/dz̃| is com-
puted:

1 > (y0 − yh)
d
dy

(ln µ̃f). (5.2)

Substituting the ansatz (4.13), it is straightforward to show that

(1/2ε)− (y0 − yh)
ln[(yL − yh)/(yL − y0)]

<
a

ε
<

(yL − y0)2

[(y0 − yh)− (yL − y0)]
. (5.3)

Here we have also added the left inequality, which is a direct consequence of (4.14).
Physically, yL > y0 > yh, and yL − y0 =: δ is small. If this quantity is introduced in
(5.3), it takes the form

(1/2ε)− (y0 − yh)
ln[(y0 − yh + δ)/δ]︸ ︷︷ ︸

positive, very large

<
a

ε
<

δ2

[(y0 − yh)− δ]︸ ︷︷ ︸
positive, very small

. (5.4)

Consequently, both inequalities cannot be satisfied simultaneously; vertical convec-
tion cannot, in this case, change the structure of the solution.

If, on the other hand, we select

µ̃f = 1 +
a

ε

(
1

yL − y

)m
, m ∈ (0, 1), (5.5)

and repeat the above analysis, the following chain of inequalities is obtained,

(1−m)((1/2ε)− (y0 − yh))
[(y0 − yh + δ)1−m − δ1−m]

<
a

ε
<

δm+1

[m(y0 − yh)− δ]
, (5.6)

or, a fortiori,

(1−m)
2ε(y0 − yh)1−m <

a

ε
<

δm+1

m(y0 − yh)
. (5.7)

If we choose m = εδm+1(y0 − yh)−m > 0, which is very small, then (5.7) is verified
by

(1−m) <
a

ε
< 1. (5.8)

We have thus shown that there exists an exponent m > 0 (although still very small),
such that the constitutive function for µ̃f (see (5.5)) obeys both inequalities (5.6).
A change of the boundary layer in the solid-volume fraction profile from the top to
the bottom interface is, therefore, possible in our model, and uses a fluid viscosity
function (5.5), with a/ε verifying (5.8), and m > 0 and very small. This would
mean that µ̃f is effectively constant for all y < yL and suddenly becomes infinitely
large as y → yL. This Dirac-type behaviour is obviously very singular but physically
unavoidable if the boundary-layer flip is to occur.
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6. Horizontal velocity fields

In this section, by using approximate integration techniques, we show that the hori-
zontal velocities of the solid and fluid constituents depend on the mean of the solid
and fluid viscosities outside the boundary layer, and, thus, also depend on the loca-
tion of the boundary layer itself. To demonstrate this, the differential equations
(2.1)5,6 for us and uf ,

(µsu
′
s)
′ − ν(1− ν)α̃(us − uf) = ν

∂p

∂x
+ ρ̂sνwsu

′
s,

(µfu
′
f)
′ + ν(1− ν)α̃(us − uf) = (1− ν)

∂p

∂x
+ ρ̂f(1− ν)wfu

′
f ,

 (6.1)

will be approximately integrated for (i) ∂p/∂x = 0, i.e. vanishing horizontal gradient
of the (incumbent) pressure; (ii) ws = 0 (no abrasion); and (iii) under the assumption
that the vertical convective terms of the fluid constituent can be ignored. Further-
more, for simplicity it will be assumed that µs can be assumed to be constant, at
least outside the boundary layer, and that equation (6.1) is only integrated over that
part of the mixture layer that does not contain the boundary layer.† On this basis,
the fluid viscosity outside the boundary layer can also be assumed to be constant,
as is the volume fraction.

With these restrictive conditions, equation (6.1) implies

(µsu
′
s)
′ − ν(1− ν)α̃(us − uf) = 0,

(µfu
′
f)
′ + ν(1− ν)α̃(us − uf) = 0,

}
(6.2)

from which, with appropriate combinations, the following ODEs may be deduced

(µsu
′
s + µfu

′
f)
′ = 0,

(us − uf)′′ − µs + µf

µfµs
ν(1− ν)α̃︸ ︷︷ ︸

=:c2

(us − uf) = 0.

 (6.3)

Because outside the boundary layer ν is effectively constant, these differential equa-
tions are linear with constant coefficients. Their integrals read

µsus + µfuf = Az + B,

us − uf = C exp(cz) + D exp(−cz),

}
(6.4)

where c is identified in (6.3).
It will now be assumed that the boundary layer is so thin that it can be ignored

when the boundary conditions are imposed. At the bottom interface, the no-slip
conditions will be applied,

us(0) = uf(0) = 0, (6.5)

and at the top interface the applied shear traction S will be distributed among the
constituents according to

µsu
′
s = 2ανlS, µfu

′
f = 2(1− ανl)S, at z = H. (6.6)

† We suppose here Newtonian rheology with viscosity that may depend on volume fraction, even
though experiments suggest a power law rheology (see Vulliet & Hutter 1988).
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For a justification, the reader is referred to DH-I and DH-II. With the conditions
(6.5) and (6.6), it is then straightforward to show that

B = 0, A = 2S/H, C = −D, D =
2
c

(ανl/µs)− [(1− ανl)/µf ]
exp(−cH) + exp(cH)

S. (6.7)

With these, us and uf may be isolated:

us(z) =
{

2
µs + µf

z +
2µf

c(µs + µf)
(ανl − (1− ανl))

exp(−cz)− exp(cz)
exp(−cH) + exp(cH)

}
S, (6.8)

uf(z) =
{

2
µs + µf

z − 2µs

c(µs + µf)
(ανl − (1− ανl))

exp(−cz)− exp(cz)
exp(−cH) + exp(cH)

}
S. (6.9)

The first terms on the right-hand side are the classical linear shear profiles of New-
tonian fluids, and it is interesting that they are the same for the solid and the fluid.
This reflects the barycentric motion for which the interaction force is not active.
The remaining terms are exactly the manifestation of the latter; however, because
c is very large outside the boundary layer, the second term influences the velocity
profiles at most very close to the top boundary.

7. Consequences of the compactness of the till layer

The model on which the results of the previous sections are based was motivated by
DH-I, DH-II and DH-III. There, suitable constitutive equations and the numerical
values for all introduced constitutive constants were chosen as listed in table 1. The
only exception was the constitutive equation for the fluid viscosity, a formula for
which was proposed above. With µ̃f given by (5.5), we may deduce

d
dy

{
ln
(

1 +
a

ε

(
1

yL − y

)m)}
=

a

ε
m

1
(yL − y)[(yL − y)m + (a/ε)]

. (7.1)

Since, according to (5.6) and (5.7), a/ε→ 1− and m→ 0+, this may be approximated
as m/(yL − y); so, as long as y does not become too close to yL, the difference

1− (y0 − yh)
d
dy

ln µ̃f = 1−, (7.2)

is not much smaller than unity. Therefore,

h0
dµ̃f

dy

dy

dz̃
+ h1 ' (1−)h1, (7.3)

and

h(·, z̃) = (1−)h1 + h(ν) (7.4)

can change sign from being negative to positive by making h1 sufficiently large. As
the second term on the right-hand side of (7.4) is of the order of 10−14, h1 must be of
that order of magnitude to achieve such a change of sign. With the definition (2.15)2
and the numerical values of table 1, this yields a water flow rate per unit area |Vf0|
of at most a few tens of centimetres per year. This is a very ‘reasonable’ number,
implying that for realistic melting rates of ice close to the bottom of ice sheets, the
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water production to be drawn to the sediment can, via its convective motion, cause
the boundary layer to flip from the top interface to the bottom interface. When this
happens, the compactness of the layer will be much looser than otherwise, giving
rise in turn to larger effective fluidity against horizontal shear, so that associated
slip velocities may become large when this boundary-layer flip occurs.

This behaviour can simply be inferred from the representation (5.5) of the fluid
viscosity. If the boundary layer is at the top, y(ν) is close to yL through most of the
sediment layer, and µ̃f is nearly constant except in the small boundary layer. With
the horizontal velocity of the sediment given by approximately

us(z) ' [2S/(µs + µf)]z. (7.5)

This implies that

uBLT
s (H) := [2S/(µs + µf)max]H (7.6)

is relatively small, since (µs +µf)max (i.e. the viscosities estimated for the values of ν
assumed when the boundary layer is at the top) is large as ν → νL. If, alternatively,
the boundary layer is at the bottom, then ν is distant from νL throughout most of
the sediment layer, the sediment velocity

uBLB
s (H) := [2S/(µs + µf)min]H (7.7)

is large, since (µs + µf)min (i.e. the viscosities estimated for the values of ν assumed
when the boundary layer is at the bottom). In fact, we may grossly estimate

uBLB
s (H)

uBLT
s (H)

' (µs + µf)max

(µs + µf)min , (7.8)

which is large if νL − ν0 is small.
In brief we summarize: provided the fluid viscosity is chosen according to (5.5)

and (5.8) we have

1. the average solid-volume fraction of the till layer is lower when the boundary
layer is located at the bottom;

2. for ice-melting rates of a few tens of centimetres per year, the boundary layer
is located at the bottom of the till layer; and

3. the shear flow in the till layer, in the presence of a given shear action, is greater
when the boundary layer is at the bottom.

These results demonstrate that the model on which the present paper is based pre-
dicts a possible destabilizing mechanism of a pressurized and sheared drained layer
of a soil water mixture. Numerical results that underline these claims quantitatively
will be presented elsewhere.

We thank Richard Hindmarsh and an anonymous referee for their critical comments of an earlier
manuscript.

Proc. R. Soc. Lond. A (1999)

 on July 19, 2010rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


Variations of porosity in saturated soil 2859

Appendix A.

Here we construct the boundary-layer solutions. Consider equation (2.13) and assume
the h-functional to be positive so that the boundary layer is at z̃ = 0. Introduce the
boundary-layer coordinate

ζ =
1
h0

z̃,
d
dz̃

=
1
h0

d
dζ

. (A 1)

Then equation (2.13) takes the form

d
dζ

(
µ̃f(y)

dy

dζ

)
+ d(ν(y))

dy

dζ
= h2

0h2, (A 2)

which can also be written as

d
dζ

(
µ̃f(y)

dy

dζ
+ D(y; y∗)

)
= h2

0h2, (A 3)

where

D(y; y∗) :=
∫ y

y∗
d(ν(ȳ)) dȳ. (A 4)

The solution of (A 3) as h2
0h2 → 0, is given by

µ̃f(y)
dy

dζ
= C1 −D(y; y∗), (A 5)

and a further integration yields

ζ =
∫ y

1

µ̃f(ȳ)
C1 −D(ȳ; y∗)

dȳ + C2. (A 6)

At ζ = 0, one must have y = y0, which determines C2; as a result, (A 6) becomes

ζ =
∫ y

y0

µ̃f(ȳ)
C1 −D(ȳ; y∗)

dȳ. (A 7)

Matching this for ζ =∞ with the outer solution y = yh yields

∞ =
∫ yh

y0

µ̃f(ȳ)
C1 −D(ȳ; y∗)

dȳ. (A 8)

Provided µ̃f > 0 is a monotone function of its argument, (A 8) implies C1 = D(yh; y∗),
so that the inner solution expressed in the outer variable takes the form

z̃ = h0

∫ y

y0

µ̃f(ȳ)
D(yh; y∗)−D(ȳ; y∗)

dȳ = −h0

∫ y

y0

[
µ̃f(ȳ)

/(∫ ȳ

yh

d(x)dx

)]
dȳ. (A 9)

This solution also allows the evaluation of the derivative dy/dz̃; indeed, from (A 5)
with C1 given as above, one obtains

dy

dz̃
=

1
h0µ̃f(y)

(D(yh; y∗)−D(y; y∗)) = − 1
h0µ̃f(y)

∫ y

yh

d(x) dx. (A 10)
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If h is negative, then the boundary layer is at z̃ = 1. If we then let the boundary-
layer coordinate be

ζ =
1
h0

(1− z̃),
d
dz̃

= − 1
h0

d
dζ

, (A 11)

and define

D(y; y∗) := −
∫ y

y∗
d(ν(ȳ)) dȳ, (A 12)

the boundary-layer equation again takes the form (A 3), and the inner solution in
terms of the outer variable now reads

1− z̃ = −h0

∫ y

yh

[
µ̃f(ȳ)

/(∫ ȳ

y0

d(x) dx

)]
dȳ, (A 13)

and

dy

dz̃
=

1
h0µ̃f(y)

∫ y

y0

d(x) dx. (A 14)
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